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We analyze the possible existence of nonperturbative contributions in heavyQ̄Q systems~Q̄ andQ need not
have the same flavor! which cannot be expressed in terms of local condensates. Starting from QCD, with
well-defined approximations and splitting properly the fields into large and small momentum components, we
derive an effective Lagrangian where hard gluons~in the nonrelativistic approximation! have been integrated
out. The large momentum contributions~which are dominant! are calculated using Coulomb-type states. In
addition to the usual condensate corrections, we see the possibility of new nonperturbative contributions. We
parametrize them in terms of two low momentum correlators with Coulomb bound state energy insertionsEn .
We realize that the heavy quark effective Lagrangian can be used in these correlators. We calculate the
corrections that they give rise to in the decay constant, the bound state energy, and the matrix elements o
bilinear currents at zero recoil. We study the cutoff dependence of the new contributions and we see that it
matches perfectly with that of the large momentum contributions. We consider two situations in detail,~i!
En@LQCD~MQ→`! and ~ii ! En!LQCD, and briefly discuss the expected size of the new contributions inY,
J/c, andBc* systems.@S0556-2821~96!01419-1#

PACS number~s!: 12.38.Lg, 12.39.Hg, 13.20.Gd
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I. INTRODUCTION

The study of heavy quark bound state systems rema
one of the more promising topics in order to test both p
turbative and nonperturbative aspects of QCD, as is cl
from the steady activity in the field@1–6#. These systems can
be understood in a first approximation as nonrelativis
bound states which occur due to a Coulomb-type interact
predicted by perturbative QCD. In order to improve this b
sic picture one has to deal on the one hand with perturba
relativistic and radiative corrections, and on the other ha
with nonperturbative corrections~power corrections!.

In this paper we shall only be concerned with nonpertu
bative corrections. Usually, the latter have been parametri
using both the multipole expansion and the adiabatic
proximation in terms of the gluon condensate@7,8#. Correc-
tions to the Coulomb potential due to condensates can a
be considered, although these are subleading@3,9#. We have
argued before@6# that new nonperturbative contribution
could arise which cannot be expressed in terms of local c
densates, and hence a convenient parametrization for the
required. This kind of nonperturbative contribution has be
discussed in@10# in a different context and, in fact, the vari
ous Isgur-Wise functions extensively used in the hea
quark effective theory~HQET! may be regarded as suc
@11#.

Let us recall the main idea behind the possibility of ne
nonperturbative contributions in heavy quarkonium.1 When
the relative three-momentum in the bound state is la
enough, the dominant interaction must be the perturba

*Electronic address: pineda@ecm.ub.es
†Electronic address: Soto@ecm.ub.es
1We use ‘‘heavy quarkonium’’ to denote a general heavy qua

antiquark bound state. The quark and the antiquark need not h
the same flavor.
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Coulomb potential, but for small relative three-momentum
this need not longer be true. Therefore, heavy quarks in th
latter kinematical situation should better be kept as low
energy degrees of freedom. It turns out that a convenien
parametrization of this kinematical region may be given in
terms of the HQET for quarks and antiquarks@6,12#.

The HQET for quarks and antiquarks enjoys rather pecu
liar features, which make it quite different from the usual
HQET describing either quarks or antiquarks, which has
been so popular in the study ofQq̄ and Qqq systems in
recent years@13# ~see@14# for reviews!. For instance, it en-
joys a symmetry, which is larger than the well-known spin
and flavor symmetry, that breaks spontaneously down to th
latter, giving rise to quark-antiquark states as Goldston
modes@12#. Its peculiarities concerning radiative corrections
have recently been illustrated in@15#.

The main aim of this paper is to work out a controlled
derivation from QCD of the effective Lagrangian describing
the small relative momentum regime of heavy quarks in
quarkonium. Whereas the basic ideas above have alrea
been elaborated in@6#, a complete and systematic derivation
is lacking and, hence, worth being presented. Within this
new framework we recalculate the nonperturbative contribu
tions of this region to the energy levels, the decay constan
and the matrix elements of bilinear currents at zero recoil
We find a few corrections to the formulas given in@6#. For
all these observables it is enough to work in the center-of
mass~c.m.! frame, which we shall do in most of the paper.

In order to deal with heavy quarkonia systems we keep
the relevant degrees of freedom in the QCD Lagrangian. I
fact, since virtual heavy quark creation is very much sup
pressed, we could safely start from nonrelativistic QCD
~NRQCD!. The derivation of NRQCD from QCD is well
understood and a technique to incorporate relativistic correc
tions to it has also been developed@16#. First of all, we split
the gluon field into hard and soft components by a three
momentum cutoff. From the hard gluon fields we only keep
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4610 54A. PINEDA AND J. SOTO
the zero component and disregard the special compone
This is legitimate as far as we are not interested in relativis
corrections. We next integrate out the zero component of
hard gluon field to obtain the Coulomb potential betwe
heavy quark currents. The Coulomb potential has an infra
momentum cutoff since the zero component of the soft glu
field has not been integrated out. At this point we have
effective Lagrangian formally equal to the one used by V
loshin and Leutwyler~VL ! @7,8#, except for the IR cutoff in
the Coulomb potential. After introducing c.m. and relativ
momenta for the bound states we are interested in, we fur
split the quark fields into large and small relative thre
momentum regimes.2 The resulting Lagrangian can then b
separated into three pieces:Lm, which contains small relative
momentum quark fields only,Lm1L m

I , which contains large
relative momentum quark fields only, andL m

Im, which con-
tains both small and large relative momentum quark fiel
For Lm we can approximate the Lagrangian to the HQE
Lagrangian, where eventually all its powerful symmetri
can be used. No Coulomb term remains in this part of
Lagrangian. ForLm1L m

I we obtain again the VL starting
point Lagrangian except for two facts: Both the Coulom
potential and the Hilbert space are restricted to thre
momenta larger than a certain cutoff. Keeping the cut
much higher thanLQCD but much smaller than the invers
Bohr radius we may safely assume that the multipole exp
sion holds for this part of the Lagrangian. If we further a
sume that the adiabatic approximation also holds, we m
proceed in total analogy to VL. The hypothesis above on
cutoff also allows us to treatL m

Im as a perturbation. The vari
ous contributions from this perturbation to the different o
servables can be eventually expressed as correlators o
HQET.

