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A. Pinedd and J. Sotb
Department d’Estructura i Constituents de la Mageand Institut de Fsica d’Altes Energies, Universitat de Barcelona,
Diagonal, 647, E-08028 Barcelona, Catalonia, Spain
(Received 20 February 1996; revised manuscript received 12 Jung 1996

We analyze the possible existence of nonperturbative contributions in EwystemsgQ andQ need not
have the same flavpbmwhich cannot be expressed in terms of local condensates. Starting from QCD, with
well-defined approximations and splitting properly the fields into large and small momentum components, we
derive an effective Lagrangian where hard glu¢insthe nonrelativistic approximatigrhave been integrated
out. The large momentum contributiofwhich are dominantare calculated using Coulomb-type states. In
addition to the usual condensate corrections, we see the possibility of new nonperturbative contributions. We
parametrize them in terms of two low momentum correlators with Coulomb bound state energy ing&gytions
We realize that the heavy quark effective Lagrangian can be used in these correlators. We calculate the
corrections that they give rise to in the decay constant, the bound state energy, and the matrix elements of
bilinear currents at zero recoil. We study the cutoff dependence of the new contributions and we see that it
matches perfectly with that of the large momentum contributions. We consider two situations in (@etail,
En>Agcp(Mg—) and (i) Ep<Aqcp, and briefly discuss the expected size of the new contributions in
J/y, andBf systems[S0556-282(96)01419-1

PACS numbeps): 12.38.Lg, 12.39.Hg, 13.20.Gd

[. INTRODUCTION Coulomb potential, but for small relative three-momentum
this need not longer be true. Therefore, heavy quarks in the
The study of heavy quark bound state systems remainkatter kinematical situation should better be kept as low-
one of the more promising topics in order to test both perenergy degrees of freedom. It turns out that a convenient
turbative and nonperturbative aspects of QCD, as is clegparametrization of this kinematical region may be given in
from the steady activity in the field.—6]. These systems can terms of the HQET for quarks and antiquafiés12].
be understood in a first approximation as nonrelativistic The HQET for quarks and antiquarks enjoys rather pecu-
bound states which occur due to a Coulomb-type interactiotiar features, which make it quite different from the usual
predicted by perturbative QCD. In order to improve this ba-HQET describing either quarks or antiquarks, which has
sic picture one has to deal on the one hand with perturbativeeen so popular in the study @q and Qqq systems in
relativistic and radiative corrections, and on the other handecent year$13] (see[14] for reviews. For instance, it en-
with nonperturbative correctior{power corrections joys a symmetry, which is larger than the well-known spin
In this paper we shall only be concerned with nonpertur-and flavor symmetry, that breaks spontaneously down to the
bative corrections. Usually, the latter have been parametrizel@tter, giving rise to quark-antiquark states as Goldstone
using both the multipole expansion and the adiabatic apmodes[12]. Its peculiarities concerning radiative corrections
proximation in terms of the gluon condenséfes]. Correc- have recently been illustrated ja5].
tions to the Coulomb potential due to condensates can also The main aim of this paper is to work out a controlled
be considered, although these are subleafBi@. We have derivation from QCD of the effective Lagrangian describing
argued before[6] that new nonperturbative contributions the small relative momentum regime of heavy quarks in
could arise which cannot be expressed in terms of local corquarkonium. Whereas the basic ideas above have already
densates, and hence a convenient parametrization for themh&en elaborated if6], a complete and systematic derivation
required. This kind of nonperturbative contribution has beeris lacking and, hence, worth being presented. Within this
discussed i10] in a different context and, in fact, the vari- new framework we recalculate the nonperturbative contribu-
ous Isgur-Wise functions extensively used in the heawfions of this region to the energy levels, the decay constant,
quark effective theoryHQET) may be regarded as such and the matrix elements of bilinear currents at zero recoil.
[11]. We find a few corrections to the formulas given[B). For
Let us recall the main idea behind the possibility of newall these observables it is enough to work in the center-of-
nonperturbative contributions in heavy quarkonitithen ~ mass(c.m, frame, which we shall do in most of the paper.
the relative three-momentum in the bound state is large In order to deal with heavy quarkonia systems we keep
enough, the dominant interaction must be the perturbativéhe relevant degrees of freedom in the QCD Lagrangian. In
fact, since virtual heavy quark creation is very much sup-
pressed, we could safely start from nonrelativistic QCD
*Electronic address: pineda@ecm.ub.es (NRQCD). The derivation of NRQCD from QCD is well
Electronic address: Soto@ecm.ub.es understood and a technique to incorporate relativistic correc-
We use “heavy quarkonium” to denote a general heavy quark-tions to it has also been developd®]. First of all, we split
antiquark bound state. The quark and the antiquark need not havie gluon field into hard and soft components by a three-
the same flavor. momentum cutoff. From the hard gluon fields we only keep
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the zero component and disregard the special components. We organize the paper as follows. In Sec. Il we derive the
This is legitimate as far as we are not interested in relativistieffective action for the small relative momentum fields. In
corrections. We next integrate out the zero component of th&ec. Il we calculate the decay constant, the bound state
hard gluon field to obtain the Coulomb potential betweenmass, and the matrix element of any bilinear heavy quark
heavy quark currents. The Coulomb potential has an infraredurrent between quarkonia states at zero recoil. The latter is
momentum cutoff since the zero component of the soft gluomelevant for the study of semileptonic decays at zero recoil.
field has not been integrated out. At this point we have arin Sec. IV we prove the cutoff independence of our results.
effective Lagrangian formally equal to the one used by Vo-In Sec. V we study the low-momentum correlators in two
loshin and LeutwyleXVL) [7,8], except for the IR cutoff in  situations: the asymptotic limit\ o— <) E,>Aqcp, Where,

the Coulomb potential. After introducing c.m. and relative using the operator product expansi@PE techniques, we
momenta for the bound states we are interested in, we furthesee that no new corrections arise, &g E,<Aqcp, Where
split the quark fields into large and small relative three-the low-momentum contributions are evaluated using an ef-
momentum regime5The resulting Lagrangian can then be fective “chiral” Lagrangian which incorporates the relevant
separated into three piecés:, which contains small relative symmetries of the HQET for quarks and antiquarks. Working
momentum quark fields only, ,+L L which contains large in this way we find new nonperturbative contributions which
relative momentum quark fields only, aﬁuﬂ‘, which con-  are parametrized by a single nonperturbative constant. We
tains both small and large relative momentum quark fieldsalso give preliminary estimations of their size. Section VI is
For L* we can approximate the Lagrangian to the HQETdevoted to the conclusions.

