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We perform an exhaustive analysis of the equivalence theorem both in the minimal standard
model and in an effective electroweak chiral Lagrangian up to O(p*). We have considered the
leading corrections to the usual prescription consisting in just replacing longitudinally polarized W
or Z by the corresponding Goldstone bosons. The corrections appear through an overall constant
multiplying the Goldstone boson amplitude as well as through additional diagrams. By including
them we can extend the domain of applicability of the equivalence theorem, making it suitable for
precision tests of the symmetry-breaking sector of the standard model. The on-shell scheme has
been used throughout. When considering the equivalence theorem in an effective chiral Lagrangian
we analyze its domain of applicability, as well as several side issues concerning gauge fixing, Ward
identities, the on-shell scheme, and matching conditions in the effective theory. We analyze in detail
the processes WTW ™ — WTW ™ and WTW+ — WTW™ to illustrate the points made.

PACS number(s): 12.39.Fe, 11.10.Gh, 12.15.—y

I. INTRODUCTION

The equivalence theorem states that for any sponta-
neously broken gauge theory, provided the energy trans-
fer is large enough, one can replace the longitudinal de-
grees of freedom of the massive vector bosons by the ap-
propriate Goldstone bosons and use them to compute
S-matrix elements.

Even though the equivalence theorem was proved orig-
inally [1,2] in the context of the minimal standard model
(SM), with a doublet of complex scalar fields, it has been
realized [3-5] that it should remain valid for other theo-
ries exhibiting an equivalent set of fields and symmetries,
even for nonrenormalizable ones. This makes the equiv-
alence theorem potentially very useful in investigations
of the symmetry-breaking sector of the standard model,
which is often described by a nonlinear, nonrenormaliz-
able effective theory, the effective chiral Lagrangian [6].
Much of what over the years has been learned from the
interactions of pions and kaons [7] can then be easily
taken over to the weak interaction case. For this purpose
the equivalence theorem is instrumental.

In recent times there has been a flurry of papers dealing
in one way or another with the equivalence theorem. The
activity has proceeded mostly along two directions. First,
it has been realized that the common textbook statement
of the equivalence theorem, namely,

AWLWL > W - W) = (—)"A(ww 25 w- - w)
+0(M/ V), (1)

*Electronic address:
espriu@ecm.ub.es;espriu@greta.ecm.ub.es
tElectronic address: matias@ecm.ub.es

0556-2821/95/52(11)/6530(23)/306.00 52

where w denotes the Goldstone boson absorbed by the
appropriate W or Z boson, is not quite correct. For one
thing, there is an overall factor C™ on the right-hand side
(RHS) of (1) [8-10]. The origin and relevance of this
factor we will discuss in detail in the coming sections.
Moreover, it is incorrect to discard all the terms that in
(1) are lumped together in the “O(M/+/s)” bit. Except
in the crudest of approximations both terms need to be
kept. As we will show they both give subleading correc-
tions that do not necessarily vanish in the large s limit
and that are needed if one wants to perform a detailed
comparison with the experimental results. The equiva-
lence theorem has been mostly used in the context of the
so-called strongly interacting Higgs bosons, the limit in
which the quartic self-coupling in the scalar sector of the
minimal standard model becomes large. In this limit the
dominant contributions are correctly taken into account
by (1). Yet the corrections to (1) are not negligible at
all. This is the origin of some misgivings that have been
raised [11-13] concerning the usefulness of the equiva-
lence theorem.

It makes a lot of sense to investigate possible de-
partures from the minimal standard model by setting
bounds on the O(p*) coefficients of the effective chiral
Lagrangian. Scattering of longitudinal W’s and Z’s is
among the clearest ways of doing this and the equivalence
theorem comes in handy. The effective chiral Lagrangian
has a limited range of validity as we scale up the energy
(the upper bound being 47v or A, A being the mass of
the first resonance in the strongly interacting scalar sec-
tor, whichever is smallest), and so the energy cannot be
too large. It cannot be too small either on account of the
uncalculated pieces on the RHS of (1), and so the range
of validity seems to be limited [13]. We will show that
taking properly into account the next to leading correc-
tions to the equivalence theorem improves considerably
the situation and allows for practical applications with
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the required level of precision.

There seems to exist ample consensus in choosing the
on-shell scheme to carry out the renormalization program
[14,15]. For this reason we have elected to work within
this scheme in our discussion of the equivalence theorem
as is conceptually simple and technically convenient.

In deriving the above results we have been led to a
number of collateral issues. Among these we include a
discussion of the renormalization in the longitudinal sec-
tor in the on-shell scheme, Ward identities in the non-
linear realization, modifications to the on-shell scheme
when the Higgs boson is not present, and the full La-
grangian expanded up to terms with four fields in the
nonlinear variables. To keep the discussion simple we
have restricted ourselves to the charged sector. No con-
ceptually new issues appear in the neutral sector, but the
~v-Z mixing complicates the analysis considerably.
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II. GAUGE FIXING AND WARD IDENTITIES IN
THE MINIMAL STANDARD MODEL

We shall start our discussion by outlining the derivation
of some Ward identities in the minimal standard model
involving the longitudinal sector of the theory. To the
best of our knowledge these Ward identities in an arbi-
trary gauge have not been presented before. (Usually,
the ’t Hooft-Feynman gauge is used [15].) We will first
analyze the standard model in the usual linear variables
and comment afterwards on the nonlinear representation,
more suitable to deal with a strongly interacting scalar
sector. Throughout this paper we will work in the on-
shell scheme renormalization scheme and we shall basi-
cally adhere to the conventions of [15] and [16-18], except
for a field redefinition in the scalar sector.

A. Linear realization

The minimal standard model Lagrangian with a doublet of complex fields @ is

with D, = 8, + %igW;;Ti + 3ig’B,. The Higgs doublet is

o5

In the notation of [15], w2 — ¢!, w! = —¢?, and w® — —x. The gauge-fixing and Faddeev-Popov terms are
P X gaug

Lsm = D, D*® — \|®|* + p?|®|* + Lym + LaF + LFp, (2)
2 + L
vl @
e
Lpp = Z c Wcﬁ, (4)
«,3=0,1,2,3

Lar = —%(2F+F_ + F3F3 4 FOFO),

where o and 8 run over SU(2)t (o, 8 =1,2,3) and U(1)y
(o, B = 0) indices:

F* = 2“’ HWE — M/ eF w™,
1
1
F? = \/Egaﬂwg — Mw /€5 w3,
1
1 )
F°= ——0,B" + (M} — M) /e8w®.  (5)

Ver

The charged fields Wf and w* are defined by WMi =
(W} FiW?2)/V2 and wt = (v Fiw?)/v2. We will not
consider neutral fields and we will drop the indices “W”
and “B,” being understood that unless stated otherwise
we will be referring to the charged fields. Notice that in
the on-shell scheme £; and &3, although equal classically,
have to be kept different beyond the tree level because
they renormalize differently. Furthermore, the introduc-
tion of two gauge parameters allows for the elimination
of the divergences appearing in mixed W-w Green func-
tions. This is discussed in Appendix A.

In the longitudinal sector we have gauge, Goldstone
boson, and mixed propagators. Their decomposition in
terms of invariant functions is

+w- k. k, T
D,VX, w (k) = (—g‘w—f- 22 )A;V w (k?)

k. k., T —
- Zg A‘I:V w (kz)’
DY (k) = ik AW (K2,
DT (k) =AY (k2). (6)

In terms of self-energies,

AW+W~ — i

T k2 — M2+ X7’
AWTWT _ ig?

LT R aMgany

whw™ _ t
S = 5 V- Sy
1 ¢0
AW"'w_ . 7’61 1 (7)

T k2 MgggEW“ k2 — M2¢0°

The last expression is valid at the one-loop level only.
We will restrict ourselves to this order as going beyond
this in the standard model is only of academic interest at
present. Since we will be dealing exclusively with charged
W’s, in order not to unnecessarily clutter our formulas
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we have suppressed the indices in masses and self-energies
whenever no confusion is possible. The relation between
bare () and renormalized (X) self-energies is given in
Appendix A. For the mixed propagator we have only
considered the one-loop expression in (7) because this
is all we will need in what follows. Since we work in
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a 't Hooft gauge, there is no tree level contribution to
AW, Furthermore, note that with our conventions
AVTwT = _A9TWT = AWTe" 5n account of the Her-
miticity of the effective action.