We would like to stress that our formalism is less restr
tive than the one used by VL since neither the adiaba
approximation nor the multipole expansion are assumed
hold in the small relative momentum region of the hea
quark fields. Indeed we may always recover the VL resu
by putting to zero the cutoff which separates large and sm
relative momentum.
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We organize the paper as follows. In Sec. II we derive th
effective action for the small relative momentum fields. I
Sec. III we calculate the decay constant, the bound sta
mass, and the matrix element of any bilinear heavy qua
current between quarkonia states at zero recoil. The latter
relevant for the study of semileptonic decays at zero reco
In Sec. IV we prove the cutoff independence of our result
In Sec. V we study the low-momentum correlators in tw
situations: the asymptotic limit (MQ→`)En@LQCD, where,
using the operator product expansion~OPE! techniques, we
see that no new corrections arise, and~ii ! En!LQCD, where
the low-momentum contributions are evaluated using an e
fective ‘‘chiral’’ Lagrangian which incorporates the relevan
symmetries of the HQET for quarks and antiquarks. Workin
in this way we find new nonperturbative contributions whic
are parametrized by a single nonperturbative constant. W
also give preliminary estimations of their size. Section VI i
devoted to the conclusions.

II. EFFECTIVE ACTION

In this section we derive the effective Lagrangian fo
heavy quarks and antiquarks in the small relative momentu
regime from QCD.

The QCD Lagrangian reads

L52 1
4F

21(
a

Q̄a~ iD” 2ma!Qa , ~2.1!

where

Dm5]m2 igVm , V5VrTr , ~2.2!

Fmn
r 5]mVn

r 2]nVm
r 1g frstVm

s Vn
t . ~2.3!

We split the gluon fieldV in largeA and smallB momen-
tum modesV(x)5A(x)1B(x). Next we exactly integrate
A0 and neglectAi . The latter would give rise to relativistic
corrections. Consistently, at the same point we perform
Foldy-Wouthuysen transformation and keep terms up to 1/m.
We obtain
nt
luons:
L52
1

4
E d3xFB

21(
a
E d3xS Q̄a~ ig

0D0
B2ma!Qa1Q̄a

DW B
2

2ma

Qa1Q̄a

gSW •BW B

2ma

QaD 1OS 1

ma
2D

2
g2

2
(
aa8

E d3xE d3yQ̄ag
0TrQa~x!S 1

DW B
2 D rs~x,y!Q̄a8g

0TsQa8~y!, ~2.4!

which is manifestly gauge invariant.3 Although, in principle, we could attempt to carry out an explicitely gauge-invaria
calculation, in practice, it is most convenient to choose a slightly modified Schwinger gauge for the small momentum g

S zW2
maxW1ma8yW

ma1ma8
DBW ~z!50. ~2.5!

2The large and small relative momentum regions were denoted as off- and on-shell regions, respectively, in@6#.
3Similar approaches can be found in the literature@4#.
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In this gaugeBW in the kinetic and Coulomb terms gives rise to subdominant contributions when the multipole expans
carried out, which greatly simplifies the calculation. In particular, recall that the propagator in the Coulomb term always
large momentum~we have not integrated out the small momentumV0 which is kept inB0!. Hence the multipole expansion is
always made legitimate in the Coulomb term. This allows us to dropBW in the Coulomb term straight away. As long as we ar
interested in quark-antiquark bound states only, we may also safely neglect the four-fermion interaction terms involvin
quarks or only antiquarks. We next rearrange the quark-antiquark interaction term in a convenient way in order to desc
bound state dynamics. Finally, the effective Lagrangian reads

L52
1

4 E d3xFB
21(

a
E d3xS Q̄a~ ig

0D0
B2ma!Qa1Q̄a

DW B
2

2ma
QaD 1OS 1

ma
2D

2
1

2 (
aa8A

maa8
3 NA

2(
s
E d3v

~2p!3
E d3q8

~2p!3
E d3q

~2p!3
VA~qW 82qW !@Q! a~2mavW 1qW ,t !TAḠsQ̃a8~ma8vW 1qW ,t !#

3@Q! a8~ma8vW 1qW ,t !TAGsQ̃a~2mavW 1qW 8,t !#, ~2.6!
at

-
i-
e
is
is
ve
-
e-
w-
in
ts
m

-
o-
e,
whereA50,r denotes color~0 singlet andr octet,r51,...,8!,
uqW 2qW u.m, m being the cutoff which separates small an
large momenta, and

maa85ma1ma8 , Gs5 ig5p2 ,ig i p2 , p6 :5
16g0

2
,

NA5
1

ANc

, &, TA51,Tr , ~2.7!

while the potential reads

V0~pW !52
CFg

2

pW 2
, Vr~pW !5

g2

2NcpW
2 , ~2.8!

whereCF5(Nc
221)/2Nc and upW u.m must be understood as

due to the cutoff coming from soft gluons.4

Written in this way, we can understand the four-fermio
Coulomb interaction term as one which creates a qua
antiquark state with central velocityvW and relative momen-
tum qW and annihilates a quark-antiquark state with the sa
center-of-mass velocityvW and relative momentumqW . Obvi-
ously vW is a conserved quantity in this nonrelativistic ap
proximation. We consider the spin-breaking term as suble
ing and we will neglect it in the following. Therefore, spi
symmetry for both low and high momenta is implicit in th
rest of the paper.

If we stopped at this point we would obtain the standa
VL results. However, we would like to go beyond and loo
d
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me
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for new nonperturbative contributions. We observe th
quarks with small relative three-momentum only ‘‘feel’’ the
Coulomb interaction of quarks with large relative momen
tum. This suggests for us to perform a splitting of the phys
cal quark and antiquark fields into small and large relativ
momenta in the bound state. The physical picture behind
that if the relative three-momentum in the bound state
large enough, we can understand it as a perturbati
Coulomb-type bound state. But for small relative three
momentum, that is no longer true. For that momentum r
gime the quark and antiquark fields should be kept as lo
momentum degrees of freedom. That is, in fact, the ma
idea of this paper. Therefore, let us write down the curren
related to the physical quark-antiquark states in momentu
space:

JG
A,a8a~x!5Q̄a8T

AGQa~x!

5maa8
3 E d3v

~2p!3
eimaa8vW •xWE d3q

~2p!3

3Q! a8~2ma8vW 2qW ,t !TAGQ̃a~mavW 2qW ,t !.

~2.9!

The matrix G should be such that it projects over quark
antiquark states according to our nonrelativistic picture. N
tice that the time dependence is kept explicit. Furthermor
we split the relative three-momentum with the same cutoffm
as above. Thus, Eq.~2.9! reads
JG
A,a8a~x!5Jl ,G

A,a8a~x!1Jh,G
A,a8a~x!

5maa8
3 E d3v

~2p!3
eimaa8vW •xWEm d3q

~2p!3
h! a8
v

~2qW ,t !TAGh̃a
v~2qW ,t !