Lagrangian, where eventually all its powerful symmetries

can be used. No Coulomb term remains in this part of the Il. EEEECTIVE ACTION

Lagrangian. ForLM+L'M we obtain again the VL starting ) ) ) ) i

point Lagrangian except for two facts: Both the Coulomb [N this section we derive the effective Lagrangian for
potentia| and the H||bert Space are restricted to threehea-vy qual’kS al’ld anthual’ks n the Sma” relat|Ve momentum
momenta larger than a certain cutoff. Keeping the cutoffegime from QCD.

much higher tham\ocp but much smaller than the inverse ~ The QCD Lagrangian reads

Bohr radius we may safely assume that the multipole expan- .

sion holds for this part of the Lagrangian. If we further as- L=— }TF2+2 Q4(iD —m,)Q,, (2.1
sume that the adiabatic approximation also holds, we may a

proceed in total analogy to VL. The hypothesis above on the

cutoff also allows us to tredt }* as a perturbation. The vari- where

ous contributions from this perturbation to the different ob- D,=d,—igV V=V 2.2
servables can be eventually expressed as correlators of the meooH me '

HQET. Fl =39,V — 3,V +gftvsVi . 2.3

We would like to stress that our formalism is less restric-
tive than the one used by VL since neither the adiabatic We split the gluon field/ in largeA and smallB momen-
approximation nor the multipole expansion are assumed ttum modesV(x)=A(x)+B(x). Next we exactly integrate
hold in the small relative momentum region of the heavyA, and neglec#, . The latter would give rise to relativistic
quark fields. Indeed we may always recover the VL resultcorrections. Consistently, at the same point we perform a
by putting to zero the cutoff which separates large and smalFoldy-Wouthuysen transformation and keep terms uprm 1/
relative momentum. We obtain

- -

g2-Bg

a

Qi t0O

1 — _ D2 —
L=—= f d*xF3+ 2> f <z|3x(Qa(lyODS‘—ma><:>f,1+Q{,1—BQa+Qa
4 a 2m,

2
ma

1

2 - rs o
: > fdgxf d®y Qay°T'Qa(x) §> (%Y)Qa ¥°T*Qar(Y), (2.9
B

2 aa’

which is manifestly gauge invariaitAlthough, in principle, we could attempt to carry out an explicitely gauge-invariant
calculation, in practice, it is most convenient to choose a slightly modified Schwinger gauge for the small momentum gluons:

m,X+m.:y)\ -
(*— —= a7 y)B 2)=0. (2.9

My + M,/

°The large and small relative momentum regions were denoted as off- and on-shell regions, respecfikly, in
3Similar approaches can be found in the literafi#k
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In this gaugeB in the kinetic and Coulomb terms gives rise to subdominant contributions when the multipole expansion is
carried out, which greatly simplifies the calculation. In particular, recall that the propagator in the Coulomb term always carries
large momentunfwe have not integrated out the small momeanIwhich is kept inBg). Hence the multipole expansion is
always made legitimate in the Coulomb term. This allows us to &apthe Coulomb term straight away. As long as we are
interested in quark-antiquark bound states only, we may also safely neglect the four-fermion interaction terms involving only
quarks or only antiquarks. We next rearrange the quark-antiquark interaction term in a convenient way in order to describe the
bound state dynamics. Finally, the effective Lagrangian reads

-

1 — — D2 1
L=—Zfd3xFé+§ fdsx(Qa(wODS—ma>Qa+Qaz—niQa +0 W)
5 2 maa'NAE J (2 )3 (277)3 J (2 VA(q q)[Qa mav+q t)T 1—‘SQa (ma’U+q t)]
aaA
X[Qar(MarT+G,1) TATQa( — Mot +G',1)], (2.6

whereA=0, denotes colof0 singlet and octet,r=1,...,8, for new nonperturbative contributions. We observe that
|g—q|>u, u being the cutoff which separates small andquarks with small relative three-momentum only “feel” the
large momenta, and Coulomb interaction of quarks with large relative momen-
Y0 tum. This suggests for us to perform a splitting of the physi-
My =Mat My, Te=iyep_.ivp D= 1xy cal quark and antiquark fields into sma}ll anq large reIanvg
aa atMary  Ls=1YsP-1YP-» Pa- ’ momenta in the bound state. The physical picture behind is
that if the relative three-momentum in the bound state is
large enough, we can understand it as a perturbative
NA:\/T: V2, TA=1T, (2.7 Coulomb-type bound state. But for small relative three-
c momentum, that is no longer true. For that momentum re-
while the potential reads gime the quark and antiquark fields shc_)ulq be kept as Iovy-
momentum degrees of freedom. That is, in fact, the main
2 idea of this paper. Therefore, let us write down the currents
reay — related to the physical quark-antiquark states in momentum
(p) 2N =2 (28) )
cP space:

. Cr0?
v0<p>=—%,

whereCr=(N2—1)/2N, and|p|>u must be understood as Ad'ai A TA
due to the cutoff coming from soft gluofs. I ()= Qa T Qa(X)

