
Roadmap search based motion
planning for MIRADAS probe arms

Josep Sabater
Santiago Torres
Francisco Garzón
José M. Gómez

Josep Sabater, Santiago Torres, Francisco Garzón, José M. Gómez, “Roadmap search based motion planning
for MIRADAS probe arms,” J. Astron. Telesc. Instrum. Syst. 4(3), 034001 (2018),
doi: 10.1117/1.JATIS.4.3.034001.

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Roadmap search basedmotion planning for MIRADAS
probe arms

Josep Sabater,a,b,* Santiago Torres,b Francisco Garzón,c,d and José M. Gómeze
aInstitut d’Estudis Espacials de Catalunya (IEEC), Barcelona, Spain
bUniversidad de La Laguna, Departamento de Ingeniería Informática y de Sistemas, La Laguna, S/C Tenerife, Spain
cInstituto de Astrofísica de Canarias (IAC), La Laguna, S/C Tenerife, Spain
dUniversidad de La Laguna, Departamento de Astrofísica, La Laguna, S/C Tenerife, Spain
eUniversitat de Barcelona, Departament d'Enginyeria Electrònica i Biomèdica, Barcelona, Spain

Abstract. MIRADAS is a near-infrared multiobject echelle spectrograph operating at spectral resolution
R ¼ 20;000 over the 1 to 2.5 μm bandpass for Gran Telescopio Canarias. It possesses a multiplexing system
with 12 cryogenic robotic probe arms, each capable of independently selecting a user-defined target in the instru-
ment field of view. The arms are distributed around a circular bench, becoming a very packed workspace when
all of them are in simultaneous operation. Therefore, their motions have to be carefully coordinated. We propose
here a motion planning method for the MIRADAS probe arms. Our offline algorithm relies on roadmaps com-
prising alternative paths, which are discretized in a state-time space. The determination of collision-free trajec-
tories in such space is achieved by means of a graph-search technique. The approach considers the constraints
imposed by the particular architecture of the probe arms as well as the limitations of the commercial off-the-shelf
motor controllers used in the mechanical design. We test our solution with real science targets and a typical
MIRADAS scenario presenting some instances of the two identified collision conflicts that can arise between
any pair of probe arms. Experiments show the method is versatile enough to compute trajectories fulfilling the
requirements. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.4.3.034001]

Keywords: multiple object; spectrograph; probe arm; motion planning; collision-free; trajectory.

Paper 18010P received Feb. 26, 2018; accepted for publication Jun. 29, 2018; published online Jul. 24, 2018.

1 Introduction
Multiobject spectroscopy lies at the heart of modern astronomi-
cal instrumentation, in particular, in large telescopes, where the
high oversubscription factor makes it mandatory to increase the
observing efficiency of every instrument. This requirement for
efficiency is even more demanding in instruments with long-
lasting average integration times, like medium to high-resolu-
tion spectrometers. Hence, multiplexing systems (MXS) of dif-
ferent types form a part of every spectrograph currently being
built for big telescopes. The inclusion of a multiplexer in an
instrument involves, in most cases, adding complex optome-
chanical devices, which in turn, need to be commanded in
a coordinated way to achieve the desired functionality.

MIRADAS1 is a near-infrared multiobject echelle spectro-
graph operating at spectral resolution R ¼ 20;000 over the 1
to 2.5 μm bandpass. The instrument, particularly designed for
Gran Telescopio Canarias (GTC), is expected to enter its com-
missioning phase in late 2018. One of its remarkable features is
a built-in MXS with 12 deployable and independently con-
trolled probe arms with pickoff mirror optics, each feeding
a 3.7 × 0.4 arc sec field-of-view to the spectrograph. Each
probe field is transformed into three end-to-end slices of a fixed
3.7 × 0.4 arc sec format by a “slit slicer” present at the spectro-
graph input optics. This approach has the advantage of provid-
ing minimal slit losses in any astronomical seeing conditions
better than 1.2 arc sec and, simultaneously, some limited
two-dimensional spatial resolution. Besides, the spectrograph

optics supports a range of configurations, providing a high
degree of versatility. Depending on the needs of the science pro-
gram, the observer will be able to choose between maximal
multiplex advantage and maximal wavelength coverage, with
several in-between options. Figure 1 shows a general view of
the MXS bench and its probes.

Each of these robotic mechanisms patrols a limited region of
a field of 5 arc min in diameter (about 250 mm.). The arm’s
pickoff mirror placed near the telescope focal plane relays
light down the probe arm, where there is a collimating doublet
lens, through a series of folds inside the mechanism. These folds
are carefully designed to keep always a fixed optical path length
while the arm is moved to variable target locations in the field of
regard. Additionally, a closed loop structure provides the articu-
lated mechanism with a high degree of stability when it works
upside down. However, the kinematic behavior of the arm is not
intuitive, which makes its control more difficult.