The generating functional of the standard model

Z[J,n,7] = /DX'DE’DC exp {z / d*z[Lsm + XOT* + &*n™ + ﬁ“ca]} (8)

(X collectively denotes the fields in the theory, and ¢, ¢
and 7, 7 are the ghosts and their sources, respectively),
is invariant under the BRS transformation (¢2 = 0)

Wi = (—6"%8, + ge*Wi)c*¢,
6B, = —8,c%,

'
Sw' = g(oé'k + e”kwj)ckC - %(06’3 - eijswj)coc,

/
do = —%w’c’( + gz—wacoC,
6c* = F°¢,

§ct = —leijkcickﬁ,
2
5c® = 0. (9)

Using the invariance of the action we arrive at (we set
n =17 =0, but J # 0)

(OIFP[X (y)IC[0) = (0]62°(y)|0) = —~i(0|J 76X 7% (y)|0).
(10)

Acting now with FQ[TJ—J%j] on both sides of (10), using
that the gauge fixing is linear in the fields and the fact
that

FosX(@)] = (e ) (@) (1)

we get [15]

= i§°P§(z — y)Z[0]. (12)

To be specific let us concentrate in the gauge-fixing
condition for the charged fields F*. Equation (12) can
be easily written in terms of propagators. Using (6),

K2AY W — 2Mok?, [€QE9A YT — €2eIMEACT T

=€}, (13)

We have used that AW %~ = —A“"W~ Now we substi-
tute (7) into (13). If we work at the tree level, we can
set £2 = £€9 = £ and (13) is just an identity. At the next
order we have to keep track of the self-energies, which are
O(g?) and of the difference between £ and &3 creeping
in from the tree level expression. Then one finally gets,
with one-loop precision,

K208 — MES €9 + 2Mok? /€969 w., = 0. (14)

The relation between the bare and renormalized expres-
sions is obtained through the use of the renormalization
constants described in Appendix A. We shall demand
that the renormalized gauge parameters be equal, i.e.,
&1 = &,. Since Z¢, # Z¢, this requires £ # £3. As a con-
sequence there is a net counterterm for the self-energy
Yw.w(k?) beyond the tree level. (Recall that in 't Hooft
gauges the mixed W-w piece cancels out.)
In terms of renormalized quantities (14) reads

N - N 2
k*(ZL +2MEw,) — M?S, = (k? — ¢M? L 8Zw — 82Z¢,) — M*(8Z, +6Zm + 82¢,) ) . (15)
€ £
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Notice that (15) provides us with some combinations of
renormalization constants which are necessarily finite,
such as ZWZé'l1 and Z,ZnZ¢,.

B. Nonlinear realization

If the Higgs mass is large, i.e., if the quartic coupling A is
large, the Lagrangian (2) is not written in the most conve-
nient set of variables. Indeed, the quartic coupling affects
all four scalar fields (o, w?), thus involving the Goldstone
bosons of the SU(2) xSU(2)g — SU(2)y breaking which
mix with the longitudinal W’s and Z. On the other hand,
since M2 = 2\v2, the internal exchange of the Higgs bo-
son is strongly suppressed. These two facts together lead
to a tremendous amount of cancellation between different
diagrams [19].

It is far more convenient to rewrite the scalar sector
of the standard model using a nonlinear realization. The
way to proceed is to introduce the matrix-valued field

M(z),
M(z) = V2($®), (16)

where ® is the hypercharge conjugated doublet. We then
perform the change of variables

M = pU U = exp (%’KiTi) , (17)

with U € SU(2)r x SU(2)gr/SU(2)y. The unitary ma-
trix U collects the Goldstone bosons of the broken global
symmetry w*. The fields 7* are related by a nonlinear
transformation (involving the p field) to the w® used in
the previous subsection. Since M transforms linearly, so
does U, and the Goldstone bosons themselves transform
nonlinearly,

U'(z) = es* @7 U (z)e 12 @), (18)

unlike o in the linear variables, the field p is inert under
the gauge group. The steps required in going from the
linear to the nonlinear realization have been discussed in
detail in [18]. The Lagrangian in the nonlinear realization
is

1 2 p? 13, 2 2
LSM:§ PO p — pAu| v +—A* _'Z“P (p* + 3v°A)

1
A 3 A 4
—AVP"T — -—4 P

1
+Z(p+u)2TrDuUfD“U+CGF + Lfp, (19)

with D, U = 8,U + 3igW,im'U(z) — 3ig’ B U(z)7®. For
the gauge-fixing part one could just use the transform of

(5):
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1 M
F* = _gw__aﬂwj +im /& (p+ v) Tx(r*T),

1

1 M

F3 = = W2 +i—5" /€ (p+0)Tx(r°D),

1

2 _ 2 \1

o= L gpr Mz MW fepnysy), (20)

ver " 2

where 7% = (7! Fi72)/+/2. [See [18] for the correspond-
ing Faddeev-Popov piece. In Landau gauge (§¢ = 0)
ghosts decouple from Goldstone bosons.]

Lsym + LgF + Lpp is invariant under BRS transforma-
tions. The gauge fields transform as in (9) and

dp =0,
§U = %gTiUciC - %g'UTscoc,
6™ = F*(,
§ct = —%eijkcickc,
8 =0. (21)

Since F'“ is linear in the U field (but not in the 7 field),
a Ward identity analogous to (13) but with the fields w
replaced by n’s cannot be derived. It is more useful to
shift to another set of gauge conditions which are linear
in the nonlinear Goldstone fields =:

1
F* = _gwaﬂwf — Mw /& ™,
1
F = \;?aﬂwj — My /g2 n®,
1
F° = ——8,B* + (M — M3)}\JeBr®.  (22)

VEP

Then the Ward identities (13) and (14) remain strictly
valid with w replaced by w (the nonlinear Goldstone
bosons). The bare Green functions themselves that ap-
pear in these expressions differ numerically from those
obtained in the linear realization, however. The equal-
ity between both realizations is only guaranteed at the
level of S-matrix elements [20] or for connected Green
functions involving only gauge fields [18].

The Lagrangian in this gauge, expanded up to four
fields, is given in Appendix D. Notice that the Goldstone
bosons have only derivative couplings and that the cou-
pling A now affects only the p field. If the mass of this
radial excitation, which is to be identified with My, is
very large, it makes sense to go one step further and in-
tegrate p out, obtaining an effective Lagrangian that will
reproduce the standard model at energies much below
Mpg. This will be discussed in Secs. V and VI.

III. EQUIVALENCE THEOREM IN THE
STANDARD MODEL

The gauge conditions (4) must be satisfied by the in
and out states:
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(0|F*|y) = 0, (23)

F* being the gauge condition (5) and |¢) some physical
state. This condition does not determine the state com-
pletely; an in state represented by (¢#,0) with k-e¢ =0

i

and one represented by (e — %0, ﬁt‘)) are the same

physical state. The polarization vectors associated with
longitudinal W’s are of the form

w_ R u
= 4ok, 24

€L M +v ( )
where the v# part is O(M/E), eventually negligible when
compared to the first term in (24), which is of O(E/M).
Also, and for the same reason, at high energies the scat-
tering of longitudinal components of vector bosons dom-
inates over transverse ones [2,19,21].

|
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Within the above equivalence class one could also sin-
gle out the representative (v¥, ﬁ), where the domi-
nant k* part has been removed from e*. This constitutes
the equivalence theorem.

At first sight, the equivalence theorem appears to be
closely linked to the ’t Hooft-Feynman gauge [22], in
which one sets £ = €& = 1. What happens then for,
say, a Landau gauge where Goldstone boson physics is
more manifest? Can (1) be derived then? The answer to
this objection is of course that (e#,0) and (v¥, ’1 2) are
formal expressions involving bare quantities, while we are
interested in relations involving S-matrix elements. Fur-
thermore, as the fields propagate they mix among them-
selves since they have the same quantum numbers. The
condition (23) reads (for a negatively charged in state

%))

0= / d4ze == (0|OHWF () — Moy /€060w™ ()[9)

= ik, ~Mo[e263) [ dae = OU(Wf (@), (@) ) oo (25)

All quantities and fields appearing above are understood to be bare ones. Using now the reduction formula (see, e.g.,

[23]) to relate Green functions to amplitudes we get

KEMDyn (W) T jazpz = 0, (26)

where KM = (ik*, —M+/£9€9),

_ (DT (k) D" (k)
Dyn = ( D;’+W"(k) Dste (1) ) , (27)
and
WHN(R)|y) = (W (k),w (k)|9). (28)

Equation (28) is not quite an amplitude because is not yet contracted with €,, but an amputated Green function.
Everywhere we understand that the limit k2 — M? has to be taken.
A straightforward calculation that makes use of the Ward identity (13) leads to

K2 g0 — KWW MZE0edAeT e
Mo/€0€3 462 + K2AY W™ + MEEQERA"

We have to set k2 = M? in the above expression. All quantities and fields are still unrenormalized. We now
proceed to write everything in terms of renormalized quantities using the renormalization constants described in
Appendix A. The external legs require special treatment. In the on-shell scheme one commonly uses a minimal set
of renormalization constants that make finite all Green functions, but which do not guarantee a unit residue for the
vector boson propagators [15,24] (other than the photon). To fix this problem one uses for the external legs Zw and
Z,, defined in (A4).

Introducing the renormalization constants into (29) one finally gets a relation between renormalized amputated
Green functions:

ik (W, (k)[y) =

(W™ (k)[4 (29)

k(W (k)|¥) = MC{w™ (k)|¥). (30)
C is given by
VEoe 1 g - k2ZwZ'AY VT — 66 M2 22,2 AT
M? ZV6i&s ik + k2 Zw Z ) AY W + 6166M2Z 2,2 At

(31)

a

I
N
s‘“‘ls '
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As usual, the renormalized propagators appearing in (31) are to be evaluated at k* = M?2. In the above expression
Z = (ZmZe, Zsz)l/ %, The renormalization constants that show up in (31) appear in combinations so as to make C
finite. This can be easily checked by recalling (15). Notice that the renormalization of the external legs Zw and Z,
have been included in C. The presence of this factor in the equivalence theorem has been detected before [8-10]. The
expression given here is new, however. In [9,10], C is given in terms of Green functions involving ghosts.