Written in this way, we can understand the four-fermion v . .. dq
Coulomb interaction term as one which creates a quark- —maa,f 53 g'Maa'v "X 53
antiquark state with central velocity and relative momen- (2m) (2m)
tum g and annihilates a quark-antiquark state with the same = - - ~ - -
centgr-of—mass velocity ?and relati\(/]e momenturg. Obvi- X Qar(~Mav =GO TT'Qa(Mev — G, 1)
ously v is a conserved quantity in this nonrelativistic ap- (2.9
proximation. We consider the spin-breaking term as sublead-
ing and we will neglect it in the following. Therefore, spin The matrix I" should be such that it projects over quark-
symmetry for both low and high momenta is implicit in the antiquark states according to our nonrelativistic picture. No-
rest of the paper. tice that the time dependence is kept explicit. Furthermore,

If we stopped at this point we would obtain the standardwe split the relative three-momentum with the same cytoff
VL results. However, we would like to go beyond and look as above. Thus, E¢2.9) reads

J?,a'a(x):‘]ﬁra a( )+JAa a( )

— J‘ d3U im rJiJM d3q ﬁU S t TAFFU ~N t
maa' (277.)3 € (277)3 a’( °F ) a( d. )

d .. dq - ~
3 im0 X g~ > 2
+maa’f (277)3 € aa f,u (277)3 Qa’(_ma’U_qvt)TAFQa(mav_Qat)r (2-1Q
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whereaa(maJHZ): :Fg(l?). After that we may divide the Lagrangian into three pieces:

L=L,+L*+L". (2.11
L, is the piece of the effective Lagrangian containing large momenta only. It reads
_ V_)Z d3 ’
— 3 ; O A _
L,u._; j d X( Qa(l 7 ma)Qa+Qa 2m ) aaEA maa’NAE J' (2 )3 (277_)3 f (2 )3 \ (q CI)
X [Qa(~ Mol + G, TATQa (Mg 0+ G,1) [ Qar (Mgt + G, TATQa —mad + 7,01, (2.12

where|g—q'|>pu.
In fact, it is nothing but the standard Coulomb Lagrangian, except for the cutdffs.the piece of the effective Lagrangian
containing small momenta only. It reads

LH= —%F§+§

Notice that Eq.(2.13 does not have the four-fermion Coulomb term. It contains the whole soft gluon Lagrangian as well as
the heavy quark and antiquark fields with small relative three-momentum. All the fields {@.E§. are in the nonperturbative

regime of QCD. Notice that if we drop the term inni/ and makehgee‘iyomaxohg, Eqg. (2.13 becomes the HQET
Lagrangian in the rest frame. Although thenl/term is naively subleading for small relative momentum, it plays a crucial role
in certain circumstances, as we shall see in Sec. IV. Nonetheless, let us state that for the correlators we will be interested in
one can safely neglect it and work with the HQET Lagrangian.

L' mixes small and large momenta:

>

_ DZ
h(i y°D8—my,)hi+h? h”] (2.13
2m,

L'=L)+L}. (2.14
The first term reads
£, (x)=9Qa7°ByT Qq(x), (2.19

which gives the leading contribution to the multipole expansion. We will not discuss these contrili@tiBdere since they
have been extensively studied in the literatiB¢7,8). Let us focus on the second term. It reads

d3 ’ .
:__ 2 maa’NAE f 2 )SJ 277)3f (2 )3V (q _q [ha(q t)TAFh (qrt)]

aa A
X[Qar(My0+G" ) TATQa(— Mo+’ )]+ H.c. (2.16

In this expression the Coulomb potential is the only piece which mixes small and large relative momenta. We can perform a
derivative expansion sinagandq’ belong to different momentum regimés~Aqcp<q’ ~ma/n) and keep only the leading

term (further orders would give subleading correctipristurns out that the small relative momentum term decouples from the
Coulomb potential and can be written like a local current. Finally, we obtain

1 d3q
=5 S mS [ 0 [ 5w [ et mer ke
><[(Sa,(ma,5+a,t)TAr56a(—ma5+ﬁ,t)]+H.c. (2.17

The formalism developed if6] was not powerful enough comparison with the large momentum terms, we can treat the
to uncover the interaction Lagrangiéh17). This interaction interaction Lagrangiaf2.17) as a perturbation. This is so for
Lagrangian is indeed responsible for the differences betweethe lower-energy levels of heavy quark bound states. In the
the results presented there and the ones obtained in the nexgxt sections we focus on the nonperturbative contributions
section. coming from Eqs(2.13 and (2.17).

If we assume that small momentum terms are small in

Ill. PHYSICAL OBSERVABLES

“Several aspects related to this cutoff dependence have been stud- In this section we work out the nonperturbative correc-
ied in[15]. tions from the small relative momentum region to the decay
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constant, the bound state mass, and the matrix elements of p?
bilinear currents at zero recoil. We take the bound state ve- Y
locity small or zero. Hab

Consider first the eigenvalues and eigenstateld pf the
Hamiltonian associated with,. They read

T d°q ~, .
P00+ | 53 @GV )
"

:Egb,n(ﬂ)a)g\b,n(ﬁ;ﬂ),

mymy
NA d3k ~a P=p,  Map= (3.11
|(ab,n,s,A);v)= 7 f 23 ‘Dabn(k pIU*(py) Ma™ Mo
From Eq.(2.8) it trivially follows that the eight compo-
X l“svﬁ(pz)T,A1 zbiT,l(pl)d%Tiz(ﬁz)lm, nents of the octet wave function fulfill the same equation and
hence they are the same. Notice that the wave function nor-
3.9) malization and the differential equation above arelepen-
A dent. Furthermore, the wave function is not defined over all
Eabn(4), 3.2 values ofp. We will work this out in detail in Sec. IV. In
order to simplify the notation we will not display the cutoff
where dependence explicitly in the rest of the section, but it must be
R L. L - understood throughout.
P1=Mau+k, pa=mp—Kk, (3.3 For H*, the Hamiltonian associated will?*, we denote
A ] the eigenstates and eigenvalues by
Eapn @ ab n(X), andCIDab n(k) are the energy, the coordinate

space wave function, and the momentum space wave func- 3.12

tion of a Coulomb- -type state with quantum number

n=(n,I,m), respectivelys is the bound state three-vector Where g labels the low-momentum state. We cannot give
veIocny a andb are flavor indices ang denotes spinb™  explicit expressions since their dynamics is governed by low
andd" are creation operators of particles and antiparticlesmomentum. Equatio3.12) has the nonrelativistic normal-
respectively: ization