To observe 12 distinct user-defined targets at once, the arms
need to be placed in the correct locations. As the tips of the
articulated mechanisms approach the center of the MXS bench,
see Fig. 2, room for maneuvering becomes scarcer and scarcer.
Moreover, to make efficient use of the telescope’s observation
time, the MXS system requires a control unit capable of simul-
taneously moving all probe arms while, at the same time, avoid-
ing collisions between each other. Therefore, in such a cluttered
environment, it is vital to implement a piece of software com-
puting and safely coordinating the trajectories of the arms.

*Address all correspondence to: Josep Sabater, E-mail: jsabaterm@el.ub.edu 2329-4124/2018/$25.00 © 2018 SPIE

Journal of Astronomical Telescopes, Instruments, and Systems 034001-1 Jul–Sep 2018 • Vol. 4(3)

Journal of Astronomical Telescopes, Instruments, and Systems 4(3), 034001 (Jul–Sep 2018)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.JATIS.4.3.034001
https://doi.org/10.1117/1.JATIS.4.3.034001
https://doi.org/10.1117/1.JATIS.4.3.034001
https://doi.org/10.1117/1.JATIS.4.3.034001
https://doi.org/10.1117/1.JATIS.4.3.034001
https://doi.org/10.1117/1.JATIS.4.3.034001
mailto:jsabaterm@el.ub.edu
mailto:jsabaterm@el.ub.edu
mailto:jsabaterm@el.ub.edu

In this paper, we present part of the internals of the MXS
control system software. Specifically, the algorithm responsible
for generating collision-free motions for MIRADAS probe
arms. The component of the control software related to the
selection of the targets to be observed is not part of this
work, as it will be further commented in Sec. 2. The algorithm
described in this paper is executed once a given set of targets,
appropriate for the physical constraints of the MXS system, has
been identified.

Our motion planner is based on an iterative solution that indi-
vidually determines the trajectories of each arm, verifying its
feasibility with the help of a collision checking routine. The
algorithm uses roadmaps containing several alternative paths,
increasing this way, the arms maneuverability. They are con-
structed and systematically explored with different time profiles.

These times profiles are achieved employing a discrete state-
time graph, whose connections are dynamically built while
a search is performed by a depth-first technique. This strategy
intrinsically guides the search toward individual trajectories
arriving at their destinations as soon as possible.

The rest of the paper is organized as follows. We begin by
describing many of the main tasks performed by the MXS con-
trol system in Sec. 2. Next, in Sec. 3, we provide a brief intro-
duction of the MIRADAS MXS probe arm because a minimum
knowledge of this mechanism is required to understand the work
presented here. We then, in Sec. 4, give a formal definition of the
problem. The global approach of the prioritized solution we pro-
pose is discussed in Sec. 5. It fundamentally relies on two build-
ing blocks: an algorithm able to find a trajectory in a previously
known dynamic environment and a prioritization scheme. The
former is introduced in Sec. 6 and the latter in Sec. 7. Finally, in
Sec. 8, we demonstrate the performance of our approach and
conclude in Sec. 9 with discussion and extensions.

2 MXS Control System
The goal of the MIRADAS MXS control system is to place the
pickoff mirror of each MXS probe arm in a particular target pre-
viously defined by a scientist. Although simple in concept, to
accomplish this task, the system relies on several fundamental
software packages appropriately connected. We can basically
distinguish two different kinds of operations: offline and online.
The first refers to planning operations executed well in advance
prior to observing time. The offline operations are carried out by
a piece of high-level software run in a desktop machine. The
second group contains those operations commanding the instru-
ment, which are typically run at night during observation. These
operations are performed by real-time low-level control software
interacting with the real hardware. Among these operations,
there is one that is responsible for the appropriate execution
of the arms motions previously planned. Note that only the off-
line motion planner is within the scope of this paper. The inter-
ested reader is referred to previous work of the authors for
further details about the target allocator.2

2.1 Offline Operations

Each target comes determined by three different components: a
sky position, a user assigned observing-priority, showing the
importance of the given target in the overall observing program,
and a unique alphanumerical label. There is no limitation on the
values a user can assign to the target observing-priority field.
Therefore, if convenient, scientists can employ elaborated obser-
vation-priority policies, including assigning a different value to
each target.

Collision-free trajectories for a given set of targets are deter-
mined sequentially executing two different processing steps:
(i) target allocation and (ii) motion planning. The first is essen-
tially an assignment problem similar to those found in classical
combinatorial optimization.3 The aim in MIRADAS is to com-
pute N pairs <arm, target> maximizing the total aggregated
observing-priority, where N is the number of arms present in
the system. The problem is, in addition, subjected to a set of
constraints. As these constraints, as well as the objective func-
tion, can be modeled as linear expressions, the target allocation
problem in MIRADAS is solved by means of a constrained inte-
ger linear program.2 In two different situations, the allocator can
automatically decide to position one or more arms at blank sky.
First, if the MXS system has some arms not working and their

Fig. 1 The MIRADAS MXS system bench. (a) A drawing of the bench
with 12 probe arms. The primary task of these mechanisms is to relay
light from a given target located in the instrument’s field-of-view
to the spectrograph. The field-of-view is a circular area (250 mm)
placed in the middle of the bench. (b) Nine real MXS probe arms
at the lab ready for testing. They were arranged as if they were in
the MXS bench.