The factor C as given above is valid to all orders. In the on-shell scheme and at the one-loop level all renormalization

constants are expressible in terms of bare self-energies. If we particularize to this order, C becomes

1
2M?2

= (1 + %(5ZW —6Zu) + m [Sp(M?) — SL(M?) — zw(MZ)]) . (32)

The simplicity of this expression is remarkable, which is
valid in any gauge (although the bare self energies them-
selves do depend on the gauge). Furthermore, the leading
contribution is just 1, reproducing the naive arguments
at the beginning of this section using the Feynman gauge.
Let us now analyze the properties of Eq. (32). Obviously
C is finite in the standard model. It turns out to be in-
dependent of My too (see the ¥’s, Z’s in Appendix A).
At least at the one-loop level in the on-shell scheme, the
C factor and the equivalence theorem, by extension, do
not have any sizable corrections due to the scalar sector
and only contributions of O(g?) appear.

As it stands, (30) relates finite, but yet unphysical,
quantities. We rather write it as

(W, (k)|[$) = —iC{w™ (k)[9) + v*(W (k)|¥), (33)

which we denote as

(W [9) = —iC{w™|9) + (W [3). (34)

The LHS is now a physical S-matrix amplitude. The
RHS is a sum of two pieces, neither of which is phys-
ical. Both are gauge dependent, but the gauge depen-
dence cancels between them and also as a result of the
C factor (more on this will be discussed later). All ma-
trix elements are to be computed at k> = M?2. Since
the Goldstone boson mass in the standard model is a
function of the gauge parameter except in the Feynman
gauge, the first matrix element on the RHS is also off
shell in general.

It is a simple matter to extend the above results to sev-
eral external longitudinally polarized W’s. We proceed
iteratively, applying the above procedure one by one to
the external W's, taking into account that the vector
KM for an outgoing W+ or W~ with momentum k* is
KM = (ik#*,—M+/£,&;), while for an incoming W+ or
W~ with momentum k* is KM = (—ik*, —M/&&3).
We then end up with

(WWLWe - [9) = (—)"C™ www -+ [9) + (=) 71" (Www - [§) + (=) 1 wWw - [9) -+« + O((v")?).

(35)
For incoming Wr’s we have to replace the appropriate —i by a +i. For instance,
AWFW, - WiW,) =C*A(wtw™ 5 wtw)
+iC3AWtw™ 5 ww™) +iCPA(WTW ™ = wtw™)
—iCPA(wTw™ —» WHw™) —iC*A(wtw™ = wtW ™) 4+ O((v*)?). (36)

We shall lump together the four pieces with one W, external field contracted with v# and three w’s under the symbol

AW www):

AWwww) = iCCAWtw™ - wtw™) +iCCA(WTW™ = wtw)

—iC*A(wtw™ = WHw™) —iCPA(wtw™ = wtW). (37)
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Of course, if the equivalence theorem is ever going to be
useful, we must be able to stop the expansion in (36)
at some, preferably early, point. How far we need to go
depends on both the energy of the process (since further
contributions are suppressed by additional powers of the
energy) and on the precision required. [Are we merely
interested in the limit where X is large, or do O(g?) cor-
rections need to be taken into account?]

We just saw that v* is suppressed by a factor M?2/E?
with respect to €. The additional terms A(Wwww) are
therefore suppressed by this same factor with respect to
A(wwww). In a renormalizable theory the latter behaves
for large E as a constant, at worst. Thus the additional
term should indeed be of O(M?/E?). However, this need
not be the case in a nonrenormalizable effective theory,

A Wtw-
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or even for large values as My provided F « Mpg. This
will be discussed in the coming sections.

IV. APPLICATIONS OF THE EQUIVALENCE
THEOREM IN THE STANDARD MODEL

In this section we will explicitly check the validity of
the equivalence theorem at the tree level in the stan-
dard model including the first subleading corrections in
(36), which have not been computed before. All calcula-
tions have been carried out in 't Hooft—-Feynman gauge.
The processes AW W~ —» WtW~) and AWTW+ o
W+W) have been calculated previously in [25] and [26],
respectively. :

— Wtw-

The exact amplitude for the scattering of Wi, is given by the set of diagrams in Fig. 1:

2
- - g
AWLWL > WiW,) = o

[(4M2 + z)[AM?(t? + tz) + t?z + 4tz® + )

2M2(2t + z) + tz]” (2M? + z)°
MZ[ M2 2
+ MZ i Ry v
s2 c2
+ (T'” +3 1?\4?) (4M4(m — 2t)(2t* — tz — 22?)
- zZ

—16M°(2t + z)® — 8M?(t3z — tz®) — t2z>(t + Zw))

2 2
— (fﬂ + —cﬂ—> 22(2t + z)(z + 6M2)2] .
S S —

s,t,u are the Mandelstam variables defined by s = (p; +p2)%, t = (p1 — k1)?, and u = (p; — k2)2. We have introduced
the variable z = s — 4M? to simplify the expressions. In the c.m. frame,

P11 = (E’;anap)’

D2 = (E,0,0,—p),
ki1 = (E,psin6,0,pcos ),

ks = (E,—psinb,0, —pcos )

and

(39)

1
€L(Pl) = M(p70a0a E),

1
GL(pz) = 'M(pao’ 0, "'E)y

1
en(ki) = M—(p, Esiné,0, E cos6),

€L(k2) = M

"I‘(Pa —FEsin6,0,—FE cosf).

(40)

The following kinematical relations hold: p? = z/4, cos§ = 1 + 2t/z.
The Goldstone boson amplitude is given by the diagrams of Fig. 2. The calculation is simpler (this is one of the
main assets of the equivalence theorem, of course). We set C = 1 for the time being:

M% MpE(s+t) — 2st
8M?2 (MZ — s)(M% — t)

AwtTw™ 5 wtw™) = g2 [

+(4M2—2t—s)<

(ch —s3)? 1 5%
~t). (41
4c2 s — M2 + s + (s ). (41)

The first correction to the “naive” equivalence theorem corresponds to the diagrams in Fig. 3. Their contribution to

the RHS of (36) is
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- M2 [ z(M?— Vs M? —s)+ Jzs
Al www):gz[MI;( : m(MI%)jtt) = 1 )

M —s
52 (mz +z(s +t) — z5(2z + t)

4 z? + 2tz — \/zs(z + 2t)):|
2xt 2zs
g c2 — 52 [(m + 2t)(/zs — z) 4 2z +t)yzs —z(s+t+x) (42)
z s— M2 t— M2 )

In order to check analytically the validity of the equivalence theorem let us expand (38)—(42) in inverse powers of the
energy. Except for cos@ ~ 1, s - 0o = —t — oo. Therefore we perform a double expansion in M?/s and M2 /t:
2 a2
t
AWwiwy s wiwp) = -2 M [

_¢° My c_ | g st
4 M2 |[t— M}  s—M% 2¢2 st

ME 2MEt — s(s+1t)
2°-"H H 2 2 t

(43)
2 M? t s 2 s2 412 4 st
+ + =9 7H _ g st TE O(M?/s,M?/t 44
At o) = - S [ S - S TEE R o, M2 ), (49)
and, finally, (42) becomes
+ + +
¢ . o v
[ ; [0} w
Hi Y z

L o~ m_ (O

e o e

(a) (b) (c) (a) (b) (c)
+ + .- L + +
W + 0~ Y [ T o
w - ® .o ® o .
H 3 Ho o Y e ; o~
W o~ o S
(d) (e) (£) (a) (e) (£)
[0}
(g) (g)
FIG. 1. Tree level diagrams contributing to the scattering
amplitude AW W, — W} W) in the SM.

FIG. 2. Tree level diagrams contributing to the Goldstone
scattering amplitude A(wtw™ — wtw™) in the SM.
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AW www) = g? M% 2MEt —s(s+1t)

s OME -5 —8) T O(M?/s,M*/t). (45)

We have kept the complete Higgs structure in the denominator. Adding (45) and (44) reproduces (43). Notice that
in the large Mg limit the additional correction to the “naive” equivalence theorem is of order 1 in the 1/E expansion
and this in spite of the explicit v# suppression factor. Indeed, although this part of the amplitude is suppressed with
respect to the leading term (43) by one power of M2/E?, the amplitudes grow as E2/v? in the large Higgs mass
limit — a hint of the perturbative problems with unitarity in the standard model. The additional piece A(Wwww) is
O(g?) and thus definitely subleading with respect to (44) in accordance with our expectations, but not negligible in
any case.

In the opposite extreme, if the Higgs boson is light, (42) is O(g2M%/E?), again subleading with respect to (44),
which is O()). But now A(Wwww) does indeed vanish as E — oo, in accordance with the “naive” statement of the
equivalence theorem (1). In either case we have not included the factor C. This would be required if we desire to work
with a O(\g?) or O(g?E?/v?) accuracy, but that would also require computing loop corrections.