1maa8
3 E d3v

~2p!3
eimaa8vW •xWE

m

d3q

~2p!3
Q! a8~2ma8vW 2qW ,t !TAGQ̃a~mavW 2qW ,t !, ~2.10!
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whereQ̃a(mavW 1kW )5:h̃ a
v(kW ). After that we may divide the Lagrangian into three pieces:

L5Lm1Lm1LI . ~2.11!

Lm is the piece of the effective Lagrangian containing large momenta only. It reads

Lm5(
a
E d3xS Q̄a~ ig

0]02ma!Qa1Q̄a

¹W 2

2ma
QaD 2

1

2 (
aa8A

maa8
3 NA

2(
s
E d3v

~2p!3
E

m

d3q8

~2p!3
E

m

d3q

~2p!3
VA~qW 82qW !

3@Q! a~2mavW 1qW ,t !TAḠsQ̃a8~ma8vW 1qW ,t !#@Q! a8~ma8vW 1qW 8,t !TAGsQ̃a~2mavW 1qW 8,t !#, ~2.12!

whereuqW 2qW 8u.m.
In fact, it is nothing but the standard Coulomb Lagrangian, except for the cutoffs.Lm is the piece of the effective Lagrangian

containing small momenta only. It reads

Lm52 1
4FB

21(
a

H h̄av~ ig0D0
B2ma!ha

v1h̄a
v
DW B
2

2ma
ha
vJ . ~2.13!

Notice that Eq.~2.13! does not have the four-fermion Coulomb term. It contains the whole soft gluon Lagrangian as we
the heavy quark and antiquark fields with small relative three-momentum. All the fields in Eq.~2.13! are in the nonperturbative
regime of QCD. Notice that if we drop the term in 1/ma and makeha

v→e2 ig0max0ha
v , Eq. ~2.13! becomes the HQET

Lagrangian in the rest frame. Although the 1/ma term is naively subleading for small relative momentum, it plays a crucial ro
in certain circumstances, as we shall see in Sec. IV. Nonetheless, let us state that for the correlators we will be intere
one can safely neglect it and work with the HQET Lagrangian.

LI mixes small and large momenta:

LI5Lm
I 1Lm

Im . ~2.14!

The first term reads

Lm
I ~x!5gQ̄ag

0B0
r TrQa~x!, ~2.15!

which gives the leading contribution to the multipole expansion. We will not discuss these contributions~2.15! here since they
have been extensively studied in the literature@3,7,8#. Let us focus on the second term. It reads

Lm
Im52

1

2 (
aa8A

maa8
3 NA

2(
s
E d3v

~2p!3
E

m

d3q8

~2p!3
Em d3q

~2p!3
VA~qW 82qW !@h! a

v~qW ,t !TAḠsh̃a8
v

~qW ,t !#

3@Q! a8~ma8vW 1qW 8,t !TAGsQ̃a~2mavW 1qW 8,t !#1H.c. ~2.16!

In this expression the Coulomb potential is the only piece which mixes small and large relative momenta. We can per
derivative expansion sinceq andq8 belong to different momentum regimes~q;LQCD!q8;ma/n! and keep only the leading
term~further orders would give subleading corrections!. It turns out that the small relative momentum term decouples from t
Coulomb potential and can be written like a local current. Finally, we obtain

Lm
Im52

1

2 (
aa8A

maa8
3 NA

2(
s
E d3v

~2p!3
E

m

d3q

~2p!3
VA~qW !E d3xe2 imaa8vW •xWJ

l ,Ḡs

A,aa8
~xW ,t !

3@Q! a8~ma8vW 1qW ,t !TAGsQ̃a~2mavW 1qW ,t !#1H.c. ~2.17!
he

e
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The formalism developed in@6# was not powerful enough
to uncover the interaction Lagrangian~2.17!. This interaction
Lagrangian is indeed responsible for the differences betw
the results presented there and the ones obtained in the
section.

If we assume that small momentum terms are small

4Several aspects related to this cutoff dependence have been
ied in @15#.
een
next

in

comparison with the large momentum terms, we can treat t
interaction Lagrangian~2.17! as a perturbation. This is so for
the lower-energy levels of heavy quark bound states. In th
next sections we focus on the nonperturbative contribution
coming from Eqs.~2.13! and ~2.17!.

III. PHYSICAL OBSERVABLES

In this section we work out the nonperturbative correc
tions from the small relative momentum region to the deca

stud-
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constant, the bound state mass, and the matrix element
bilinear currents at zero recoil. We take the bound state
locity small or zero.

Consider first the eigenvalues and eigenstates ofHm , the
Hamiltonian associated withLm . They read

u~ab,n,s,A!;vW &5
NA

&
E

m

d3k

~2p!3
F̃ab,n
A ~kW ;m!ūa~pW 1!

3Gsv
b~pW 2!Ti1 ,i2

A ba,i1
a† ~pW 1!db,i2

b† ~pW 2!u0&,

~3.1!

Eab,n
A ~m!, ~3.2!

where

pW 15mavW 1kW , pW 25mbvW 2kW , ~3.3!

Eab,n
A , F ab,n

A (xW ), andF̃ ab,n
A (kW ) are the energy, the coordinat

space wave function, and the momentum space wave fu
tion of a Coulomb-type state with quantum numb
n5(n,l ,m), respectively.vW is the bound state three-vecto
velocity. a and b are flavor indices ands denotes spin.b†

and d† are creation operators of particles and antiparticl
respectively:

$ba,i1
a† ~pW 1!,bb,i2

b ~pW 2!%5~2p!3dabdabd i1i2d
3~pW 12p2!,

~3.4!

$da,i1
a† ~pW 1!,db,i2

b ~pW 2!%5~2p!3dabdabd i1i2d
3~pW 12pW 2!,

~3.5!

$ba,i1
a† ~pW 1!,db,i2

b ~pW 2!%50. ~3.6!

ua(pW 1) andv
b(pW 2) are spinors normalized in such a way th

in the large-m limit the following holds:

(
a

ua~pW 1!ū
a~pW 1!5p1 , (

a
va~pW 1!v̄

a~pW 1!52p2 .

~3.7!

Equation~3.1! has the nonrelativistic normalization

^~ab,n,s,A!;vW u~a8b8,n8,s8,A8!;vW 8&

5~2p!3d~3!~mab~vW 2vW 8!!dn,n8ds,s8

3d~ab!,~a8b8!dA,A8 , ~3.8!

where we have used

tr~p1Gsp2Ḡs8!522ds,s8 . ~3.9!

