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We study the triviality problem of A¢* theory in a time-dependent space-time within a variational
Gaussian approach. A unique, precarious (g ~ —1/InA) phase makes sense. As a consequence, A
is compelled to lie in the range 0> Ag > }\'Rmin’ where )‘Rmin depends on the curvature.

I. INTRODUCTION

Recently the problem of the existence of A$* theory has
been studied, we believe, for the first time in a curved
space-time.! The reason is the accumulating evidence for
the triviality of A¢* theory in Minkowski space,® only
counterbalanced by the possible existence of a precarious
phase, that is, a phase which does not lead to a sound reg-
ularized theory, but nevertheless yields an interacting re-
normalized theory with a ground state.> This precarious-
ness is due to the fact that the bare coupling constant is
negative in this phase. More rigorously, this does not
seem to spoil the construction of Euclidean A¢* theory,
but its continuation to Minkowski space is not under-
stood.* Now, the question addressed in Ref. 1 is about the
role played by curvature in the triviality and interaction
issue of Ag* theory. Naively one could argue that the ex-
istence and interaction are determined by the continuum
(regularized to renormalized) limit and thus are only ul-
traviolet sensitive. When the distance goes to zero, curva-
ture becomes meaningless. However, the issues studied do
not depend only on the leading UV divergences, but also
on subleading contributions, and these depend on finite
distances. In the language of perturbation theory this im-
plies, e.g., that overlapping divergences are curvature sen-
sitive. In Ref. 1 the space-time chosen was a static
Robertson-Walker one. The main reason for this choice
was the existence of relatively simple solutions of the
Klein-Gordon equation in this space-time, an essential in-
gredient to the variational approach followed. The penal-
ty for this simplicity was a space-time which does not
differ very much from Minkowski space-time. Its high
degree of symmetry and its static character make impor-
tant qualitative changes unlikely. Here a similar study
has been performed for the simplest time-dependent
space-time. We have not given up symmetry; on the con-
trary, the group of isometries is maximal, but now there is
an explicit time dependence in the metric. Of course, the
choice has been again constrained by the requirement of
the existence of not-too-difficult solutions to the Klein-
Gordon equation. Therefore, the question raised, and
answered, within the approximations used, is as follows:
How relevant is the static character of the curved space-
time for the existence issue of A¢* theory?

We quickly recall the conclusions of Ref. 1. For a stat-
ic Robertson-Walker space-time the only interacting phase
with ground state is precarious, exactly as for Minkowski
space-time. However, the range of allowed values of the
renormalized coupling constant depends on the curvature.
For a closed space-time the range shrinks to zero as the
curvature becomes large. For an open space-time the
range becomes unbounded, allowing arbitrarily large nega-
tive values, as the curvature increases. These results are a
reflection of asymptotic freedom, as for negative coupling
Ag* theory is asymptotically free.®

We will now study the same issues in a time-dependent
space-time and so analyze the role that time dependence
plays with respect to interaction, precariousness, and ex-
istence of the ground state.

Let us briefly review here the main ideas behind our ap-
proach to the study of these problems. Recall that there
are two equivalent definitions of the effective potential of
a field theory.® One corresponds to the lowest expectation
value of the Hamiltonian when the states are constrained
to lead to a fixed field expectation value, i.e.,

V(go)=min(y |H | ¢) ,
do=(¥ || ¥) .

This is the definition that will allow us to compute an ap-
proximate effective potential density with the help of a
variational approach, as is clear from Eq. (1.1). We will
make a free-field ansatz which is known as the Gaussian
approximation”? and which leads to a nonperturbative
upper bound:

vG (o) > v (o) ,

where v (@) is the density corresponding to ¥V (¢).

As a first step one requires the knowledge of free-field
solutions of the scalar fields (and their corresponding vac-
uum states as trial states) in the variational approach fol-
lowed.* This leads in Sec. III to a parameter-dependent
bound on the regularized energy density. Its minimiza-
tion gives vg(do).