B.Wtw+ » wtw+

The diagrams entering this amplitude are similar to those of Fig. 1, but exchanging the s and u channels. The tree
level results are

2
AWTWF - Wiw;) = m [16M4tu — 2M2(t + u)(t* + 6tu + u?)

1 2042 2 2 [2M2(t — u) + tu + u?]?
+§(t+u) t* +4tutu’)y —M —T3

2

<z Sw 6 2 2

—4M*(t + 3u)(2t® + 3tu — u?) — u?(t + uw)?(2t + u)]] + (t & u), (46)

ME ME(t+u) — 2tu (c2, — s2)2 1 2
+,,+ +,,t) = g2 H H 2 _ oy w — Sw Zw
AwTw™ s wiw™) =g [SMZ(M}ZI—t)(MIZJ—u)+(4M 2t u)( 2z u—M§+ u)]+(t<——)u), (47)

and, for the leading correction to the “naive” equivalence theorem,

M2 M?(t +u) — tu — u® — uy/sz ( 82

AWwww) = g* [M2 (M —u)(t +u) 2u(t +u)
s5,(cl — s3)

YIE(ME —w)(t + )

) (—4M2(t +u) + 2t% +u® + 3tu + (2t + u)x/s_z)] + (o). (48)

As in the previous case, in order to ease the comparison between these amplitudes we shall expand them up to
O(M?/E?). For simplicity we work away from the forward and backward regions. Then both ¢ and u are large and

2 M} t u 2 2 +u?+tu
AWFWF s wiw) = 2 Xx _g rrw i
W We W) 4 M? t—MIZI+u—MIZI 2¢2, tu

2 M (t—w)? + O(M?/t, M2 /u) (49)

-9 ) )

(t+w) (Mf — t)(ME — w)
2 pr2 2 42 2
+o+ + _ 9 My ¢ “ g EAuT L o om2 e, M2 50
AlwTwt 5 wTw™) = 1 M2 [t"Mlzi_'_u_MEI] 22 . + O(M*/t, M*[u), (50)
and for the additional piece in this limit we get
- 2 )2

AWwww) = —g? M (t—w) + O(M?/t, M? /u). (51)

(t+u) (Mg —t)(ME — u)
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+ + +
'Vv\,\/\/\ o ® '
+ e + -
w : w
H z
o . [ 2w
[ ™ . [

(a) (b) (c)

(d) (e) (£)

FIG. 3. Tree level diagrams contributing to the first next to
leading correction A(W+tw™ — wTw™). The external gauge
line is contracted not with a €/ but with a v,. To get the
complete A(W www) one should consider all permutations.

The addition of Egs. (50) and (51) reproduces Eq. (49).
Now, however, (51) is O(g?E?/M%) for large values of
the Higgs mass. Since the leading term is still O(E?2 /v?),
the leading corrections to the “naive” equivalence the-
orem are down by a factor M2/MZ which is actually
smaller than M?2/E? in this limit. For a light Higgs bo-
son, the correction is O(g2M% /E?), to be compared with
the leading O(A) contribution, this time in accordance
with the usual counting.

Of course, both in this case and in the previous one,
the additional contributions can be greatly enhanced by
some kinematical reasons, e.g., in the vicinity of the Higgs
pole. We discuss this issue in more detail in the next
subsection.

C. Domain of applicability in the SM

Let us now analyze more carefully the improvement on
the equivalence theorem that is brought about by keeping
the additional terms in (36), such as (42) and (48).

We will discuss here the scattering WIT w, — WE’ W,
whose tree level results have been described in Sec. IV A.
We have plotted this amplitude for three different angles
(6 =m/16,7/4,3n/4) (Fig. 4). We take as physical input
Mz, M, Mg, and o and work in the region 2M < F K
Mjy;. We have taken My = 1 TeV.

The solid line corresponds to the exact tree level result
for Wi, scattering. The short-dashed line corresponds to
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the g = ¢’ = 0 limit, which is the standard approxima-
tion in the literature (see [2,26] and the second reference
in [25]). Notice that the corrections to the “naive” equiv-
alence theorem are always proportional to g2. From Fig.
4 it is clear that setting g = 0 is a very crude approxima-
tion, particularly at small angles, and that the difference
does not go to zero as E — oo since the additional terms
that correct the “naive” equivalence theorem are not of
O(M?/E?) but rather down by a factor M2/E? with re-
spect to the leading contribution, which is quite different.
In fact their effect may be quite sizable.

3 /
25
20
«
~ 15
<
10
5
50
40
— 30
G
<<
20 B
10 I
03 0.4 0.5 0.6 0.7 0.8
\s
(b)

FIG. 4. Comparison between the exact tree level am-
plitude of Wi’s in the SM (solid line) for three different
angles 8 = =/4,7/16,37/4 [(a),(b),(c), respectively] and
four different approximations: (i) the standard one, i.e.,
A(wtw™ = wtw™) with g and g’ set to zero (dashed line); (ii)
the complete Goldstone amplitude including Z,y interchange
diagrams (dashed-dotted line); (iii) the complete O(g®) con-
tribution, i.e., (ii) plus the contribution coming from the dia-
grams (a) and (d) of Fig. 3 which are of O(g®) (long-dashed
line, nearly invisible because it overlaps the exact result); (iv)
in addition we have plotted in (b) an extra line (dotted) which
differs from (iii) in that all the denominators are expanded
up to O(M?/s, M?/t) except for the Higgs boson propagator
structure.
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The corrections for g # 0 have two origins. On the
one hand the first term on the RHS of (36), which cor-
responds to the “naive” equivalence theorem, gets con-
tributions from the exchange of v and Z. Adding these
corrections (dashed-dotted line) improves the agreement
with the exact result substantially but still fails to re-
produce the scattering amplitude of longitudinal W’s in
many kinematical regions. When we finally add the cor-
rection contained in (42) the result (represented by a
long-dashed line) is practically indistinguishable from the
exact one for all kinematical regions. In fact it is so
close as to become invisible for most angles. The terms
proportional to (v#)2 and beyond in (36) are obviously
unimportant.

At this stage one should stress that it is totally un-
necessary to expand the amplitudes in inverse powers of
My to verify the consistency of the equivalence theorem
as is sometimes done [11,22]. The full analytical struc-
ture of the Higgs propagator is well reproduced [including
O(M?/E?) corrections| by adding the terms proportional
to v#. The only requirement to ensure the validity of the
equivalence theorem is that one should always work in a
kinematical region where all energies are much greater
than M [12]. It is also illustrative to consider a complete
1/E expansion of the Z propagators contained in the am-
plitudes. The results [represented by a dotted line in the
Fig. 4(b)] are obviously much worse.

1 2
£of = _%TrWWWW ~ BB + LTDUDRU + 3 il + Lar + Lrp.

The complete list of operators is given in Appendix C.
The SU(2)L x U(1)y gauge symmetry is realized nonlin-
early at the level of the Goldstone bosons [see (18)].

For a sufficiently large Higgs bosons mass, the minimal
standard model is just a particular case of (52). The
actual value of the set of coefficients {a;} that correspond
to the minimal standard model is obtained from (19) and
(20) after integrating out the p field. The safest way
to obtain their value is through the matching conditions
[7,17,18,28], in which one requires equivalent descriptions
in terms of fundamental and effective theories, therefore
determining the values of {a;}. The matching is done in
perturbation theory at the one-loop level. Although it
would be clearly desirable to go beyond this, no results
are available at present.

The matching of both theories requires some care [18]
due to the subtleties of gauge invariance and gauge fixing.
The matching could a priori be carried out at different
levels: S-matrix elements, connected Green functions, ef-
fective action, etc. The softest requirement is to demand
equal physical S-matrix elements. This method is bound
to work in all cases [20], but, given the large number of
possible operators in the effective theory, it is cumber-
some. It is important to remember that whenever one
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V. EFFECTIVE CHIRAL LAGRANGIAN

So far we have applied the equivalence theorem at the
tree level in the minimal standard model. It is far more
interesting to go beyond this level and apply the above
results at higher orders in the perturbative expansion or,
better, to use the connection that it provides between
scattering of longitudinal W’s and Goldstone bosons to
set bounds on new physics in the longitudinal sector. The
level of precision required in the latter case is typically
also that of a radiative correction since tree-level-type
modifications are by now excluded.

It is convenient and economical to treat the minimal
standard model and other theoretical possibilities on the
same footing [27]. Provided that the Higgs boson mass
is sufficiently large, this can be achieved by working with
an effective chiral Lagrangian. This consists of a collec-
tion of operators with the required symmetry properties
of SU(2)r x U(1)y local gauge invariance and containing
the Goldstone bosons of the SU(2)L x SU(2)r — SU(2)v
global symmetry breaking. These two conditions greatly
restrict the possible operators. Chiral and gauge invari-
ance force the interactions to be derivative and effective
operators can be classified according to the powers of
momenta.

The most general electroweak chiral Lagrangian up to
O(p?) is of the form

(52)
i=0,13

takes advantage of an effective theory to describe a phys-
ical system one is using a different (sometimes coarser)
set of variables to describe the Hilbert space of the sys-
tem. There is absolutely no guarantee that anything
other than observables should agree when using two dif-
ferent sets of variables. In fact, it may not even be possi-
ble to pose the question meaningfully. Therefore, the use
of Green functions to perform the matching is, generally
speaking, ruled out. Fortunately, for the case at hand it
was shown in [18] that it is possible (and actually sim-
plest) to match the fundamental and effective theories
for renormalized connected Green functions containing
only gauge fields. This is because the gauge fields are
insensitive to the way the scalar sector is parametrized.
On the other hand, requiring the matching at the level
of the effective action (generating functional of one par-
ticle irreducible diagrams) as is sometimes done is not
consistent.

When matching renormalized connected Green func-
tions between the fundamental and the effective theory
one must be careful to project out the longitudinal parts.
These are gauge dependent and there is no guarantee that
the gauge in the fundamental and in the effective theory
are the same, since by definition this is not observable.
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Thus it is not guaranteed that with the set of gauge in-
variant operators contained in (52) one should be able
to reproduce the longitudinal parts of the Green func-
tions. Rather one will in general need to consider also
other BRS-invariant (but not gauge-invariant) operators
of the right dimensionality to proceed with the matching.
In practice this means that there are some coefficients in
the Lagrangian (52) which cannot be determined.