From Eq.~3.8! the wave function normalization follows:

E
m

d3q

~2p!
F̃ab,n8
A* ~qW ;m!F̃ab,n

A ~qW ;m!5dn,n8 , ~3.10!

where there is no sum overA. The wave function and the
energy fulfill the equation
s of
ve-

e
nc-
er
r

es,

at

p2

2mab
F̃ab,n
A ~pW ;m!1E

m

d3q

~2p!3
F̃ab,n
A ~qW ;m!VA~pW 2qW !

5Eab,n
A ~m!F̃ab,n

A ~pW ;m!,

p.m, mab5
mamb

ma1mb
. ~3.11!

From Eq.~2.8! it trivially follows that the eight compo-
nents of the octet wave function fulfill the same equation and
hence they are the same. Notice that the wave function no
malization and the differential equation above arem depen-
dent. Furthermore, the wave function is not defined over a
values ofp. We will work this out in detail in Sec. IV. In
order to simplify the notation we will not display the cutoff
dependence explicitly in the rest of the section, but it must b
understood throughout.

For Hm, the Hamiltonian associated withLm, we denote
the eigenstates and eigenvalues by

u~ab,g,s!;vW &, Eg , ~3.12!

where g labels the low-momentum state. We cannot give
explicit expressions since their dynamics is governed by low
momentum. Equation~3.12! has the nonrelativistic normal-
ization

^~ab,g,s!;vW u~a8b8,g8,s8!;vW 8&

5~2p!3d~3!
„mab~vW 2vW 8!…ds,s8d~ab!,~a8b8!dg,g8 .

~3.13!

Of course, the states~3.1! and ~3.12! are orthogonal since
they belong to different momentum regimes.

Our Hilbert space is~before switching onL m
Im! $N%

5$(n,A),g% and the identity reads, in this base,

1.u0&^0u11m11m

5u0&^0u1 (
ab,N,s

E d3PW

~2p!3
u~ab,N,s!;vW &^~ab,N,s!;vW u.

~3.14!

Let us now calculate the matrix elements ofH m
Im, the

Hamiltonian associated withL m
Im. We note that the only ma-

trix element different from zero is

^~ab,g,s!;vW uHm
Imu~a8b8,n,s8,A!;vW 8&

5~2p!3d~3!
„mab~vW 2vW 8!…Eab,n8

A F̃ab,n8
A

~0W!

3
f ab,g
A* NA

&
ds,s8d~ab!,~a8b8! , ~3.15!

where

^~ab,g,s!;vW uh̄a
vTAGs8hb

v~0!u0&5: f ab,g
A* ds,s8 . ~3.16!

In the calculations above we have not made any explici
assumption about the relative size ofLm and Lm. We are
mainly interested in very heavy quark-antiquark bound state
where small momenta can be considered as corrections,
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least for the lower-energy levels. Clearly, these bound sta
should be singlets since the octet potential is repulsive.
fact, at the level we are working, the octet states are
going to give contributions to the physical observables, a
so we will neglect them in the following. Hence from now
on color singlets are understood and color indeces dropp
We also remark that we are always working in the c.
frame, even though sometimes we keepvW Þ0 in some inter-
mediate steps for convenience. Following standard quan
mechanics perturbation theory@17# we can obtain the cor-
rected bound state energy5 and wave functions~states! for
the lower levels. They read

dEab,n5
Pab~Eab,n!

2Nc
uEab,nF̃ab,n~0W !u2, ~3.17!

u~ab,n,s!;vW &F5Zn
1/2u~ab,n,s!;vW &F , ~3.18!

u~ab,n,s!;vW &F5u~ab,n,s!;vW &1u~ab,n,s!;vW &~1!

1u~ab,n,s!;vW &~2!1••• , ~3.19!

u~ab,n,s!;vW &~1!5
F̃ab,n~0W!Eab,n

A2Nc

Ĝm~Eab,n!Jl ,Gs
ab

~0!u0&,

~3.20!

u~ab,n,s!;vW &~2!5 (
mÞn

u~ab,m,s!;vW &
Pab~Eab,n!

2Nc

3Eab,nF̃ab,m* ~0W !F̃ab,n~0W !
Eab,m

Eab,n2Eab,m
,

~3.21!

Zn.11
1

2Nc

dPab~Eab,n!

dEab,n
uEab,nF̃ab,n~0W !u2, ~3.22!
tes
In
not
nd

ed.
m.

tum

where both continuum and bound states are included in t
sum in Eq.~3.21!, Eq. ~3.18! denotes the physical normal-
ized state~with low-momentum corrections!, and

Ĝm~z!:5
1

z2Hm1 i e
, ~3.23!

i E d4xeiPnx^0uT$Jl ,Ḡs8
ba

~x!Jl ,Gs
ab

~0!%u0&:

5:Pab~Eab,n!tr~ Ḡs8Gs!,

Pn
ab5~mab,n,0!, mab,n :5mab1Eab,n . ~3.24!

We should stress that in the last two equations there is on
small momentum dynamics. High energies may come fro
the external bound state energy insertion.

Some comments are in order. Notice first that forlÞ0
~angular momentum! the wave function~state! and the en-
ergy remain unchanged. Notice also that thes-wave state
does not receive contributions fromlÞ0 states either. The
previous statement is true because of the fact that the m
mentum wave function at zero momentum forlÞ0 is zero.
This means that the new interaction does not couplel50
states withlÞ0 states. This result would change if we kep
further terms in the effective Lagrangian@see Eq.~2.16!# but,
of course, these contributions would be subleading.

Let us next calculate the decay constant. In order to do
we split the current as in the last section. The soft curre
only gives a contribution with the low-momentum statesg in
the same way as the hard current only gives a contributi
with the modified Coulomb bound states. Thus, we obtain
^0uJG
ba~0!u~ab,g,s!;vW &5^0uJl ,G

ba ~0!u~ab,g,s!;vW &52
tr~GsG!

2
f ab,g , ~3.25!

^0uJG
ba~0!u~ab,n,s!;vW &5^0uJh,G

ba ~0!u~ab,n,s!;vW &52tr~GsG!ANc

2
Fab,n~0W !. ~3.26!

Finally the decay constant reads~changing to relativistic normalization!

^0uJG
ba~0!u~ab,n,s!;vW &F52tr~GsG!Amab,nNcFab,n~0W !H 11

1

4Nc

dPab~Eab,n!

dEab,n
UEab,nF̃ab,n~0W !U2

1
Pab~Eab,n!

2Nc

Eab,n

F̃ab,n~0W !

Fab,n~0W !
S 11 (

mÞn
Fab,m~0W !F̃ab,m* ~0W !