The other definition of the effective potential is as a
generator of all the proper Green’s functions at zero exter-
nal momenta. Based on this definition one can introduce
renormalized masses and coupling constants as second-

(1.1)

(1.2)
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and fourth-order derivatives of the effective potential.
This allows one to renormalize and write in an explicitly
finite form the effective potential. This is done in Sec. IV
and leads to the final expression for the Gaussian effective
potential. As we will see, a finite bounded effective poten-
tial requires a very specific behavior of the bare parame-
ters of the theory as functions of the ultraviolet cutoff A.
This analysis is performed also in Sec. IV. The bounds on
the renormalized coupling constant follow from it. Sec-
tion V is devoted to comments and conclusions.

II. FREE FIELDS

There are many coordinate descriptions of a de Sitter
space-time.® For our purposes, and because in other coor-
dinates the difficulties of the computations seem insur-
mountable, the most useful coordinates are those which
lead to the following line element:

3
e2/® 3 (dx') . 2.1

i=1

ds?=dt’—

This coordinate description covers only half the de Sitter
manifold. The fact that covering half the de Sitter space
does not take into account its global topological aspects
limits this study somewhat. All of our work therefore
refers to half the de Sitter space, which has a topology R*
instead of R XS>. In terms of the conformal time

—t/a

n=—ae , —o<n<0, (2.2)

the line element becomes

2
ds?’= | & | |dp*— i(dx")Z
= 7

i=1

(2.3)

which is conformal with a time-dependent conformal fac-
tor to half the Minkowski space-time. (Allowing 7 to
range over all real numbers covers the other half.) All the
novelty therefore lies in the time dependence of the con-
formal factor.

The Klein-Gordon equation is

2 32 2
7-9 238 7 2R =
Lo 2 o A+m°+ER () |$(x)=0,
(2.4)
where
32 32 3’
a7 T 322 Ty
and the scalar curvature is given by
Rip=1% (2.6)
a?

Notice that it is constant. Notice also the last term in
(2.4) which is due to the coupling to curvature.

Free fields, solutions of the Klein-Gordon equation, can
be expanded in modes as usual:

$(x)= [ d*k[uy(x)a @) +uf(xa'k)] . 2.7

Separating the trivial spatial dependence from the time
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dependence one can write

3/2 ikx 1

up(x)=02m)~ Tk("]) (2.8)

which reduces the Klein-Gordon equation to
d 27' k
d 172

m24(E—+) 2
a?

Tk =’0 . (29)

k2+—
7]

Of course, the particular combination of solutions to this
equation which we use will define the positive-frequency
modes and thus the vacuum. A reasonable choice is the
adiabatic vacuum® which corresponds to the combination
which satisfies

e~k (2.10)

Tk(n)k.'q:eo \/;_k
It is given by

() =L () 2 =101 DR 2 D) (e @2.11)
where H? is the second Hankel function and

V=7 —alm?—12¢ . (2.12)

Notice from Eq. (2 9) that the conformal limit corre-
sponds to m=0, £= 6 , i.e., to v*=+. No mass scales are
left.

III. THE ENERGY DENSITY

The energy-momentum tensor for Aé* theory in a
curved space-time is given by

Tyy=— 78uv[8°93,9 — (m*+ ER)G* —214*]
+08,00,6—E(R,y8* — 8" %+ 6, (3.1)
which is obtained from the Lagrangian
L =3(—g)[0%d,0 — (m?+ER)P>—2A0%] , 3.2)

where g=det(g,,) and R, is the Ricci tensor. For our
space-time the energy density reads

2 2
1|3 L% |26
= —(26—3) -
- {an - z 2
2 mi S ¢4 —L¢D¢
217
2§¢——£ —éq‘)—ﬂ (3.3)
where the d’Alembertian is given by
4 2 3 2
o="1 @38 | . 8 a_i
= 317 7 on 2 |t ax (3.4)
Our trial fields will be of the form
d(x)=¢o+dq(x), (3.5

where ¢, is a constant background field and ¢g(x) a free
quantum field of mass (), as given by the equations in
Sec. II. The variational parameters will be ¢y and ). The



ground state corresponding to ¢g(x) is |0)gq. It satisfies

a(k)|0)q=0. (3.6)

The energy density of the true ground state of the theory
will be bounded from above according to

€irue < 00| Too | 0)a=€(60, 2,7) . 3.7)

The computation of the right-hand side of Eq. (3.7) is not
difficult. It gives

2

e(do,m) (3.8)