In the effective chiral Lagrangian there are operators
that either vanish or simply reduce to other operators
when the equations of motion are used. They correspond
to the coefficients a1, a12, and a;3. Therefore it is quite
clear that working at the one-loop level they will never
be determined via S-matrix elements. It turns out that
they cannot be determined via renormalized Green func-
tions either because they contribute to the gauge lon-
gitudinal parts which, as discussed, require additional
BRS-invariant operators to match and we end up with
more unknowns than matching equations. (a1, ... con-
tribute to other Green functions as well, but these involve
Goldstone bosons, which are also unphysical.) Then, the
longitudinal part of Green functions cannot be unam-
biguously fixed in an effective theory. Yet the equivalence
theorem is basically concerned with longitudinal parts. Is
the equivalence theorem in jeopardy in an effective chiral
Lagrangian? We will return to this crucial point in the
next section.

If one is interested in reproducing the minimal stan-
dard model at the tree level for energies F <« My, it is
enough to keep a5 and set

tree Uz
ag™ =g ML (53)

At the one-loop level one requires the full expression
for as and the other coefficients, which can be found
in [7,17,18,28]. The natural expansion parameter in
an effective chiral Lagrangian being EZ/v? [or rather
E?/ (47rv)2], the effective theory lends itself very easily
to the sort of energy expansion that is a characteristic of
the equivalence theorem.

The amplitude for the scattering of longitudinally po-
larized W'’s takes the symbolic form

g2
o)

2
0) ©, 2 M
A= (b g% + by E2+---)
)+ .. (54)

E? [ (2 (2)9
(i
+

(bf” e 9

T 2 162
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The first line on the RHS of (54) has its origin in the tree
level exchange of vector bosons, once expanded in powers
of E. The interesting physics is in the a; coefficients that
are contained in the constants bg‘l) and bgz). Clearly, to
make any definite statements on these coefficients via the
equivalence theorem we need to be able to compute the
RHS of (36) (or rather its counterpart in an effective chi-
ral Lagrangian) with enough accuracy. In previous sec-
tions we have seen that the “naive” equivalence theorem
has corrections that modify the leading term by factors
of O(M?2/E?). If this also holds in an effective theory, we
need to assume that M?/E? is small for the equivalence
theorem to be of practical use. On the other hand, it
must be satisfied that B2 < 16w2v? = 64n2M?2/g2. This
seems to provide a reasonably large window of applica-
bility. Of course this window must get bigger when we
include more and more corrections on the RHS of (36).
It is our contention that adding the first nonleading cor-
rections is enough for practical applications.

If we keep in our effective Lagrangian terms of O(p*)
at most and work at the one-loop order, only terms of
up to O(E*/v*) will be generated in the different am-
plitudes appearing in (36). Since there is a suppression
factor M2/E? due to the v* factor, the correction to the
“naive” equivalence theorem will produce terms of O(g?)
and O(g2E?/v?) as well as terms that are suppressed by
powers of M2/E2. Further corrections (terms with two
v* or more) would produce contributions either of O(g*)
or right away suppressed by powers of M?/E?. Clearly
at large energies (but still much less than 47v), the rel-
evant contributions will be contained in the two terms
that we keep on the RHS of (36). Since factors of 4w,
etc., may be relevant, our claim can only be fully justi-
fied by a detailed calculation which is presented in Sec.
VII.

VI. EQUIVALENCE THEOREM AND THE
EFFECTIVE CHIRAL LAGRANGIAN

In the effective theory we shall use the same gauge
condition as in the nonlinear realization of the minimal
standard model:

1
F* = —_9*W* - M /Ent. 55
JES Wh (55)
Since the derivation of the equivalence theorem hinges on
the use of Ward identities, it is not difficult to see that all
steps hold the case of an electroweak chiral Lagrangian.
Therefore,

AWFWL 5> WHW,) =C*A(rtn™ = nta”) +iCCAW ™ = nhn”) +iCPA(r* W~ — ntn™)

—iC3A(r T - Wha™) —iC3A(nTn™ — ot W) 4+ O((v*)?). (56)
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In addition, in obtaining the formal expression for the C
factor nothing depends on the particular theory we are
using; it is just a consequence of the Ward identities of
the theory. Being completely general, Eq. (32) carries
over to the effective chiral Lagrangian, merely replacing
Yo and Z, by X, and Z,. Because C is finite when
My — oo in the minimal standard model, it stays finite
in an electroweak chiral Lagrangian [6].

It is perhaps useful to start our discussion by choosing
the values of the a; coefficients [7,17,18,28] that repro-
duce the minimal standard model. Let us emphasize that
“reproducing the standard model” does not imply that
bare self-energies and renormalization constants have to
be numerically equal to those used in Sec. IV. In general
they will niot be. But physical amplitudes will. The bare
self-energies will have two types of contributions: from
the O(p?) Lagrangian (including in this the gauge part),
entering both at the tree level and at the one-loop level,
and from the O(p*) Lagrangian, entering only at the tree
level, according to the usual chiral counting rules. The
O(p*) contribution to the self-energies is given in Ap-
pendix C.

It is quite instructive to repeat the verification of the
equivalence theorem at the tree level in the minimal
standard model in the language of the effective chiral
Lagrangian. The amplitude A(W+*W~ — W*TW ™) or
AWFTW* - WHWT) comes out exactly as in (38) and
(46), except that it appears expanded in inverse powers
of Myg. The left-hand side of (36) changes completely.
There is a reshuffling of different contributions between
the leading and the subleading terms. In particular, one
can easily see that the amplitudes A(xtn~ — ntz™)
and A(r+tnt — wtxt) have changed. This should be
no surprise as they are not physical amplitudes and may
perfectly be different in the standard model and in its
effective chiral Lagrangian [compare formulas (44) and
(67)].

At the one-loop level we have to use the values de-
rived in [7,17,18,28] for the {a;}, or simply keep them
arbitrary if we wish to parametrize different alternatives
to the minimal standard model. At this order we will
face the problem of the uncertainties in the longitudinal
components of the Green functions we have alluded to
before. To be definite we will pick a particular opera-
tor that contributes to the longitudinal parts, such as
the one with coefficient a1;, and follow its track through
the different contributions in (56). a;; might, on di-
mensional grounds, appear in principle as a contribu-
tion of O(E*/v*) through the diagram with four =’s.
However, the structure of the operator £;; is such that
the contribution is O(g?E?/v?). In addition a;; may
show up as a contribution via radiative corrections to
any of the two amplitudes on the RHS of (56) or via C.
The contribution would be in either case of O(g?E?/v?).
In conclusion, although a;; appears almost everywhere
in the course of the calculation, at the end of the day
ay; should drop from the RHS of the equivalence theo-
rem because a;; cannot appear on the LHS given that
A(WLWr — WrWp) is physical and we are working at
the one-loop level (a;1 could conceivably appear at the
two-loop order). Let us see this in detail.
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The diagrams to compute are depicted in Fig. 5. We
shall work in the Landau gauge, but we have checked the
cancellation of the gauge dependence. The pion ampli-
tude has two types of contributions proportional to a;.
On the one hand, diagram (a) of Fig. 5 gives

4 2
- viz(s +t)ay;. (57)

(Only the part of the amplitude proportional to a;i; is
presented here.) On the other hand there is a contribu-
tion to the external legs represented by (b). There are
four such diagrams. Adding the four of them one gets
2

%g?(s +)ans. (58)
Diagram (c) vanishes in Landau gauge. The total con-
tribution from diagrams with external Goldstone bosons
vanishes. Finally, the amplitude with one W+ and three
Goldstone bosons gets contributions from diagrams (d)
and (e), which, respectively, give

4g? 4g2
_ viz(s + t)ai, —1]‘22—(3 + t)air. (59)

The bare amplitudes do not depend on a;;. The renor-
malization constants and self-energies (Appendixes A
and C) entering C do depend on a1;, however. Therefore
both C and the renormalized amplitudes are potentially
dependent on a;;. Yet, in the Landau gauge, which we
are using, C turns out to be a;; free and so are the renor-
malized amplitudes. This means that the Green func-
tions that appear in the formulation of the equivalence
theorem are one by one potentially ambiguous but the
ambiguities drop in physical quantities. In practice there

(a) (b) (c)

(a) (e)

FIG. 5. Contribution of the £;; operator to the right-hand
side of the ET (leading and next to leading amplitude).
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is no need to go through the painstaking process of con-
structing BRS-invariant operators, matching them, and
keeping track of these spurious longitudinal parts.

VII. APPLYING THE EQUIVALENCE THEOREM
TO THE EFFECTIVE CHIRAL LAGRANGIAN

As discussed in Sec. V, one is working here within an
energy expansion. On the other hand, the equivalence
theorem implies an expansion in inverse powers of the
energy. It is obvious that these two expansions can give
at best a window of applicability. The question whether
this window is of zero or negligible width has been re-
cently raised in [4,13]. These authors have considered the
g = 0 approximation. Numerical analysis [13] show that
then the equivalence theorem holds only for very high
energies, sometimes higher than the regions where chiral
perturbation theory can be trusted. We would like now

(a) (b) (c)

(4) (e) (£)

(g)

FIG. 6. Tree level diagrams contributing to the scattering
amplitude A(W} W, — W} W) in an effective chiral La-
grangian up to O(p*). The black circle means that the vertex
includes contributions from O(p®) and O(p*) operators and
the cross means that there are only contributions from O(p*)
operators.
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to substantiate the claim that keeping the first leading
corrections to the “naive” equivalence theorem is enough
to restore the agreement.