Eab,m

Eab,n2Eab,m
D . ~3.27!

Finally let us obtain the bilinear currents at zero recoil. For that we need to know

5The correction to the bound state energy was found to be zero in@6# because the existence ofL m
Im was not known.
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JG
bc~0!5Q̄bGQc~0!, ~3.28!

^~ac,N8,s8!;vW uJG
bc~0!u~ab,N,s!;vW &. ~3.29!

In order to deal with them we need to perform the splitting between large and small momenta. However, this current
be in general split into two terms. We have mixing between large and small momenta. Fortunately, the mixing terms dis
if both initial and final states have the same velocity. This will not longer be true for non-zero recoil matrix elements.
we obtain

^~ac,n8,s8!;vW uJG
bc~0!u~ab,n,s!;vW &52

tr~ Ḡs8GsG!

2 E
m

d3kW

~2p!3
F̃ac,n8
* ~kW !F̃ab,n~kW !, ~3.30!

^~ac,g8,s8!;vW uJG
bc~0!u~ab,g,s!;vW &5:2

tr~ Ḡs8GsG!

2
f ac,ab
g8g , ~3.31!

where we have used

(
s

~Gs!a2a4
~ Ḡs!a1a3

522~p1!a2a3
~p2!a1a4

. ~3.32!

The remaining possible matrix elements are zero. Notice thatf ab,ab
g8g 5dg8g because of baryonic charge conservation.

The physical matrix element reads~again with relativistic normalization!

F^~ac,n8,s8!;vW uJG
bc~0!u~ab,n,s!;vW &F52Amab,nmac,n8tr~ Ḡs8GsG!H E

m

d3kW

~2p!3
F̃ac,n8
* ~kW !F̃ab,n~kW !H 1

1
1

4Nc

dPab~Eab,n!

dEab,n
UEab,nF̃ab,n~0W !U21 1

4Nc

dPac~Eac,n8!

dEac,n8
UEac,n8F̃ac,n8~0

W !U2J
1

Pac,ab~Eac,n8 ,Eab,n!

2Nc
Eac,n8Eab,nF̃ac,n8

* ~0W !F̃ab,n~0W !

1
Pac~Eac,n8!

2Nc
Eac,n8 (

mÞn8
F̃ac,m~0W !F̃ac,n8

* ~0W !
Eac,m

Eac,n82Eac,m

3E
m

d3kW

~2p!3
F̃ac,m* ~kW !F̃ab,n~kW !1

Pab~Eab,n!

2Nc
Eab,n (

mÞn
F̃ab,m* ~0W !

3F̃ab,n~0W !
Eab,m

Eab,n2Eab,m
E

m

d3kW

~2p!3
F̃ac,n8
* ~kW !F̃ab,m~kW !J , ~3.33!

where

E d4x1d
4x2e

iP
n8
ac
x1e2 iPn

abx2^0uT$Jl ,Ḡs8
ca

~x1!Jl ,G
bc ~0!Jl ,Gs

ab
~x2!%u0&5:Pac,ab~Eac,n8 ,Eab,n!tr~ Ḡs8GsG!. ~3.34!

We can easily check that orthonormality is satisfied6 whenb5c. We expect the last statement to be true since spin symme
relates the matrix element with the baryonic charge whenb5c:

F^~ab,n8,s8!;vW uJG
bb~0!u~ab,n,s!;vW &F52mab,ntr~ Ḡs8GsG!dn,n8 . ~3.35!
n

v-

t-
Before finishing this section let us make some remarks. B
correlators~3.24! and ~3.34! should be small quantities fo

6This was not always the case for the result given in@6#.
oth
r
perturbation theory to hold. This is the case ifm is small
against the typical momentum in the Coulomb interactio
~i.e.,maab,n!1, whereaab,n5n/maba is the Bohr radius!. It
constrains the possible applications to the lower-energy le
els. On the other hand,LQCD!m should hold so that the
low-momentum dynamics is not strongly affected by the cu
off.
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IV. CUTOFF INDEPENDENCE

Our results in the last section may look strongly cuto
dependent. We have two sources of cutoff dependence.
the one hand, we have a cutoff separating small moment
gluons from large momentum gluons. This cutoff is the r
sponsible for the absence of a Coulomb interaction inLm. It
has been mentioned at several instances but it has never
written down explicitly in the formulas. This cutoff depen
dence has been analyzed before@15# and so we shall ignore it
in the following. On the other hand, we have the cutoff sep
rating large and small relative momenta. It plays the role
an infrared cutoff in the perturbative Coulomb wave functio
~large momentum! and the role of an ultraviolet cutoff for
the small momentum contributions. We prove in this secti
the cutoff independence to the desired order~m3, LQCD

3 ! of
this last cutoff. This is crucial to ensure that our approa
respects color SU~3! gauge symmetry. It is important to us
the same cutoff procedure in both large and small mome
tum regions in order to neatly cancel the cutoff dependen
We use a hard three-momentum cutoff for convenience,
we have done in the previous sections.

First of all, let us study the cutoff dependence in the low
momentum correlators we found in the last section. Althou
they are nonperturbative objects, we can always perform
perturbative calculation in order to see how they depend
the cutoff.

Let us start by with Eq.~2.13! ~which is formally equal to
NRQCD!. For Eq.~3.24! we obtain, at the lowest order~in
the c.m. frame,vW 50!,

Pab~k
0!52

Ncmabm

p2 F12
1

2x
lnS 11x

12xD G ,
x5

m

A2mab~k
01 i e!

. ~4.1!

Let us consider two limits.
In the limit x@1 ~i.e., near threshold! it reduces to

Pab~k
0!.2

Ncmabm

p2 F11
ip

2x
u~k0!G ~4.2!

and no pole appears. In the limitx!1, Eq. ~4.1! reduces to

Pab~k
0!.

Ncm
3

6p2

1

~k01 i e!
. ~4.3!

This expression is going to be important in the following
We stress that Eq.~4.3! is mab independent, and amounts t
drop the 1/m terms in Eq.~2.13! which is nothing but the
HQET for quarks and antiquarks. Let us now look for th
physical situation we are interested in. Thus, we ta
k05Eab,n

0 and we obtainuxu5mn/mabCFas , but this is
nothing but the parameter we need to keep small so that
small relative momentum contributions are subleading, a
hence our expansion makes sense. In the following, we
ways consider that we are in the limituxu!1.

For Eq.~3.34! we obtain~x!1!
ff
On
um
e-

been
-

a-
of
n

on

ch
e
n-
ce.
as

-
gh
a

on

.
o

e
ke

the
nd
al-

Pac,ab~k8
0,k0!.