(b3 (Pu).bp (B2)}=(2m)36%8,45; ;,6%(P1—P2),
(3.9

|(ab,g,s5);v), Eg,

((ab,g,9);v](a’'b’,g9’,8");0")
=(2m)%8® (Map(V—0")) 855 S(avy,(arb’) Og,q” -

(3.13

{d2 (P1), 03 (B2)}=(2m)%6°08,56, 1,8%(P1—P2),

(3.5 Of course, the state@8.1) and (3.12 are orthogonal since
they belong to different momentum regimes.
{ball(pl),d%‘iz(ﬁz)}=0. (3.6 Our Hilbert space is(before switching onL'M“) {N}

={(n,A),g} and the identity reads, in this base,
u“(p,) andv?(p,) are spinors normalized in such a way that

in the largem limit the following holds:

vA(PYV(P1)=—p-
3.7

Equation(3.1) has the nonrelativistic normalization

> uN(pYUN(p)=ps, X

a a

((ab,n,s,A);v|(a’b’,n’",s" ,A");0")

= (277)35(3>(mab(5_ J,))(Sn,n’ 53,5’
X 5(ab),(a'b’)5A,A’ y (38)
where we have used
tr(p,I'Sp_I)= 25, . (3.9

From Eq.(3.8) the wave function normalization follows:

ab n’(q ,u,) ab, n(q m)=6nn, (3.10

J,n®

where there is no sum ove. The wave function and the

energy fulfill the equation

1=|0)(0|+1#+1,

— 2 d3|5 b e b g
—|O>(O|+ab‘N’SJ Wﬂa ,N,s);v){(ab,N,s);v|.

(3.19

Let us now calculate the matrix elements ldf“ the
Hamiltonian associated wnh'“ We note that the only ma-
trix element different from zero is

((ab,g,s);v/H}¥(a’b’,n,s",A);0")

= (2m)%6® (Map(0—0"))Elmy e Bl 0 (0)

abg
V2

fA
X (3.19

53,5' 5(ab),(a’b') ’

where

((ab,g,s);5|h TATS he(0)|0) = forgdss - (3.16

In the calculations above we have not made any explicit
assumption about the relative size lof, and L*. We are
mainly interested in very heavy quark-antiquark bound states

where small momenta can be considered as corrections, at
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least for the lower-energy levels. Clearly, these bound stateshere both continuum and bound states are included in the
should be singlets since the octet potential is repulsive. Isum in Eq.(3.21), Eq. (3.18 denotes the physical normal-
fact, at the level we are working, the octet states are noized state(with low-momentum correctionsand

going to give contributions to the physical observables, and
so we will neglect them in the following. Hence from now
on color singlets are understood and color indeces dropped.
We also remark that we are always working in the c.m.
frame, even though sometimes we keep0 in some inter-
mediate steps for convenience. Following standard quantum
mechanics perturbation theof{7] we can obtain the cor-
rected bound state energgnd wave functiongstates for

the lower levels. They read

1_[ab( Eab,n)
2N,

(3.23

[ a0 030 0):

T p(Eap ) tr(TSTS),

5Eab,n: |Eab,n<bab,n(0)|2!

(3.17

b__ -
Pﬁ - (mab,nyo)a mab,n - mab+ E.':1b,n .

(3.29

|[(ab,n,s);0)r =237 (ab,n,s);v)e,

(3.18
|(ab,n,s);v)g=|(ab,n,s);v)+|(ab,n,s);v)? We should stress that in the last two equations there is only
small momentum dynamics. High energies may come from
the external bound state energy insertion.

Some comments are in order. Notice first that ferO

+|(ab,n,s);v) @+, (3.19

(ab.n,s):5) _ Pabn(0)Eapn GH(E 5 (0)[0), (angular momentuinthe wave function(state and the en-
Y V2N, abn) 'FS ergy remain unchanged. Notice also that thwave state

(3.20

does not receive contributions frohs#0 states either. The

previous statement is true because of the fact that the mo-
IT,(Eapn) mentum wave function at zero momentum fet0 is zero.
Z—NC This means that the new interaction does not coupl®
states withl #0 states. This result would change if we kept
Eabm further terms in the effective Lagrangifsee Eq(2.16)] but,
' of course, these contributions would be subleading.

Let us next calculate the decay constant. In order to do it
we split the current as in the last section. The soft current
only gives a contribution with the low-momentum stageis
the same way as the hard current only gives a contribution
with the modified Coulomb bound states. Thus, we obtain

|(ab,n,s);0)@= > |(ab,m,s);v)
m#n

X Eapn®ap,m(0)Papn(0) =———=—
Eab,n Eab,m

(3.2)

1 dHab( Eab,n)
2N.  dEgpn

Zy=1+ |Eab,nq)ab,n(6)|21 (3.22

tr(I'ST)
(0132%(0)|(ab,g,s);0)=(0[PF(0)|(ab,9,8);0) = ~ ——5— fapg, (329
- . N -
(0132%(0)|(ab,n,s);0) =(0|JF(0)| (abin,s);0) = —tr(I°T) \/ = Pap,n(0). (3.26
Finally the decay constant reattshanging to relativistic normalization
1 dII,(E ~ -
(0135(0)(ab,n,): 5 = —r(TT) Vingy Neb (0| 1+ —— 2 eond [ g 55 (512
4N,  dEgpn
I ,(E ®pn(0 E
yleEaon) g Paon®) (S g, (00 — 20| @2
2N, q)ab,n(o) m#n Eab,n_ ab,m