A AWHW- o W+w-)

Here we will be interested in analyzing this amplitude,
already studied in the minimal standard model at the tree
level, from the point of an effective chiral Lagrangian. We
will consider the lowest order contribution O(g?), O(p?)
plus the contribution from higher dimensional operators
O(g*), O(g*p?), and O(p*), which will explicitly depend
on the {a;} coeflicients. We shall not include the one-
loop O(g*), O(g%p?), and O(p*) contributions that, at
the same order, should be taken into account. This is
of course not quite correct, but it allows us to give short
closed expressions. Furthermore, this is enough to trace
the In My dependence in the standard model, or the de-
pendence in the new physics in other models, and argue
the different pros and cons of the several approximations
that can be made when dealing with the equivalence the-
orem.

The exact amplitude for the scattering of four Wy ’s is
obtained from Fig. 6. The result is

(a) (b) (c)

(a) (e) (£)

FIG. 7. (a)—(e) are the tree level diagrams contributing to
the scattering amplitude A(mt7~ — w77~) in an effective
chiral Lagrangian up to O(p*). (f) + permutations are the
first contributions coming from the next to leading amplitude
A(Wrrr).
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1

A(W;WE—)WEWI?)ZW

{Cl(4M2 + z)[AM2(t? + tz) + z(t® + =* + 4tz))

+C[8M*(2t* + 22 + 2tz) + AM?z(2t* + 2% + tz)
+22(8 + 2%)] + Si[—z2(6M? + z)°(2t + x)]
+85{—16M8(2t + z)® + 4M*(z — 2t)[2(t? — &) — tx] + 8M?(tz® — xt®) — t?22(t + 2x)}
+ VZ ﬁ(ﬁv{—mw(zt +2)? — 8M2 (£33 — %)
=v,Z
+4AM*(x — 2t)[2(t? — z?) — tz] — t22%(t + 22)}
+2Ay Byt(4M? + z){2M?[2(t* — 2?) — tz] + tz(t + 22)})

+ 3 A—l—gl—_—;{A%,[——:cz(GM2 +2)2(2t + )]
+2Ay By z?(4M? 4 ) (6 M? + x)(2t + a:)}}, (60)

where C; and C; are defined by

C1 = g% {1+ g°(as + as) — 2¢°(as + ag — a13)},

Cz = 2_(]4(0.4 + a5). (61)
The contribution from the self-energies of the exchanged vector bosons is included in the quantities Sy and S; in (60):
Sy =-g*|c2 ;E (s) + 82 lE (8) + 2s4c —1———12 z(s) (62)
1 W(S_M%)Z z w g2 i wws_M%S 2% 3
Sy =—g*| 2 ;Ez(t) + 82 —1—2 (t) + 2syc ———}—12 z(t) (63)
2 w(t_M%)z wt2 ¥ wwt—Mgt Y .

The contribution from a; to the self-energies involved is given in Appendix C. Finally My stands for the vector boson
mass (V =~,Z) and

. . 1
A‘Y = —19Sw, Az = —igcy (1 - Ta3gz) )
cw
B, = —ig®[swa3 + sw(a1 — a2) — sy (as — ag)],
Y 8% 1
Bz = —ig° | ——2a3 + 2 (az — a1) — cw(ag —ag) — —aqs | . (64)
Cw Cw Cw

Expanding the exact amplitude (60) in inverse powers of v? one gets

- _ 4
A(WE_WL — WE—WL ) = 1}_4 [[3(82 -+ t2) + 4St](a4 + (113) + 2(82 + tz)(as - a13):|

s+t
+( '()2 ) [1 + 6(10 + 6g'2a2 - 2g2(a3 — ag)
s—2t 21
—gZ(—sl [12(a4 + a13) + 8(as — a13)]] - %2—&(32 + 82+ st — 4t%c2) + O(g%).  (65)
w

This result has to be compared with the corresponding scalar amplitude [Figs. 7 (a)- 7(e)]. The Goldstone boson
amplitude at the tree level is
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A(rtn~ 5 nte™) = % {[3(32 +t%) + 4st](aq + a13) + 2(s2 + t%)(as — als)]

1
+ﬁ(8 + t) [1 + 6ag — g2[12(a4 + a13) + 8((15 — 1113)]
2 2
+t% + st)
_ 90242 (s
9 Sw st

s+t
89152 (az — as — as) + 4g%(a + as) + gho?s2, ¢ st !

2
+12¢252 (az — az — ag)] — ggz

2 (.2 2 2 2
g (2 —s2) (s+2t—4M?) 1 v
+2v_2 “’czzv = ME s c2 (az + ag)s + sZazs + Evzao + g(cfu —52)
2 (a2 2 2
g2 (2 —s2)(t+2s—4M?) ([ , 2
+2v_2 wc12” w MI—t ci (a3 + ag)t + s5 aqt
12 v o, 2 :
+5v7a0 + g(cw — si,) | + self-energies, (66)

where “self-energies” stands for diagrams with self-energy insertions in the gauge propagators in (a), (b), (d), and
(e). They are of O(g*). Expanding as before,

4
A(rtn~ o nte™) = U—é{[i}(s2 + t2) 4 4st](aq + a13) + 2(s% + t*) (as — a13)}
1
+U—2(s + t){l + 6ag + 69'%a; — 6g%(as + ay)

2

1

—g% [12(aq + a13) + 8(as — a13)]} - EgcTE(sz +t* + st + 3stc) + O(g?). (67)
w

Finally, the contributions with one power of v* lead to the diagram in Fig. 7(f). All the other diagrams entering in
this amplitude are of O(g*) and need not be included:

AWrnr) = v—48; (Vsz — s) {[6(s® + t?) + 8st](as + a13) + 4(s® + t?)(as — a13)}

+v—;1; (Vsz —s) (s+1t)+ v—f;gz [[6(252 + t2) + 14st — /s2(9s + Tt)](as + a13)
B |

+[4(25% + t%) + 4st — 24/52(35 + t)](as — a13) + ;a: (s +t)(as + 2ay)

4
+:9’;g2{3(s +t) + 2z — 12g%[2(s + t) + z](as — a13)
2 2 VST 2
—12¢°[3(s + t) + z](as + a13)} — 49 —a:_{l + g°laz — 6(aq + a13) — 4(as — a13) + 2a9]}. (68)
The expanded amplitude is
- 4492 t 1 t
A(Wnnm) = vizg%) [saa + 6t(aq + a13) + 4t(as — a13) + 2sa9:| + 2% (5 + ;) + O(g%). (69)

Adding up Egs. (67) and (69) one recovers the result (65). This is a nice example of the verification of the equivalence
theorem and we will use it in a moment to analyze numerically which are the most relevant pieces that one should
take into account depending on the range of energies. Up to now the equivalence theorem has been mostly considered
in the g = ¢’ = 0 limit (a small subset of the previous formulas) and found to be lacking. The additional terms take
good care of the discrepancies.

It is interesting to see that one can easily determine af**® from a comparison between the formulas derived in this
section and (43) in the large My limit. Expanding the latter expression in inverse powers of My we get

- _ 1 21
AWEWL = WEWE) = —(s+¢) - 29?;;(32 + % 4 st — 4t2c2)
1

+M121

(vlz(s2 +t%) + ?(—s2 + 282 + st)) +O(M?/s) + O(1/M3). (70)
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This coincides exactly with the amplitude (65) if one sub-
stitutes as = v2/8M% and sets the rest of a;’s equal to
zero. The same check can be done for the other ampli-
tudes.

In processes involving only charged W’s there is no de-
pendence on the two remaining O(p*) operators L¢ and
L7. They appear in processes such as WW — ZZ involv-
ing external Z’s. The values of these coefficients in the
minimal standard model are actually best determined by
comparing the S-matrix elements for these processes in
the effective chiral Lagrangian and in the minimal stan-
dard model and making use of the equivalence theorem
itself with ¢ = ¢’ = 0. Notice that they give contribu-
tions of O(E*/v*) and thus are formally unaffected by
the additional subleading corrections. [Of course, test-
ing experimentally these, and the other, coefficients is
another matter and there one would have to keep the
subleading additional terms and the O(g*), O(g?p?) con-
tribution that we have not considered at all.]

B. Domain of applicability in chiral perturbation
theory

Finding the domain of applicability (or rather the “do-
main of usefulness”) of the equivalence theorem in the
framework of the effective chiral Lagrangian is much more
subtle than in a renormalizable theory such as the mini-
mal standard model (with a light Higgs boson). There is
a competition between two types of expansions: the nat-
ural in an effective theory in powers of the energy (over
some scale) and the expansion in inverse powers of the
energy (normalized by some other scale), peculiar to the
equivalence theorem. The ratio between these two scales
and the number of terms one takes in each expansion will
determine the window of applicability.