Ncm
3

6p2

1

~k01 i e!

1

~k801 i e!
. ~4.4!

At this point we would like to stress that in the limitx!1 the
same perturbative results are found using HQET. This is g
ing to be determinant in the next section.

Equations~4.3! and ~4.4! make explicit the UV cutoff
dependence coming from the small relative momentum
gion. Let us next go on with the IR cutoff dependence com
ing from the large relative momentum region.

Let us then study the cutoff dependence of the wave fun
tion ~for simplicity we omit the flavor indices!. In order to do
it we solve the wave equation~3.11! perturbatively inm. n
labels a continuum or discrete spectrum. Because of the
dial symmetry, we can write~we follow @18#!

F̃n,l ,m~pW ;m!5Fn,l~p;m!Yl ,m~ p̂!, ~4.5!

whereFn,l(p;m) satisfies

p2

2mab
Fn,l~p;m!2

CFa

pp E
m
qdqFn,l~q;m!Ql S p21q2

2pq D
5En~m!Fn,l~p;m!, p.m, ~4.6!

Ql~z!5
1

2 E
21

1

dx
Pl~x!

z2x
, ~4.7!

andPl is the Legendre function of the first kind. We stres
that we are interested inFn,l(p;m) for p.m only, although
in the intermediate steps it is going to be defined over
p.0 values. Now we perform a cutoff parameter expansio
and we work as in the usual quantum mechanics perturbat
theory where we demand the corrections to be orthogona
the leading result:

Fn,l~p;m!5(
r50

`

Fn,l
r ~p!

m r

r !
, En5(

r50

`

En
r m r

r !
. ~4.8!

We also expand the cutoff in the integral:

E
m
qdqFn,l

r ~q!Ql S p21q2

2pq D[hn,l
r ~p,m![(

i50

`

hn,l
r ,i ~p!

m i

i !
.

~4.9!

On general grounds we can see that the corrections to
Coulomb wave function and energy go likeO(m2l13); there-
fore, as expected, we can neglect thelÞ0 states since their
contributions are subleading.

At leading order we obtain the standard Schro¨dinger
equation with a Coulomb potential with nom dependence.
Furthermore, for the following terms in perturbation theor
we obtain

En
15En

250, F̃n
1~pW !5F̃n

2~pW !50. ~4.10!

Finally to third order we obtain

En
352En

uF̃n~0W !u2

p2 , ~4.11!
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F̃n
3~pW !5 (

mÞn
F̃m~pW !

F̃m* ~0W !F̃n~0W !

p2

Em

Em2En
. ~4.12!

We have not yet normalized the cutoff-dependent wave fu
tion, as we can see from

E
m

d3q

~2p!3
F̃n* ~qW !F̃n~qW !.12uF̃n~0W !u2

m3

6p2 . ~4.13!

Therefore, we must change

F̃n~pW ;m!→F̃n~pW ;m!S 11UF̃n~0W !U2 m3

12p2D . ~4.14!

Equations~4.11!–~4.14! provide the explicitIR cutoff de-
pendence from the large relative momentum region.

We have obtained the explicit cutoff dependence to t
desired orderm3 in both large and small momentum region
Now we will see they match properly, that is, the obser
ables are cutoff independent. In fact, what we will see is th
the physical states~3.18! themselves are already cutoff inde
pendent. In this way we prove the cutoff independence
any observable.

Consider first the bound state energy

En
F5En1dEn . ~4.15!

The cutoff dependence ofEn is given by Eqs.~4.8!, ~4.10!,
and ~4.11!, whereas the cutoff dependence ofdEn is given
by Eqs.~3.17! and ~4.3!. One can then easily check thatEn

F

is cutoff independent.
Consider next the stateu(ab,n,s);vW &F in Eq. ~3.19!. Re-

call that the first and last terms on the right-hand side~RHS!
belong to the large relative momentum region whereas
term in the middle belongs to small relative momentum r
gion. Let us keep apart for a moment the explicit cuto
separating these two regions in the relative momentum in
grals. The remaining cutoff dependences of the first term
given by Eqs.~4.5!, ~4.8!, ~4.10!, and ~4.12!, while for the
last term are given by Eqs.~3.21! and ~4.3!, which cancel
each other.

It remains theUV cutoff dependence coming from Eq
~3.20! ~which has been already studied in@6#! and the ex-
plicit IR cutoff dependence coming from the integral ove
relative momentum in the first term of Eq.~3.19! @see Eq.
~3.1!#, which we kept apart for a while. Recall that the wav
function in the first term of Eq.~3.19! is, except for the
normalization factor~4.14!, the Coulomb wave function
since we have already canceled the cutoff dependences c
ing from Eq.~4.12!. Let us next calculate Eq.~3.20! pertur-
batively at lowest order. It reads
nc-

he
s.
v-
at
-
for

the
e-
ff
te-
are

.

r

e

om-

u~ab,n,s!;vW &~1!5
F̃ab,n~0W !

A2Nc
Em d3kW

~2p!3
ūa~p1!

3Gsv
b~p2!ba,i

a† ~p1!db,i
b† ~p2!u0&

5
1

A2Nc
Em d3kW

~2p!3
F̃ab,n~kW !ūa~p1!

3Gsv
b~p2!ba,i

a† ~p1!db,i
b† ~p2!u0&.

~4.16!

The second equality holds at the order we are working
Notice finally that this is nothing but the piece we need
add to the first term of Eq.~3.19! in order to obtain a relative
momentum integral independent of the cutoff. Finally, th
cutoff dependences of the normalization in Eq.~4.14! and of
Eq. ~3.22! also cancel each other in Eq.~3.18! @again taking
into account Eq.~4.3!#.

We have thus seen that at the level of physical states
are able to prove the cutoff independence. The cutoff ind
pendence can also be checked explicitly in the observab
~3.17!, ~3.27!, and~3.33!. This demonstrates that the HQET
ultraviolet behavior cancels the NRQCD infrared behavior
Coulomb-type bound states, which guarantees that we h
performed a proper matching between large and small re
tive momenta. This issue has also been pursued in@6,15#.

V. EVALUATION OF THE LOW-MOMENTUM
CORRELATORS

In Sec. III we learned how to parametrize the possib
nonperturbative contributions in the small relative mome
tum region in terms of two low-momentum correlators@Eqs.
~3.24! and~3.34!# with external Coulomb bound state energ
insertions. It is remarkable that these contributions only ex
for s states. At the beginning of Sec. IV we also saw that th
kinetic term, which is suppressed by a mass invers pow
can be safely neglected in the correlators we are interes
in, and hence we can use HQET for quarks and antiquarks
discuss their properties.