€(¢0vﬂrn)5

with
€(do, Q) =1,(Q)+ (M2 — QNI (Q?)+ ym 2P,
+Ado +6Ado To( Q) +3AIHQY) ,  (3.9)
where Q2 and m? have been redefined according to

=0+ 125
a

(3.10)
m2§m2+6—§5 ,
a
and I,(Q?) and I,(Q?) are given by
I(@)=—— [ dex? | HP (o) 2o,
e (3.11)
IV | ° 22 202 | F(2) (v | 2,7imy
L(0)= fc dx x¥x2+a2Q%) | HP (x) | 2e™™

and v=3 —a?0% Notice that the whole time depen-
dence factorizes according to Eq. (3.8), which is very like-
ly due to the high degree of symmetry of the de Sitter
space. This makes the space-time analyzed not so dif-
ferent from the previously studied static Robertson-
Walker space-time. In fact Eq. (3.9) is the same for both,

34 A¢* THEORY IN A TIME-DEPENDENT SPACE-TIME 2341

only the integrals I, and I, differ: they are much more
complicated in this case. All relevant properties of these
integrals are given in the Appendix.

Let us recall that the point v’=+ corresponds to the
conformal limit of our theory. This v value coincides
with the appearance of IR singularities in I; and I.
Moreover, beyond |Rev| =1 the Gaussian approach is
meaningless. This situation usually takes place at Q2=0,
that is to say when no intrinsic mass scale enters into the
approximation. In the present case, nonflat space-time
changes this value to v*=+ (a?Q*=2) since curvature
plays also the role of a mass. As a consequence the range
of variation of a?Q? is from 2 to .

IV. RENORMALIZATION AND ANALYSIS

A. Renormalization

The expression (3.9) for the energy density is plagued
with infinities which should be absorbed by renormaliza-
tion of the mass and the coupling constant and by the
subtraction of the zero-point energy. In case this renor-
malization procedure allows different valid behaviors for
mp and Ap we will talk of “phases” of the theory.

Following Barnes and Ghandour’ we take the renor-
malization scheme defined by

L 3eldo, o)

m >
. 3> |s=to
(4.1)
. 0%(d0, Qo))
A= ——( )
d¢g 0=%o

where ¢, stands for the subtraction point. The simplest
obvious choice is ¢o=0. The physics does not depend on
this particular choice, thanks to renormalization-group in-
variance.

The explicit form of (4.1) is obtained from (3.9):

mR2=m32+12%310(002)4—(().02)' 662 N (42)
dQ° |g,=0
2y ’ 2 (902)’2 " 2 3 2 2 2y 77 2 , 2 2002

)"R =A’B+(QO )3&310(00 )+ 24 {3II(Q0 )+7[m3 —00 +12ABI()(Q0 )]IO(QO )—3[0(90 )+18)"BIO (ﬂo )}

Q%)

0| B , 4.3)

24 90 |g,=0
where
3202 3‘0? aI,,(QZ)
Q3 =0%¢o=0), (QPH)'= —— , Q)= , L(QP)= ——— . (4.4)
0 ¢0 0 a¢02 $o=0 0 a¢o4 4y=0 n\%40 an 02=002

These equations are to be applied to the subtracted energy density

U(;(¢0)E€(¢0,Q(¢o))—6‘(0,00)

=1(Q%) —I(Q") + +[mp?— Q2+ 12X 3> + 6A 51, ( Q) [5(02)
+ 3mp’be’ +Apdo' — 5 [mp?— Qo +61510(Qe2) Ho(Q?) . 4.5)
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Notice that quartic UV divergences have been removed by
subtraction in (4.5) as is usual in ordinary A¢*. Quadratic
and logarithmic ones ought to be absorbed by mgz? and
Ap, respectively. Nevertheless this is a nonobvious state-
ment. In order to find out every acceptable phase we have
to perform a careful analysis of Egs. (4.2), (4.3), and (4.5).