Finally let us obtain the bilinear currents at zero recoil. For that we need to know

5The correction to the bound state energy was found to be zdi)] inecause the existence bﬁ‘ was not known.
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J2%(0)=QPrQc(0), (3.29
((ac,N’,s");0|J2%0)|(ab,N,s);0). (3.29

In order to deal with them we need to perform the splitting between large and small momenta. However, this current cannot
be in general split into two terms. We have mixing between large and small momenta. Fortunately, the mixing terms disappear
if both initial and final states have the same velocity. This will not longer be true for non-zero recoil matrix elements. Thus,
we obtain

tr(TS'TST) f d3k
(

((acn’,s');0]3p(0) | (ab,n,s)i0) = = 57 Paen (0 Pann (K, (3.30
rsTsr)
((ac,g’,s");0]3p%0)|(ab,g,s);0)=:~ % fachb (3.31
where we have used
2 (1) 0,0, ay0,= = 2004 (P g (3.32

The remaining possible matrix elements are zero. Noticefﬂiﬁgf 644 because of baryonic charge conservation.
The physical matrix element rea¢esgain with relativistic normalization

b(0)|(ab,n,s);v)e=— VMg, nmacn,tr(f‘ TT)

r{(ac,n’,s")

f (_3 q)acn (k)q)ab n(k){

1 dHab( Eab,n)

T dHac(Eac,n')
4N,  dEgpn

2
J’_
4N,  dEgcnr

Eab,na)ab,n(é) Eac,n'a)ac,n’(a)

2]
H,b(E,',Eb,) ~ o~ R
= Zaliln = Eac’”'Eabunq);c,n’(o)(bab,n(o)
c

Hac(Eac,n’)
N Baon 2 Pacn(0097,(0)

m#n’ ac,n’_Eac,m

Eac,m
( ab, n)

N | IS
x f W%C,m(k)@ab,n(kHT Eabn 2 Paom(0)
I c

Eab m

XPapn(0) £ f 2n )3 O, (K)Dap,m(K) |, (3.33

ab,n™ ab m

where

f d*x,d*x,e'P aXie~ P xz<o|T{JI = xl)Jﬁ‘;(O)Jﬁrs X2) }0) =T 5¢ an( Eac‘n,,Eab,n)tr(F'FSF). (3.34

We can easily check that orthonormality is satisfiathenb=c. We expect the last statement to be true since spin symmetry
relates the matrix element with the baryonic charge wierc:

=((ab,n’,s");5]3P°(0)|(ab,n,$);0) g = — Map otf(TS TST) 8, 1 (3.35

Before finishing this section let us make some remarks. Botlperturbation theory to hold. This is the casegifis small
correlators(3.24 and (3.34 should be small guantities for against the typical momentum in the Coulomb interaction
(i.e., pagp n<1, wherea,, ,=n/ u,pa is the Bohr radius It
constrains the possible applications to the lower-energy lev-
els. On the other hand\qcp<p should hold so that the
low-momentum dynamics is not strongly affected by the cut-
5This was not always the case for the result givefich off.
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IV. CUTOFF INDEPENDENCE N3 1 1
I (k/O kO): ck
acanit 6% (k°+ie) (k'O+ie)”

4.4
Our results in the last section may look strongly cutoff @4

dependent. We have two sources of cutoff dependence. On
the one hand, we have a cutoff Separating small momentupﬁt this pOint we would like to stress that in the limitz1 the
gluons from large momentum gluons. This cutoff is the re-same perturbative results are found using HQET. This is go-
sponsible for the absence of a Coulomb interaction/nlt ~ ing to be determinant in the next section.
has been mentioned at several instances but it has never beenEquations(4.3) and (4.4) make explicit the UV cutoff
written down explicitly in the formulas. This cutoff depen- dependence coming from the small relative momentum re-
dence has been analyzed beff#B] and so we shall ignore it gion. Let us next go on with the IR cutoff dependence com-
in the following. On the other hand, we have the cutoff sepaing from the large relative momentum region.
rating large and small relative momenta. It plays the role of ~Letus then study the cutoff dependence of the wave func-
an infrared cutoff in the perturbative Coulomb wave functiontion (for simplicity we omit the flavor indicésIn order to do
(large momentunand the role of an ultraviolet cutoff for it we solve the wave equatiof8.11) perturbatively ing. n
the small momentum contributions. We prove in this sectio@bels a continuum or discrete spectrum. Because of the ra-
the cutoff independence to the desired orgiet, Adcp) of  dial symmetry, we can writéwe follow [18])
this last cutoff. This is crucial to ensure that our approach ~ . ~
respects color SU3) gauge symmetry. It is important to use O 1 m(Ps ) =Fn (P ) Y1 m(P), (4.9
the same cutoff procedure in both large and small momen- o
tum regions in order to neatly cancel the cutoff dependenceVhereFn (p;u) satisfies
We use a hard three-momentum cutoff for convenience, as p? Con
we have done in the previous sections. r oy —F7 f . (

First of all, let us study the cutoff dependence in the low-  2xap Foi(Pip) P #qqun,l(q,,u)Q|
momentum correlators we found in the last section. Although
they are nonperturbative objects, we can always perform a  — En(#)Fni(Pin), p>wu, (4.6
perturbative calculation in order to see how they depend on
the cutoff. Q(2)= 1 fl dx P(x) @7

Let us start by with Eq(2.13 (which is formally equal to ! 2 )17 z—x’ '
NRQCD). For Eq.(3.24 we obtain, at the lowest ordéin
the c.m. framep =0), and P, is the Legendre function of the first kind. We stress

that we are interested iR, ;(p; ) for p>u only, although

p2+q2>
2pq

Neftapit 1 1+X in the intermediate steps it is going to be defined over all
IT,p(k%) = - —z [1— o N1/ p>0 values. Now we perform a cutoff parameter expansion
and we work as in the usual quantum mechanics perturbation
theory where we demand the corrections to be orthogonal to
e M @.1) the leading result:

V2pap(KO+ie€)

Let us consider two limits.
In the limit x>1 (i.e., near thresho)dt reduces to

* Mr * Mr
Fra(pis) =2 Fru(p) 7. Eo= 2 Epfr. (48

We also expand the cutoff in the integral:

N .
T (K9) = — °’;3b“ {1+'2—Ze(k°)} 4.2

2+ 2 o ) i
quqFrm(q)Q(u) Ehrn,|(p,u)zg‘6 hi(p) ’IL—I

2pq
(4.9

and no pole appears. In the limitc1, Eq. (4.1 reduces to

On general grounds we can see that the corrections to the
o New® 1 Coulomb wave function and energy go ligg x?'*3); there-
Ilap(k%) = 672 (Ko%+ie) (4.3 fore, as expected, we can neglect tl¥0 states since their
contributions are subleading.

At leading order we obtain the standard Sclinger
equation with a Coulomb potential with n@ dependence.
Furthermore, for the following terms in perturbation theory
we obtain

This expression is going to be important in the following.
We stress that Eq4.3) is w,}, independent, and amounts to
drop the I terms in Eq.(2.13 which is nothing but the
HQET for quarks and antiquarks. Let us now look for the
physical situation we are interested in. Thus, we take
k°=EQ%,, and we obtain|x|=un/u,,Cras, but this is
nothing but the parameter we need to keep small so that the. . .
small relative momentum contributions are subleading, an inally to third order we obtain
hence our expansion makes sense. In the following, we al- ~ =
ways consider that we are in the linfit| <1. E3— _E |©n(0)] (.11
For Eq.(3.34 we obtain(x<1) n noog '

En=Ea=0, ®}(p)=D3(p)=0. (4.10
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. ~ _ ®*0)D,0) E, o Dapn(0) dk
R == S I (CLU Tl B ST

XT'0P(p2)b3fi(p1)d2(p2)]0)
—\/?ch 2a)7 abn(K)U*(p1)

g - IR XT P (p2)b3 (p1)d2li(p2)[0).
J;LWQ:(Q)Qn(Q):1_|®n(O)|2W- (4.13 (4.16

We have not yet normalized the cutoff-dependent wave func-
tion, as we can see from

The second equality holds at the order we are working at.
Notice finally that this is nothing but the piece we need to
add to the first term of Eq3.19 in order to obtain a relative
momentum integral independent of the cutoff. Finally, the
3 cutoff dependences of the normalization in E§14 and of
2 M ) 414 EG. (3.22 also cancel each other in E@.18 [again taking
1272) ' into account Eq(4.3)].
We have thus seen that at the level of physical states we
are able to prove the cutoff independence. The cutoff inde-
Equations(4.11)—(4.14 provide the explicitiR cutoff de- pendence can also be checked explicitly in the observables
pendence from the large relative momentum region. (3.17), (3.27), and(3.33. This demonstrates that the HQET
We have obtained the explicit cutoff dependence to theultraviolet behavior cancels the NRQCD infrared behavior in
desired ordeg.® in both large and small momentum regions. Coulomb-type bound states, which guarantees that we have
Now we will see they match properly, that is, the observ-Performed a proper matching between large and small rela-
ables are cutoff independent. In fact, what we will see is thafive momenta. This issue has also been pursugé, ).
the physical state3.18 themselves are already cutoff inde-
pendent. In this way we prove the cutoff independence for V. EVALUATION OF THE LOW-MOMENTUM
any observable. CORRELATORS
Consider first the bound state energy

Therefore, we must change

@,(0)

Ef>n<5;m~<'13n(5;u)(1+

In Sec. lll we learned how to parametrize the possible
nonperturbative contributions in the small relative momen-
tum region in terms of two low-momentum correlatpEgs.
(3.24) and(3.34] with external Coulomb bound state energy
insertions. It is remarkable that these contributions only exist
for s states. At the beginning of Sec. IV we also saw that the
The cutoff dependence @&, is given by Eqs(4.8), (4.10,  kinetic term, which is suppressed by a mass invers power,
and (4.11), whereas the cutoff dependence &, is given  can be safely neglected in the correlators we are interested
by Egs.(3.17 and(4.3. One can then easily check tHaf, in, and hence we can use HQET for quarks and antiquarks to
is cutoff independent. discuss their properties.

Consider next the staféab,n,s);v)r in Eq. (3.19. Re- The HQET for quarks and antiquarks enjoys a N(4
call that the first and last terms on the right-hand $RElS) ~ Symmetry which breaks spontaneously down to the
belong to the large relative momentum region whereas th&(2Nnr) ©U(2Nyy) Isgur-Wise symmetry12].
term in the middle belongs to small relative momentum re- Let us first analyze the consequences of the unbroken
gion. Let us keep apart for a moment the explicit cutoff Y(2Nn) ®U(2Npg) symmetry. In fact, the spin symmetry
separating these two regions in the relative momentum inte¥Nich is included in it has already been used in EG24
grals. The remaining cutoff dependences of the first term arémd (3.34. The flavor symmetry implies
given by Egs.(4.5), (4.8), (4.10, and (4.12), while for the , ,
last term are given by Eq$3.21) and (4.3), which cancel fapg="fg. fgc,gab:fg .. 5.9
each other.