The HQET for quarks and antiquarks enjoys a U(4Nhf)
symmetry which breaks spontaneously down to th
U(2Nhf)^U(2Nhf) Isgur-Wise symmetry@12#.

Let us first analyze the consequences of the unbrok
U(2Nhf)^U(2Nhf) symmetry. In fact, the spin symmetry
which is included in it has already been used in Eqs.~3.24!
and ~3.34!. The flavor symmetry implies

f ab,g5 f g , f ac,ab
g8g 5 f g8g. ~5.1!

Therefore we get

Pab~Eab,n!5P1~Eab,n!,

Pac,ab~Eac,n8 ,Eab,n!5P2~Eac,n8 ,Eab,n!. ~5.2!

The correlators~3.24! and ~3.34! are thus given in terms of
two unknown universal~flavor-independent! functions P1
andP2. But if we go further, using flavor number conserva
tion together with flavor symmetry, we obtainf g8g5dg8g
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for any flavor. From that it follows that ifP1 is known for
any energy insertion, we can obtainP2. Explicitly they read

P1~Eab,n!5(
g

u f gu2

2

1

Eab,n2Eg
,

P2~Eac,n8 ,Eab,n!5(
g

u f gu2

2

1

Eac,n82Eg

1

Eab,n2Eg
.

~5.3!

These low-momentum correlators can be further speci
at least in two situations: ~i! Eab,n@LQCD ~mQ→`, a
small!; ~ii ! Eab,n!LQCD ~mQ large,a→0!. Notice that situ-
ation ~ii ! is conceivable ifa is very small since so far we
have only assumed that the inverse Bohr radius is m
larger thanLQCD and the energy is suppressed by a factoa
with respect to the former.7,8

In situation~i! the operator product expansion holds. If w
carry it out for the low-momentum correlators, we just obta
Eqs.~4.3! and~4.4!. Their cutoff dependence just cancels th
cutoff dependence from the large relative momentum reg
as we saw in Sec. IV. Hence, we conclude that there are
new nonperturbative contributions in this situation, thus co
firming the fact that the VL contributions from the conde
sate are indeed the leading nonperturbative effects in
mQ→` limit.9 This result follows from the observation tha
there is no local gauge-invariant object that can be built
of D0 alone. We have explicitly checked it for lower-orde
terms.

In situation ~ii ! we are in the low-energy regime of th
HQET. In this regime it is important that the HQET wit
quarks and antiquarks with the same velocity undergo
spontaneous symmetry breaking of a U(4Nhf) symmetry
down to the Isgur-Wise symmetry U(2Nhf)^U(2Nhf), since
the Goldstone modes associated with the broken genera
dominate the dynamics. The heavy quark hadronic effec
Lagrangian describing the Goldstone modes was worked
in @6#, where the correlators~3.24! and~3.34! were also cal-
culated. Using those results we obtain

Pab~k
0!5

f H
2

2

1

~k01 i e!
, ~5.4!

Pac,ab~k8
0,k0!5

f H
2

2

1

~k01 i e!

1

~k801 i e!
, ~5.5!

7In practice we must remember thata should better be substitute
by the running coupling constant at the quarkonium scale, whic
in fact an implicit function ofmQ andLQCD.
8In @6#, the bound state energyEab,n was understood as giving ris

to a residual mass for the heavy quark and antiquark in the he
quark effective Lagrangian, which was later on subtracted. T
definitively obscures its actual role, which eventually led to so
confusion: In@6# situation~ii ! was not allowed, whereas the heav
quark hadronic Lagrangian was used for situation~i!, which is not
correct.
9This point was not properly specified in@6#.
fied
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e
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e
h
a
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out

f H/2
2 5

f̄ H
2

2
1

m3Nc

6p2 . ~5.6!

where f̄ H
2 is cutoff independent. Notice that in this situation

all nonperturbative effects in the small relative momentum
region are parametrized by a single nonperturbative consta
which is spin and flavor independent.10 This is a nontrivial
consequence of the U(4Nhf) symmetry. The fact that the
latter is spontaneously broken down to U(2Nhf)^U(2Nhf)
allows us to know the Green function behavior at low-energ
insertion with a single nonperturbative constant since n
mass term appears in the pole. All the spin and flavor depe
dence is explicitly known in the observables.

However, caution must be taken in situation~ii !. This is
due to the fact that, in this situation, the standard evaluatio
of nonperturbative contributions in the large relative three
momentum region coming from Eq.~2.15! becomes unreli-
able. Let us briefly recall the two approximations involved,
namely, the multipole expansion and the adiabatic approx
mation. The first one is an expansion inLQCD over the in-
verse Bohr radius, which has also been assumed to ho
throughout. The second one requires the time evolution o
the soft gluon fields to be slow in comparison with the ener
gies involved in the Coulomb spectrum. This requirement i
in fact the opposite of situation~ii !. Thus we are in the un-
fortunate situation that when we have an excellent parametr
zation of the nonperturbative effects in the small relative
momentum region@Eqs. ~5.4! and ~5.5!# we lose control of
them in the large relative momentum region.

Nevertheless, we envisage a situation where the param
etrization~5.4! and~5.5! may be useful. Recall that although
the parameter controlling the adiabatic approximation an
the parameter controlling the expansion in the hadronic e
fective Lagrangian are both of orderLQCD, they need not be
exactly the same. The former was shown to be^DFDF&/
^FF& in @7# and let 2p f̄ H

2/3 be the latter. Suppose then that

Eab,n.S ^DFDF&

^FF& D 1/2,
Eab,n,2p f̄ H

2/3. ~5.7!

In such a situation it would be reasonable to use both th
adiabatic approximation in the large relative momentum re
gion and the hadronic effective Lagrangian in the small rela
tive momentum region. Some bottomonium, charmonium
and presumablyBc states may well be considered in the
situation~5.7!. However, the mass of theb quark and mainly
the mass of thec quark are not large enough to allow for a
straightforward application of our formalism to phenomenol-
ogy. Relativistic and radiative corrections are in general im

d
h is

e
avy
hat
me
y

10Notice also that although at first sight the contributions obtaine
by substituting Eqs.~5.4! and ~5.5! into Eqs. ~3.17!, ~3.27!, and
~3.33! look like more important than those from the condensate
whenmQ→`, they are actually not so since the smallness ofa
required in situation~ii ! maintains the condensate contribution
dominant. Some statements made in@6# implying the opposite must
be corrected.
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TABLE I. We displayA2, A3, andAVL defined in Eq.~5.10!. The last two columns give our results formb andabb,1
21 .