B. Analysis

We are looking for an effective potential in terms of
$o>. Thus, Q should be considered as a function of ¢
In order to obtain an optimal upper bound for the
ground-state energy we introduce the implicit definition

aE(¢0,Q)
30 =0. (4.6)

mgt=mpg+ 12A515(Qe%) ,

(002 )I2

24

Ar =Ap +(Qe?) 3T (Do} +

Next we analyze any possible value of a’(y>.
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In particular, when ¢,=0 we obtain
I'1(Q¢1) — 3 1o(QeH) + 5 (mp? — QD) 5(Qo?)

+6AgI0(QIH(0,%)=0. (4.7

This equation can have a solution, Qz>=0,? or not.
However, we must also study the end points a?Qy>=2 and
a@’Qy*= o which could provide the operative minimum
of €(0,Qp). In this later case, since Je(¢y,Q)/
9 | 4,=070, the derivatives satisfy (Q2) =(Qe})" =0
just by continuity. We conclude that, whatever the situa-
tion is, the last terms in (4.2) and (4.3) vanish, and thus

(4.8)

(317 (D) + 2[mp?— Q>+ 1245 Io( QD) § (1) — 3I5(Qe?) + 18A 5T H(QD)} .

(4.9)

Case 1. a’*Qy’>2. This case corresponds to the solution of d€(0,)/3Q” | noz=noz=0. To leading order in InA? this

restriction provides a unique solution
a0 =a’mp’+1

which must satisfy
9%€(0,9y)

A7 |ag=n,

(4.10)

4.1D

in order to be a minimum. Therefore neither @2Qy*=2 nor Qy= « are operative.
The general restriction (4.6) allows by continuity a simple calculation of (Q,2)":

12A515(002)
(Qoz)'= Bio\ilg

Substituting into (4.8) we obtain the compact expression

NN —Ih(Qh) + S (mpi— QoA QD) +6Ag T (Q?)

(4.12)

LI} (Q1) —I5(Q) U (1) + [ To(Q6%) — I (R2) U § (2% — 120515 (Q?)

R =

B Q) —TH( QoD U QD) + [ HIo( QD) — I (A M4 (Q6D) + 6A51 QD)

(4.13)

Notice that only InA? divergences are still involved. Nor does the mass play any role. Equation (4.13) contains the infor-
mation about the possible phases of the theory in the sense that only Ap behavior which renders Ay finite are acceptable.
The inversion of (4.13) provides two very interesting cases since renormalizability is then guaranteed.

(i) The negative infinitesimal phase. One of the two solutions of (4.13) is

1 8n? 1 |4mr 2 1
=—— — ——[S0(Qg)—287(Qy) O|——= 4.14)
Sarnyell Lamvell v il A e A YeE
Restriction (4.11) implies Az <0.
When ¢¢? > 0 we consider two possibilities: one possibility is @?Q?=2, therefore,
1 S5(Q) — > _
=1 lgm202402 2P T a2 4.15
vG (o) P a‘p”+ o (2—a?Qy?) . (2—a?Qp?) 4.15)
The other is =0, Q being given by
dedo | _
FYV R PeE PR
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Taking into account the A behavior this restriction reads

- — o202 - a2
So(T)]+S5(@) | 22 —1]+samo) 14— —aZQZJ
at =, =, 4r? = 0 | ~, =
+81r2a“¢02——2~(02—002)~r+sz;mo) 1— Q-0 [=0. (4.16)
R
In this case the subtracted energy density turns out to be
ve(do)= 8722?02 — 1)+ [So(T)— So(Ty)] ““ -1
G\ Po 6‘”2 2 o' 0 o\dlo
- G2 — Q-0 a?Qy? 42
+S5(Q) Q2 -0 1-“? +85 (@) —— SR P 2" —“k”z(nz—nozﬁ 4.17)
R

The limit a?Q>— o leads to é— + o, S0 it is not operative.