By considering the process described in detail in Sec.
VII A we shall try to learn about the above questions.
We shall put as = v2/8M% and a; = 0 for ¢ # 5. C
is set equal to 1. This is the choice of coefficients that
corresponds to treating the minimal standard model at
the tree level for E < M%. For us, however, is just a
choice of O(p*) coefficients; the analysis could well be
repeated in the same way for any other choice. Our ap-
proach will be similar to the one taken in Sec. IVC. We
shall consider only energies where keeping, at most, the
O(p*) terms in the effective action is meaningful.

We have plotted in Fig. 8 the different contributions
to the amplitudes the same three angles as in Sec. IV
(0 = w/16,7/4,3w/4). The solid line corresponds to the
exact AW} W, — W} W) amplitude (i.e., to the LHS
of the equivalence theorem). The short-dashed line is the
Goldstone boson amplitude with ¢ = g’ = 0 (what is
referred in the text as the “naive” equivalence theorem).
It is clear that this approximation, particularly for small
angles, is quite far from the exact result.

The full Goldstone boson amplitude A(x*w~ —
mtn~) with g # 0 is represented by the dash-dotted
line. The improvement is quite impressive for most of
the angles quoted. However, some small discrepancies
appear at the 10% level in the backward direction at low
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s [case (c)]. In fact in that region setting g # 0 worsens
the agreement with the exact amplitude. For large val-
ues of s the agreement between the dash-dotted line and
the exact result is actually better than in the standard
model (Fig. 4). This is because for such large values of s
the standard model results are being very sensitive to the
Higgs pole (there we took My = 1 TeV), while here in
the effective theory we have obviously no such pole. The
cancellation of leading and next to leading effects is thus
more subtle in the standard model than in the effective
theory when s approaches 1 TeV.

Finally we include the additional A(W'Mr'/r) amplitude,
the first subleading correction to the equivalence theo-
rem. The A(Wrrn) is O(g?) and the result of adding it
to the dash-dotted line is represented by a long-dashed
line, but the reader will not be able to see it in Fig. 8,
except for very small values of s in the backward direc-
tion (c). It just overlaps very nicely with the exact result
almost everywhere.

One could also expand all the contributions in powers
of 1/v2. This is not a good idea, however. As we see from
(a) the agreement is rather poor (it also was in the stan-
dard model) at low values of s and small angles. This
is not really a difficulty of the equivalence theorem; if

)
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FIG. 8. Comparison between the exact tree level amplitude
of Wi, in an effective chiral Lagrangian for the particular a;’s
that corresponds to the SM, i.e., al*® = v?/8M% and the rest
of a; set to zero (same conventions for the lines as in Fig. 4).
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0.3 04 0.5 0.6 0.7 0.8

NS

FIG. 9. Comparison between the standard approach done
in the literature A(xtn~ — 7tx~) with ¢ = ¢’ = 0
(dashed line) in front of the exact result and our ap-
proach (long-dashed line) for (a) as = v?/8M% and (b)
as = 16/3847%. 0 is 7 /5.

the AW W, — wi W ) amplitude is also expanded,
there is perfect agreement between the LHS and the RHS
of the equivalence theorem, only that they do not repro-
duce the exact results. The culprit is the diagrams with
Z exchange at the tree level. They are to be kept without
attempting any expansions.

Up to now we have not been very concerned with the
fact that we are dealing with an energy expansion cut
at O(E*). The first term that we are throwing away in
this expansion in the effective chiral description of the
standard model is one of O(E®/v2M3) (from tree level
exchange of the Higgs boson and assuming that Mg =1
TeV). This dictates an upper bound to the region of ap-
plicability of the effective theory around E ~ 0.6 TeV (for
this value of the Higgs boson mass). This can be seen by
comparing Figs. 4 and 8. This upper bound obviously
depends on the Higgs mass; the higher the Higgs mass,
the larger the region of coincidence between the standard
model and the effective chiral Lagrangian (with the ap-
propriate choice of a; coefficients, of course). In any case
there is a limiting scale of applicability; since 4mv ~ 3
TeV, it lies probably around 1.5 TeV.

Are the improvements brought about to the “naive”
equivalence theorem necessary to draw physical conse-
quences from experiments? The answer is obviously pos-
itive. In Fig. 9 we have changed the value of the coeffi-
cient as from v?/8M%, with My = 1 TeV to Nypc/384m2,
with Nyc = 16 (a popular value in some technicolor mod-
els) and plotted the results for 6 = 7 /5. The figure speaks
for itself.

VIII. CONCLUSIONS

In the previous pages we have tried to convey the idea
that the equivalence theorem is much more than an easy
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way of getting order-of-magnitude estimates for ampli-
tudes of processes involving longitudinally polarized W’s
and Z’s. By carefully keeping track of the next to lead-
ing corrections it is possible to compute those amplitudes
in term of other ones involving Goldstone bosons, always
evaluated at k2 = M?, plus some terms involving just one
external W or Z (also evaluated at k? = M?), with an
accuracy that it is good enough to discern different types
of potential “new physics” in the symmetry-breaking sec-
tor of the standard model. Not only are the calculations
technically more convenient and easy when done with ex-
ternal Goldstone bosons, but also conceptually clearer, as
they are more prone to comparison with other physical
models such as the strong chiral Lagrangian.

We have considered the minimal standard model writ-
ten in the usual linear realization (the right framework
for a light Higgs) and the effective electroweak chiral La-
grangian that encompasses both a heavy Higgs and other
theoretical possibilities in which new physics, character-
ized by a scale A, would creep in through the O(p*) ef-
fective operators. It is a must that we are sensitive to
these effective operators, at least for a range of energies.
Otherwise the whole approach would be useless.

We have seen that for a light Higgs some additional
corrections that we have considered (those involving dia-
grams with all but one of the W’s replaced by Goldstone
bosons) can indeed be neglected at high energies (but still
much lower than My). This result ultimately hinges on
the perturbative renormalizability of the model. As soon
as we get very close to My the additional terms start
becoming more relevant, even for E2 3> M2, as they are
for exceptional momenta configurations in the forward
and backward directions. We have always to keep this in
mind. _

Other corrections such as the multiplying factor C are
clearly necessary if one wants to work with a one-loop
precision. We have for the first time provided all the
necessary ingredients to go beyond the tree level by de-
termining the C coefficient. These corrections have been
worked out in the usual on-shell scheme.

In the context of the effective chiral theory, the usual
power-counting arguments that have been commonly put
forward when employing the equivalence theorem take a
new twist. It should be clearly stated that the equiva-
lence theorem is perfectly valid in the effective theory. As
far as energy power-counting arguments go, the equiva-
lence theorem is both easier and more difficult in the
effective theory. For one thing it is not always true that
the corrections usually lumped under the line O(M?2/E?)
can always be neglected. Because in a nonrenormalizable
theory the amplitudes may grow with the energy, these
corrections turn out to be relevant and are required to
test the O(p*) terms in the effective Lagrangian. On the
other hand, since the Higgs boson has been removed from
the spectrum, the kinematical singularities that lead to
“abnormal” contributions from the higher order contri-
butions in the 1/F expansion are absent.

In addition to being valid, the equivalence theorem re-
mains very useful in an effective chiral Lagrangian. It is
true that one must include the C factor and the additional
A(W7Mr ---) piece, but C in the on-shell scheme depends
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only on one-loop self-energies and it is finite in the effec-
tive chiral Lagrangian. Furthermore, the A(W=m - --) ad-
ditional amplitude needs only to be computed at the tree
level since loop corrections would be too small. Other
corrections are completely negligible. In conclusion, the
equivalence theorem after being closely scrutinized has
been found sound and well.
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APPENDIX A: RENORMALIZATION IN THE ON-SHELL SCHEME

The renormalized self-energies of the standard model, which we will use in the equivalence theorem, are expressed
in terms of the bare self-energies in an arbitrary gauge in the following way:

o (k?) = Ty, (k?) — £257(M?) + 62, (k? — £2M?) — £, M?62Z,,
Sr(k?) = Sr(k?) — Sr(M?) + 6 Zw (K — M?),
63L(k%) = 6130 (k2) — &30 (M?) + 6 Zw (k2 — €, M?) — k262,

. 1
Sww(k?) = Swa (k%) + EM((SZ& —8Z¢,). (A1)

In the previous expression M is the renormalized W-boson mass. In the on-shell scheme the renormalization constants
can be written in terms of bare self-energies:

|~

8Zm = 31 S (M?),
1
82 =35 [ZL(&M?) — Sp(M?)],
1 [(Zu(&M?) 2
Zey = — | ——= - Ep(M*) ).
26, = 3z (2 - mrar) (a2)
The last two relations are deduced from Eq. (A1) by imposing the on-shell condition
ﬁ:w (€2M2) == 0,
S (6.M?) = 0. (A3)
The external renormalization constants for the W and = fields are given by
5 X1 (k?)
Zw=1-"gpm|
k2=M?2
~ 0%, (k?)
Zyw=1-— Rz (A4)
k2=¢;, M2

They differ from the field renormalization constants Zyw, Z,, by a finite amount.
Here we will give the divergent parts and My dependence of the bare self-energies that are needed in order to
evaluate the C factor in the standard model. In these expressions we have taken ¢£; = ¢; = ¢. The divergent

contributions are
21 3 3 1 1 g> kK2( 25
A ALY Ve .Y TN I R AL .l
7 (k%) 872 € +2 4cZ, ¢ 4c2, 2 8m2 € 6 te

2 q
S (k?) = 8—-"7r—2ZM2 [+

2
2y_ 9 L4203, 3 (L, 1
Bu(k) = gz ck [2+4c§u £(2+4cﬁ, '

And the Higgs-boson-dependent contribution is

(A5)
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2 2 2 kz
2y _ 9 2 1 Mg 3 2\ _ 9 K 2
Pr(k) = 32 (—E a2~ g P M |~ gragg M
2
2y_ 9 a2 _LMi 3, A
BL(k) = g ( 6M2 8 HP
2y _ 92 42| 1 My 3_¢ In M2 A6
T (k7) = gk [16M2 g 4 "H (46)
[
APPENDIX B: ON-SHELL SCHEME WITHOUT & mw® 1. 2
A HIGGS BOSON 20) =0,  FEL(*)kr=0 = 0. (B4)
In the on-shell scheme one usually imposes a unit (5) The vanishing tadpole condition
residue wave function renormalization condition on the 9
Higgs boson self-energy. In the effective field theory the v + “7 +6T =0, (B5)

Higgs boson has disappeared and it does not seem very
sensible to give renormalization conditions over a nonex-
isting field. We will replace the condition from the Higgs
boson self-energy to the Goldstone boson one. We will
follow the discussion of renormalization conditions in Sec.
IV of the paper by Bohm et al. [15]. The renormalization
conditions in the on-shell scheme are the following.