It remains theUV cutoff dependence coming from Eq. Therefore we get
(3.20 (which has been already studied [i6]) and the ex-

Ef=E,+ 6E,. (4.15

plicit IR cutoff dependence coming from the integral over Han(Eab,n) =I11(Eap,n),
relative momentum in the first term of E¢3.19 [see Eq.
(3.1)], which we kept apart for a while. Recall that the wave ITac an(Eacn’ \Eabn) =112(Eacn’ »Eapn)- (5.2

function in the first term of Eq(3.19 is, except for the

normalization factor(4.14), the Coulomb wave function The correlatorg3.24) and(3.34) are thus given in terms of
since we have already canceled the cutoff dependences coitwwo unknown universalflavor-independentfunctions I1;
ing from Eq.(4.12. Let us next calculate E¢3.20 pertur-  andlIl,. But if we go further, using flavor number conserva-

batively at lowest order. It reads tion together with flavor symmetry, we obtair?'gzég,g
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for any flavor. From that it follows that ifl; is known for f_ﬁ 3N
any energy insertion, we can obtdib. Explicitly they read fﬁ,2= 7+ 67720' (5.6
2 -
Ifol 1 wheref 3 is cutoff independent. Notice that in this situation

IT1(Eapn) = g : : .
Hmabn % 2 Eapn—Eq all nonperturbative effects in the small relative momentum

region are parametrized by a single nonperturbative constant
1.2 1 1 which is spin and flavor independefitThis is a nontrivial
9 ) consequence of the UNL;) symmetry. The fact that the
2 Bacn—EBg Eapn=Ey latter is spontaneously broken down to W2) ®U(2Ny)
(5.3 allows us to know the Green function behavior at low-energy
insertion with a single nonperturbative constant since no
These low-momentum correlators can be further SpeCiﬁe(ﬁanS term appears in the pole. All the spin and flavor depen-
at least in two situations: (i) Eapn>Agcp (Mg—%, @  dence is explicitly known in the observables.
small; (i) Eapn<Agcp (Mg large, @—0). Notice that situ- However, caution must be taken in situati6in. This is
ation (i) is conceivable ifa is very small since so far we due to the fact that, in this situation, the standard evaluation
have only assumed that the inverse Bohr radius is muclf nonperturbative contributions in the large relative three-
larger thanAqcp and the energy is suppressed by a faetor momentum region coming from E@2.15 becomes unreli-
with respect to the former? able. Let us briefly recall the two approximations involved,
In situation(i) the operator product expansion holds. If we namely, the multipole expansion and the adiabatic approxi-
carry it out for the low-momentum correlators, we just obtainmation. The first one is an expansion Mycp over the in-
Egs.(4.3) and(4.4). Their cutoff dependence just cancels theyerse Bohr radius, which has also been assumed to hold
cutoff dependence from the large relative momentum regionghroughout. The second one requires the time evolution of
as we saw in Sec. IV. Hence, we conclude that there are nfhe soft gluon fields to be slow in comparison with the ener-
new nonperturbative contributions in this situation, thus Con-gies involved in the Coulomb spectrum. This requirement is
firming the fact that the VL contributions from the conden- in fact the opposite of Situatioﬁi)_ Thus we are in the un-
sate are indeed the leading nonperturbative effects in thgyrtunate situation that when we have an excellent parametri-
mg— limit.® This result follows from the observation that zation of the nonperturbative effects in the small relative
there is no local gauge-invariant object that can be built oufomentum regionEgs. (5.4) and (5.5)] we lose control of
of Dy alone. We have explicitly checked it for lower-order them in the large relative momentum region.
terms. Nevertheless, we envisage a situation where the param-
In situation (ii) we are in the low-energy regime of the etrization(5.4) and(5.5) may be useful. Recall that although
HQET. In this regime it is important that the HQET with the parameter controlling the adiabatic approximation and
quarks and antiquarks with the same velocity undergo e parameter controlling the expansion in the hadronic ef-
spontaneous symmetry breaking of a Bd) symmetry fective Lagrangian are both of ordégcp, they need not be
down to the Isgur-Wise symmetry Ulg ) ®U(2Nyy), since  exactly the same. The former was shown to(BeFDF)/

the Goldstone modes associated with the broken generatofsF) in [7] and let 2rf ﬁ/3 be the latter. Suppose then that
dominate the dynamics. The heavy quark hadronic effective

1_[Z(Eac,n’ 1Eab,n) = %

Lagrangian describing the Goldstone modes was worked out (DFDF)\?
in [6], where the correlator&3.24) and(3.34) were also cal- Eab,n><<|:—|:> )
culated. Using those results we obtain
N Eapn<2mfZ. (5.7)
Mp(K)= = =g——, 5.4
bl 1) 2 (K%+ie) 54 In such a situation it would be reasonable to use both the
adiabatic approximation in the large relative momentum re-
a 1 1 gion and the hadronic effective Lagrangian in the small rela-
Hac,ab(k'oykoF? KO+ie) (K9Fie) (5.5  tive momentum region. Some bottomonium, charmonium,

and presumablyB, states may well be considered in the
situation(5.7). However, the mass of tHequark and mainly
the mass of the quark are not large enough to allow for a
“In practice we must remember thashould better be substituted straightforward application of our formalism to phenomenol-
by the running coupling constant at the quarkonium scale, which igy. Relativistic and radiative corrections are in general im-
in fact an implicit function ofmg and Agcp.
8In [6], the bound state ener@y,, , was understood as giving rise
toa reS|duaI_ mass for the hea"Y quark and antiquark in the he"’“/yloNotice also that although at first sight the contributions obtained
quark effective Lagrangian, which was later on subtracted. Thaby substituting Eqs(5.4) and (5.5 into Egs.(3.17, (3.27, and

definitively obscures its actual role, which eventually led to SOME(3 33 ook like more important than those from the condensate
confusion: In[6] situation(ii) was not allowed, whereas the heavy when mg—e, they are actually not so since the smallnessaof

quark hadronic Lagrangian was used for situationwhich is not required in situation(ii) maintains the condensate contribution
correct. dominant. Some statements mad¢himplying the opposite must
This point was not properly specified 8]. be corrected.
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TABLE |. We displayA,, A3, andAy, defined in Eq(5.10. The last two columns give our results foy, and agb%l.