We conclude that this infinitesimal phase makes sense. When plotting (4.15) and (4.17) we observe that =0, ¢,=0
provide the absolute minimum of v. The shape of the energy density is smooth until a certain ¢, value where (4.15) be-
comes the absolute minimum. (See Fig. 1.) Then a parabolic effective potential sets in. When the height of this later
curve at the origin is just zero this phase no longer makes sense. In such a case

SG(QO)

2
(2—a?0t)— =0 (4.18)
AR

which corresponds to a relation between Az and mpy plotted in Fig. 2.
(ii) The constant phase. The second branch of (4.13) leads to

AR
Ap= — —— . 4.1
B ) (4.19)
In order to have a minimum we are forced to consider (4.11):
Ag>0=>Ag <0. (4.20)

We consider AB =const > 0. Then the energy density contains logarithmic divergences:

InA? = =
(g0, 02) = ﬁz ;e [a%Q4 065~ 220~ 0]+ 1mr o’ + Aado’
Limp2+ 120 phe2) — “—2(1 ADNQ2-04) |+ 3te (1 A2>2“—<92 02 +€0,9,) . (4.21)
+z{mp"+ BP0 oo |— 5 n —{)y ﬂzz)zn 0 o) - .
We only need to consider leading behavior in what fol- £(¥)
lows. The minimization procedure to obtain {2 leads to I
—, =, 16m7¢g 1 T
Q2=0y= (4.22) [
7 A2 (InA2)? -
and therefore
Ug(¢o)= —2)\13¢04 . (4.23)
The theory is unbounded from below.
(iii) The other phases. Any other behavior of Ay leads
to either a trivial theory or an unbounded one. Let us, for
instance, present the case ' ' ¥
FIG. 1. Effective potential v in terms of ¥ =¢¢2. The dotted
4 1 line corresponds to a?Q?=2 whereas the dashed line corre-
Ap~— 3 InA? a, a<l. 4.24) sponds to the solution to (4.16). The solid curve jumps from one

o ] case to the other in order to keep the absolute minimum for
Restriction (4.11) is satisfied but €e(y). The curves shown correspond to Az = — 1 and a*Q*=5.
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8r?
ARmin

allowed sector

forbidden sector

s
2
1 m R

FIG. 2. Relation between Ag min and mg? provided by (4.18).
Acceptable Ag’s lie in the upper sector (mass in units of a).

477 —2—4a
—_ a———
3InA? —1l-—a

so triviality is found at best.
Case 2. a?Qy*=2, 9e/3Q? | 022> 0. This situation

appears when

Ag= , (4.25)

atmg?<l. (4.26)
By continuity we find

(Q%) =(Q¢%)'=0=>Ag =Ap . 4.27)
There is no coupling constant renormalization. In a

neighborhood of ¢o=0, the effective potential remains
(a*Q?=2)

v (do)=Tmg*bo’+Agdo* (4.28)
which forces
Ag>0=>Agr>0. (4.29)

In the case Ag ~1/InA? we get triviality but if Az ~const
there is a certain ¢, value beyond which

B 16m%¢2

— 1
Q2—-02=
0 InA?

(InA2)?

(4.30)

This situation is similar to that of Egs. (4.22) and (4.23)
and leads to an unbounded theory.
Case 3. a?Qy*=2, 3€(0,Q)/30Q | a2=n2=0- This

case can be considered as a limit of cases 1 and 2. No new
physics can appear.

V. CONCLUSIONS

Our analysis of A¢* in a simple time-dependent back-
ground space-time shows that only one phase makes sense.
Ap must vanish as the cutoff tends to infinity like
~—1/InA%  This corresponds to a precarious phase.
This concept was introduced by Stevenson® and states that

any regularized version of the theory remains unbounded
from below. Nevertheless there is a metastable spectrum
which becomes stable as A— co.

However, this precarious phase only exists for Ag’s in a
range determined by my (Fig. 2):

4ata?
S6(Qg)(2—a’Qy?)

0>Ag>

= A'R min

(let us recall that Qy=mgz?+1/a?). Two special cases
are

mpg?—1 (conformal limit) =0>Ag > — w0 ,

mR2~—>oo =’0sz > -'“87T2 .

This agrees with intuition since mgz?>>1 is equivalent to
neglecting curvature and — 87 corresponds to the lowest
acceptable Ay in flat A¢*. On the contrary mg>—1 corre-
sponds to large curvature which, from the study of Ref. 1,
is expected to lead for an open space-time to an unbound-
ed Ag range. This is indeed what we find.