(1) The propagators have poles at the physical masses
of the particles

SF(M*) =0,  E£E(M3Z) =0,

(2) The electric charge is defined as in QED, implying
$77(0) = 0.

(3) The photon and Higgs boson propagators have unit
residue
1
k2 Ok?
(4) Similar requirements are imposed on the unphysical
sector

7]

i;‘(kz)lkz——-o =0, iH(kz)[w:M;i =0. (B2)

(£WM2) — 0’
(£WM2) =0,

SZ(¢2M3) =0,

)
St Sus (62 MZ) =0,

(B3)

w

APPENDIX C: LIST OF SU(2); x U(1

where 6T is the tadpole contribution generated in per-
turbation theory. In the effective chiral Lagrangian the
requirements on the Higgs boson self-energy and the tad-
pole condition do not make sense anymore. On the other
hand we have two renormalization constants less, namely,
6\ and du. When we use the effective chiral Lagrangian
we replace w — m and instead of the second equation of
(B2) we take

Sy (M%) =0. (Bl)

o

WﬁLﬁ (k2)|k2=£WM= =0.

(B6)

This fixes Z, and we are still left with a compatible sys-
tem of equations. By solving the remaining equations it
is quite easy to see that the change in Z, affects only to
Sv. In order to evaluate these changes one can use the
first condition of Eq. (B1):

(

)y GAUGE INVARIANT OPERATORS

v

1
T2

_Ip (M%)

dg )
8 Zw —2—=+6Z, ). B7
M2 w g (B7)

The sets of C and P and SU(2)r x U(1)y gauge-invariant operators L; are

Lo

1 2
Zagv TMT“, Ll

Ly =iazg' B, Tr[TVHVY],
L4 = aTe[V,V,|Tk[VHVY],

Le = agTr[V,V,]T*T",

1

Lsg i

asg? Te[TW,, | T TWH),
Lo = alO(TuTu)z’ C

[:12 = alzTr[T'D,_,D,,V"]T“,

= 30199'Bu, TITW*,

L3 = —iazgTe[WH [V, V, ],
L5 = a5 TY[VEV,]Te[V¥V, ],
L7 = a;Tx[V,V¥|TT,, (C1)
Lo = —iaggTe[TWH|Tx[TVHVY],

11 = Glle[(D#V”)zl’

C13 = %013(’1‘1'[T’D#Vy])2,
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where
= (D, U)UT, T = UnUT, T, = TrTV,,

D,0(2) = 8,0(z) + ig [W,, O(x)]. (c2)
Expanding the operators of Eq. (C1) up to two fields one finds
2T‘}V(kz) = Oa 2E,V(kz) = —gza11k27 Ew(kz) = 40'111%]‘74,
Zz(kz) = k2(c2 g%ag + 252 g%a; + ) a,13) +2M2Za,

21 (k?) = k?[s%,9%(as — 2a1)],

$1Z(k?) = k2 [swewg®as — (%, — s2)gg'a1] . (C3)

APPENDIX D: STANDARD MODEL LAGRANGIAN IN NONLINEAR VARIABLES

We expand the standard model Lagrangian in the nonlinear variables in the number of fields. The carets mean that
two, three, and four £ include the contributions from the Lgr that do not depend on ¢ and in L£gp the ¢-dependent
pieces are written.

L=Ly+ L3+ -+ Lorz+ Lars+---,

~

1 1 1 1
[,2=53“p8“p+53u7r38,,7r3+8u7r+8#1r‘—vp(u2+/\v2)—Ep( +3v2/\)+ ezv2W+W +833’1 e?v? 2,2,
e
w
] 3, 1 3 3, 2 + - e o +
L3 =—Avp” + —pOn° Oun® + —pOun™ Oum™ + — (p O 7 )W/
v v 284
e > + _ 7 34—) _ n 1 34—) + _
+E(p8#ﬂ' )Wl-l '—5:;‘”‘6(7{ B”ﬂ' )W“ +Ee(7r a“ﬂ' )WI-‘
. +5 - 3 .3 ioch—sh 9 4
+ied, (7T 9,7 )+ v (pO,m )Z”—ie—swc—(w Oumt)Z,
1 1 i
+gz—e2va:W; Te202 ¢ va +2——e v W+Z —5—621)#+W Z,
w w
z —
—-2—s—1—v—ezv7r W+ “+—e v7r+W” A,,
£4=——/\p +2 p?8,m30,7% + 2pc’)'/r"'aﬂ' +3231r1r(8,‘7r+7r_+6,‘7r'7r+)

- _ - 1 _
—W{a,nr O, [mtm -+-(7r3) |+ 8,m20,m3ntn }+m6u7r+3;ﬂf+(7f )2

1 —a -
+6?au7r O~ (mT)2 4+

- _ 1
2vswep2 (aﬂﬂ' W+ 0t W, + a(‘?“ws Z,‘)

+2iepA, (nt Bun) = tep T (-8 at)z
~ie ) — —e ™
v P Ay © v p PP © u
1 —\2 + . -9 .3 3 3 +
+1os e[2(m7)*0um™ +4ip(n” Ou7®) +7” 8, (n ) W,
R And
4vs e[2(r")?0um™ —dip(nt 8, 7®) +7t D, (n )Z]Wu_
1 - (39 .+ 35 .- 1,3\25 3
me[w (7 0pmT) + 0w 4 3(7°) 0,7’ Z,
1
+Z;2—ez p? Wrw, + 85202 ep?Z -t Z, 2 +etntnm A2

SwCw

12,3 ; -1 + 1 + 2 Ch — 5%
t5e (m° +2ip) 7 Z—Z”W“ -—S—A,,Wu +e? 2 Y rtpg—-Z,A,

1 . 1 1
+—2-62(1r3—-21p)7r+ (TZ“W“_ — s—A“W"—> ,



52 RENORMALIZATION AND THE EQUIVALENCE THEOREM: ...

02 2 2 SZ

L At

6551

Lgrz =

o a W+3 W— _ (g2£W +g125B) (773)2 ,

§
ﬁcp3=—z(y"€w+y’2£3)p(7r) —gg"’ﬁ prtmT,

03 (P87 + %) () +

4
Lora = (292§W +¢"%¢%) (x*)? mtn

2 g2
g - 1 -
+F§W () (n7)? - g(gzﬁw +g%€P)p*(7%)? - ‘4—§WP27T+7T .
The Lagrangian of the standard model in the nonlinear realization, but now in the linear gauge (22), is (with Lar 3,4 =
0)

A 1 2
L3 = —dvp + ;pa,ﬂ# a,m + ;p@,ﬂr*‘ Oum™ + Si (pBum™ )W,
+° (00 +)W——L (38, m ) WF 4 ——e(x38, )W
o po,m P e(m° 0, m P 28we(ﬂ‘ u .
;e _ g2
+ieA, (nt 8 )+ (pOum)Z, — —e2—2 (n=8,7%)2Z,
Sy C 2 S Cw
1 + 1 P S LT S
+2s ep'vW w, +4121;08va +£e v WuZu—Ee v W, Z,
—Ee v W+A +2——e vat W, Ay,
A 1)\4 1 28 738 3 1, + - 1 3.3 + = — gt
E4=——Z p +2—v-2p o0, +;§p Ot O, +%—§8#7r T (BT T 4 QT W)

1 _ _ 2 3 1 o
_3?{6#7#3#7" [rtn™ + (7°)°] + 8, w28, w3 n T~} + ——38,‘7r+8#7r+(7r )

1 - — ()2
+a§8ﬂﬂ' auﬂ' (7!' ) +2vs
o ] c2 — 52

)— —ep 2L —¥ 3 Z,
) Ue e (7~ ) + 303

e p? (8,,71' W++8 71'+W +——8u7r Z)
g
7]

2
+-iepA,(nt 9, e[7r (m= 8,7t
v

P + 1 a9

w )| W +me[‘" (77 8um™)

>
+(x® = 3ip) (7T 8, )| W, +

+(n® + Bip) (-~

——e[n (n* 3 7t)+ 7t (n3 3 n7)] Z,
3USCo " " ®

1

1 2 2u+ -
+EZ—EPW#W#

w

1 1
+§ez(7r3~2ip)7r+ —Z, W, -
Cw

+8312“c2
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