AXS (MeV) A, (MeV) Az (MeV) Ay (MeV) m, (MeV) app; (MeV)
200 314 49 25 4850 1234
250 —376 61 18 4879 1354
300 —440 74 13 4906 1468

portant and this is also so for the nonpertubative corrections Let us next assume that we are in the situatidrr). As

due to the gluon condensdt@]. All them must be taken into mentioned before, this may well be the case for Y{&S),

account. Y(29), xp(1P), J/¢ (and 7.), and B, (and BY). If we let
Let us next discuss the expected size of our contributionsf 2’3 run between the values

It is not our aim to present a full-fletched phenomenological _

analysis in order to extradt? from the data, which would Eapn<2mfd’<azl,, (5.1

definitely be premature as should be clear from the following _

discussion, but to just give reasonable estimates of the exve can give an estimate 0E,y, , . If we allow f Z/® between

pected magnitude of its contributions. For simplicity, we will 100 and 150 MeV, our results turn out to be quite stable

concentrate on the mass corrections. under values of?\gfc? between 200 and 300 MeV. We ob-
We start with the bottomonium system where our formal-tain

ism is expected to apply for the lowest-lying staf8s19].

We proceed as follows. First of all, we fim, and apy 4 —9 MeV<6E,,1<—2 MeV, (5.12

using the experimental data and the available theoretical re- - . :
sults while ignoring the contributiodE,, , in Eq. (3.17). where the explicit expresion used for calculatid ,y, ,

Then we estimate the size 6E,, , by letting f Z run within reads
values of the order of\ycp. We should keep in mind that 2 3
) 5QCD" - . 167 f n
although we will takef {; positive for definiteness, it can also SE.. =—4 H (5.13
. 1 ab,n Mab N C.ala L 2 . .
be negative. We extractn, and a,p; from the self- Cras(azpn) \ 2Hap
consistency equatioay, [ @s(apr1)] =ap,; and theY(1s) o _
mass. We use the folldwing eql’Jation to fit the latter: Although the smallness of the result above is discouraging at
first sight, it justifies the procedure used and makes it self-
m =2MmM+ Ao+ Ast Ay . 5.8 consistent.
s R 8 Forn=2 we obtain
where —55 MeV< 8Ep,,<—15 MeV. (5.14
. mbCfE(agbfl) Recall that only thes-wave states receive this correction. If
abb,1:—2 ' (5.9  the sign off % was negative, the signs above would be re-

versed. This would help to understand the mass difference

—_ between th 1P) and theY(2S).
szaz(a b1,1 &p(1P) (29)

A,=—2m, , Let us finally give some estimates foE..; and 6Ey
8 corresponding to the/¥ (and 7.,) and theB, (and BY)
ground states. We have taken the mass of the charm quark,
CZBoa’(app) a(apy) m.=1570 MeV, as given in Ref3]. For theJ/¥ we find
A3: - Zmb : .
8w SEcc1~—42 MeV,
71 EE—
«|In (ag—byl_l}ﬂ_k), taking A ¢y =300 MeV, a.1=848 MeV, andf 7*=150
m,Cra(app ) MeV. For theB, we find
e10m( asG?) SEpe1~—23 MeV,
Ay =my ﬁ (5.10 . 3 1 =33
[MyCra(app,y)] taking AB=300 MeV, apdy=1013 MeV, andf 73=150
MeV.
We have taken the formulas aboVewhich include rela- The above contributions for the energy shifts are, on the

tivistic, radiative, and the VL nonperturvative corrections, gne hand, small enough to make us confident that our results
from [3]. We allow for different values ahqcp and give the  are under control and, on the other hand, large enough to
relative weight of each contribution in Table I. hope for its eventual observation. However, it is important to
realize that the VL contributions are exceedingly large for
Y(2S), xu,(1P), I/ (and ), andB, (andBY ). We suspect
Hyowever, we have not taken into account the contributions ofthat the framework used so far to calculate the VL contribu-
order O(a*,@°) given in[3] since the complete calculation at this tions in the large relative momentum region is not appropi-
order is still lacking. ated for these states. We believe that in order to make real-
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istic QCD-based predictions for these states one shouldaper. Elaborating on the ideas first presentd@jwe have
devise a reliable approximation in the large relative momenproduced a detailed derivation of the effective theory gov-
tum region to deal with situatiofii) above, namely, inverse erning the small relative momentum degrees of freedom in
Born radius and energy larger and smaller thiesp, re-  heavy quarkonium. In particular this includes an interaction
spectively. Work in this direction is in progreg20]. term, which had been overlooked before, that leads to a few
corrections in the observables. We have proven the cutoff
independence of the formalism. We have also discussed in
detail when nonperturbative contributions which cannot be
expressed in terms of local condensates arise, namely, when
a description in terms of a heavy quark hadronic theory is

We are confident that the theoretical framework above i€@dequate. Our preliminary estimations suggests that these
going to be useful for an eventual QCD-based formalismcontributions lead to energy shifts of a few tens of MeV.
attempting to encompass situations where the Coulomb eﬁJnfortunater, more theoretical work is necessary to estab-
ergy is |arge(sma||n) and situations where it is Smd]hrge lish them from the data. This is mainly due to the lack of
n) with respect toAqcp in heavy quarkonium. Even more, control on the nonperturbative effects in the large relative
this formalism could also be useful in order to obtain explic-momentum region of most of the systems where our ap-
itly the perturbative Coulomb corrections to the nonperturbaProach should apply, namel¥(2S), x,(1P), J/¢ (and ),
tive heavy quarks bound statéargen). andB, (andBY). Work in this direction is in progre§20].

Our formalism is clearly inspired by the Wilson renormal-
ization group approach. We separate the fields into large and
small momentum components by an explicit cutoff and work
out what the effective action for the latter is. However, there
is an important point which makes our formalism rather pe-
culiar: Integrating out the large momentum components

VI. CONCLUSIONS
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