LQCD
n f53 ~MeV! A2 ~MeV! A3 ~MeV! AVL ~MeV! mb ~MeV! abb,1

21 ~MeV!

200 2314 49 25 4850 1234
250 2376 61 18 4879 1354
300 2440 74 13 4906 1468
le
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portant and this is also so for the nonpertubative correctio
due to the gluon condensate@3#. All them must be taken into
account.

Let us next discuss the expected size of our contributio
It is not our aim to present a full-fletched phenomenologic
analysis in order to extractf̄ H

2 from the data, which would
definitely be premature as should be clear from the followi
discussion, but to just give reasonable estimates of the
pected magnitude of its contributions. For simplicity, we wi
concentrate on the mass corrections.

We start with the bottomonium system where our forma
ism is expected to apply for the lowest-lying states@3,19#.
We proceed as follows. First of all, we fixmb and a bb,1

21

using the experimental data and the available theoretical
sults while ignoring the contributiondEab,n in Eq. ~3.17!.
Then we estimate the size ofdEab,n by letting f̄ H

2 run within
values of the order ofLQCD. We should keep in mind that
although we will takef̄ H

2 positive for definiteness, it can also
be negative. We extractmb and a bb,1

21 from the self-
consistency equationabb,1[as(a bb,1

21 )]5abb,1 and theY(1s)
mass. We use the following equation to fit the latter:

mY~1S!52mb1A21A31AVL . ~5.8!

where

abb,1
21 5

mbCf ã~abb,1
21 !

2
, ~5.9!

A2522mb

Cf
2ã2~abb,1

21 !

8
,

A3522mb

Cf
2b0a

2~abb,1
21 !ã~abb,1

21 !

8p

3S lnF ~abb,1
21 !

mbCf ã~abb,1
21 !G112gED ,

AVL5mb

e10p^asG
2&

@mbCf ã~abb,1
21 !#4

. ~5.10!

We have taken the formulas above,11 which include rela-
tivistic, radiative, and the VL nonperturvative correction
from @3#. We allow for different values ofLQCD and give the
relative weight of each contribution in Table I.

11However, we have not taken into account the contributions
orderO~a4,a5! given in @3# since the complete calculation at thi
order is still lacking.
ns

ns.
al

ng
ex-
ll

l-

re-

s,

Let us next assume that we are in the situation~5.7!. As
mentioned before, this may well be the case for theY(1S),
Y(2S), xb(1P), J/c ~and hc!, andBc ~andBc* !. If we let
f̄ H
2/3 run between the values

Eab,n,2p f̄ H
2/3,aab,n

21 , ~5.11!

we can give an estimate ofdEab,n . If we allow f̄ H
2/3 between

100 and 150 MeV, our results turn out to be quite stab
under values ofLQCD

n f53 between 200 and 300 MeV. We ob-
tain

29 MeV,dEbb,1,22 MeV, ~5.12!

where the explicit expresion used for calculatingdEab,n
reads

dEab,n524mab

16p f̄ H
2

NcCf ãs~aab,n
21 !

S n

2mab
D 3. ~5.13!

Although the smallness of the result above is discouraging
first sight, it justifies the procedure used and makes it se
consistent.

For n52 we obtain

255 MeV,dEbb,2,215 MeV. ~5.14!

Recall that only thes-wave states receive this correction. If
the sign of f̄ H

2 was negative, the signs above would be re
versed. This would help to understand the mass differen
between thexb(1P) and theY(2S).

Let us finally give some estimates fordEcc,1 anddEbc,1

corresponding to theJ/C ~and hc! and theBc ~and Bc* !
ground states. We have taken the mass of the charm qua
mc51570 MeV, as given in Ref.@3#. For theJ/C we find

dEcc,1;242 MeV,

taking LQCD
n f535300 MeV, a cc,1

21 5848 MeV, and f̄ H
2/35150

MeV. For theBc we find

dEbc,1;223 MeV,

takingLQCD
n f535300 MeV,a bc,1

21 51013 MeV, andf̄ H
2/35150

MeV.
The above contributions for the energy shifts are, on th

one hand, small enough to make us confident that our resu
are under control and, on the other hand, large enough
hope for its eventual observation. However, it is important t
realize that the VL contributions are exceedingly large fo
Y(2S), xb(1P), J/c ~andhc!, andBc ~andBc* !. We suspect
that the framework used so far to calculate the VL contribu
tions in the large relative momentum region is not approp
ated for these states. We believe that in order to make re

of
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istic QCD-based predictions for these states one sho
devise a reliable approximation in the large relative mome
tum region to deal with situation~ii ! above, namely, inverse
Born radius and energy larger and smaller thanLQCD, re-
spectively. Work in this direction is in progress@20#.

VI. CONCLUSIONS

We are confident that the theoretical framework above
going to be useful for an eventual QCD-based formalis
attempting to encompass situations where the Coulomb
ergy is large~smalln! and situations where it is small~large
n! with respect toLQCD in heavy quarkonium. Even more
this formalism could also be useful in order to obtain expli
itly the perturbative Coulomb corrections to the nonperturb
tive heavy quarks bound states~largen!.

Our formalism is clearly inspired by the Wilson renorma
ization group approach. We separate the fields into large
small momentum components by an explicit cutoff and wo
out what the effective action for the latter is. However, the
is an important point which makes our formalism rather p
culiar: Integrating out the large momentum componen
does not give rise to local counterterms only. There is no
trivial physics in the ultraviolet, namely, Coulomb-typ
bound states. As far as we know, this is the first example
a Wilsonian approach where effects due to bound states h
been taken into account.

Let us finally summarize the main contributions of th
uld
n-

is
m
en-

,
c-
a-

l-
and
rk
re
e-
ts
n-
e
of
ave

is

paper. Elaborating on the ideas first presented in@6#, we have
produced a detailed derivation of the effective theory gov
erning the small relative momentum degrees of freedom
heavy quarkonium. In particular this includes an interactio
term, which had been overlooked before, that leads to a fe
corrections in the observables. We have proven the cuto
independence of the formalism. We have also discussed
detail when nonperturbative contributions which cannot b
expressed in terms of local condensates arise, namely, wh
a description in terms of a heavy quark hadronic theory
adequate. Our preliminary estimations suggests that the
contributions lead to energy shifts of a few tens of MeV
Unfortunately, more theoretical work is necessary to esta
lish them from the data. This is mainly due to the lack o
control on the nonperturbative effects in the large relativ
momentum region of most of the systems where our a
proach should apply, namely,Y(2S), xb(1P), J/c ~andhc!,
andBc ~andBc* !. Work in this direction is in progress@20#.
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