The inclusion of a time dependence has minor but sub-
tle consequences. It seems to us that triviality is deeply
connected with the degree of symmetry of the space-time.
Since our metric has ten Killing vectors no drastic quali-
tative changes appear. Nevertheless the allowed Ag min
range goes from — oo to — 87 just as it happens in a stat-
ic open space-time. We have found that somehow a flat
space-time, scaled with a factor which increases as the
time flows, behaves as a static RW universe with positive
three-curvature. It is conceivable that for the complete de
Sitter space-time two opposite tendencies compete: on the
one hand, at any fixed time a closed universe forces
Armin—0 as its curvature becomes large, on the other
hand, time evolution enlarges the range of Ag min. All the
same, the only alternative to triviality is the precarious
phase, as usual for A¢*.
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APPENDIX

In this appendix we will use standard notations bor-
rowed from Ref. 9. Let us consider the integrals appear-
ing in (3.11):

1

I (QZ)E wd 2 H(VZ)(x) Zeﬂlmv ,
0 877&2 f() X X ' l
1 - (A1)
1,(Q%)= dx xAx*+a*Q?) H(‘,Z)(x) 2gmimy
! 8mat f‘) | |

where =+ —a’Q% The range of variation of v is only
limited by the requirement of normalizability. Conse-
quently we must consider real as well as pure imaginary
values for v. In addition, UV divergences appear in (A1)
and therefore we need to introduce a regularization pro-
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cedure. The usual symmetric cutoff | x | <A leads to a
rather involved output. As a matter of convenience we
will work with the integral

1,0 =5 tim [ dxK,(x(e+i)

»rr €e—0+

XK, (x(e—i))cos>= . (AS)

A
w x
1(QA)= fo dx H(f’(x)[H(vz’(x)]‘cosX (A2)  This integral is a special case of '!
® x
which provides the regularized expressions I,(Q% A) and f o 9x K (ax)K,(Bx )COS‘A—
I,(Q%A) by simple derivatiogxs with respect to A. A fur- . ,
. . . o, l
ther trick consists in wxltmg _ _1%_ aB)-1secmvIPy_ 1 |2 +[; +1/A ’
[Q4A)= lim [ 7 dx HP(x(1+i€)) ap
e—~0+ 0

(A6)
X[H? (x(1—i )]'cos— (A3) |Rev| <5, Re(@+B8)>0, A>0,
Hankel functions satisf where P corresponds to Legendre functions. Further-
y more,
i (i _

K (2)=="e""H, (2", —m<argz<m/2, P ()=F | —ppu+ 1;1;i2—2 l [1-z][<2 (A7

(Ad)

so that
K (z)=— 79 —ivi 2D (ge—iT/2) _p/d cargz <,

I(Q2 A)=sec(mv)F -;--—v,%-}-v;l;l—;\—z (A8)

where K is the modified Bessel function. Therefore, for
real v, (A3) is transformed into An expansion of hypergeometric functions is provided by’

' _Ta+b) & (@) _ _ _
F(a,b;a +b,z)= T(a)T(B) n§0 (n')2 “[2¢(n +1)—tpla +n)— (b +n)—In(1—2))(1—2)

|arg(l—2)| <m, |l—z| <1, (A9)
where 9 is the ¥ function and (@), =a(a +1) - - - (@ +n —1). Our final expression for I (Q%A) is

(7=vlz+

2 13 1 | 1
I(Q ,A)=;n§0 a2 [2¢(n+l)—1/1(n +5 —v)—¢(n + 5 +v)+1ndA?] @AD"’ |Rev| <5 . (A10)
Exactly the same result is obtained when v* < 0.
Our basic integrals are easily derived from (A 10).
102 8) = L [—2A2— L(@20?—2)InA2+So(0)]
Ta
(A11)
Q%A= L [12A%+ AX—2—a20%) — 1a?0% — 2+ 20D InA+5,(Q)] ,
Ta
where So(Q) and S,(Q) are the finite parts
So(Q)=+(+ =3 -2¢(2) + Y F —v)+ (5 +v)—Ind] ,
S1Q) =1 (5 =V F =) — 25+ 12¢(3) — 6 > —v) —6Y( > +v) + 6 Ind]
+ 3 (5 =23 —2(2) + (3 —v)+ (5 +v)—1nd] . (A12)

These functions are related by

S1(Q)=+a20%8(Q) + 5 —a’Q? — ca*Q* . (A13)
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