Fig. 2 Nine MXS probe arms at their final locations as delivered by
the target allocation algorithm. The pickoff mirrors were covered by a
black rubber cap during testing.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-2 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

real locations are known in advance. Second, if during compu-
tation, for any reason, a working arm cannot be assigned to
a target, and then the allocator will position the arm at a prede-
fined park position. In Fig. 2, a real assignment plan for nine
arms delivered by our target allocator is shown.

Once an assignment plan is successfully determined, the
motion planning algorithm computes collision-free trajectories
so that each arm safely reaches its assigned target. As
MIRADAS has been conceived as a GTC common-user instru-
ment for many years to come, the target allocation and the
motion planning tasks are totally decoupled. The motion planner
makes no distinctions among the targets. Its goal is to find tra-
jectories for all of them without taking into account their obser-
vation-priority. Furthermore, the motion planner will deliver
these trajectories expressed in an actuator independent format.

The planner proposed follows an arm-prioritized approach,
widely used in robotics due to its simplicity and ability to
scale well in real environments. Priority in this context, as
we will see in Sec. 5.2, refers to the order in which the arm tra-
jectories are computed. Each arm is given a unique priority value
and the algorithm proceeds sequentially from the highest prior-
ity arm to the lowest one. At each iteration, an arm determines its
trajectory from its current position to the target assigned such
that it avoids colliding with the higher-priority arms, whose tra-
jectories were planned in previous iterations. In principle, any
priority scheme can be used; however, we initially employ
a fixed priority policy favorable to those arms showing an esti-
mated larger arrival time.

Although it is beyond the scope of this work, we mention that
if the motion planner fails to compute trajectories, then replan-
ning is performed with a different arm-priority scheme until it
succeeds or a predefined number of schemes have been tried. If
no motion plan is found, problematic targets are temporarily dis-
carded and a different assignment plan is determined. Note that
all this procedure happens well before the observations, so there
is no a priori impact on the observation efficiency.

To guarantee safe trajectories for the real world, strong syn-
chronization among the different arm motions is required. The
planner uses a function to estimate possible collisions. It takes
into account a small safety area around each arm to prevent
issues caused by small timing divergences. This area also covers
differences between arms due to manufacturing tolerances.

Although many journals and conferences have proliferated in
robotics about motion planning, in astronomical instrumenta-
tion, it is an incipient field or research. Lately, some works
focusing on how trajectories are generated for several position-
ers have appeared. In infrared imaging spectrograph, a spectro-
graph equipped with three probe arms, a navigation function
relying on potential fields is utilized.4 This classic technique
was previously applied for fiber positioners.5 Although the
idea behind is very attractive for its simplicity, in some particular
environments, dead locks might arise.6 Finally, TAIPAN, a fiber-
based multiobject spectrograph, presents several distinct motion
planning algorithm for its positioners.7 Among them, like in
MIRADAS, one depends on a graph search technique.

Conceptually, MIRADAS has many similarities with KMOS,
a multiobject spectrograph being used at the ESO’s very large
telescope.8,9 Both instruments employ deployable integral field
units in the form of probe arms distributed around a circular
bench to observe several user-defined targets simultaneously.
However, technically, they are different. First, the mechanical
design of the KMOS probe arms makes the task of positioning

the arm in a given focal plane location more intuitive than in
MIRADAS. The KMOS mechanism presents a polar ðr;φÞ
motion approach, whereas in MIRADAS, as we will see in
Sec. 3, the structure of the arm is more complex, resulting
in more elaborated motions. Finally, KMOS observations can
be prioritized, ranging from priority 1 to 3, whereas in
MIRADAS, the values that the user can assign to the observa-
tion-priority field is not restricted to a given set of values. This is
a consequence of the target allocation and the motion planning
steps being decoupled in MIRADAS, as said earlier, that seems
not to be the case for KMOS.

2.2 Online Operations

As stated earlier, the motion planner returns the sequences of
actions the arms have to perform in a format totally independent
of the real hardware used to move the arms. The computed
sequences are delivered to an additional low-level software,
whose implementation is specific to the particular motors and
controllers actuating the arms. This lightweight layer translates
the hardware-independent motions computed by the planner
into controller commands, communicates with the motor con-
trollers, and manages synchronization.

3 MXS Probe Arm
The arm, as shown in Fig. 3, is a two degree-of-freedom closed-
loop mechanism composed of four joints (J1, J2, J3, and J4) and
three links, providing to the whole structure a planar motion.
These links are mainly tubes containing optical components
to relay a beam of light from the pickoff mirror [Fig. 3(d)] to
the spectrograph. The location of any element of the arm,
including the tip mirror, can be determined by the rotation
angles, denoted by θ1 and θ2, of the revolute joints J1 and
J2, respectively. While the latter is unconstrained, being able
to move in the interval ½0;2πÞ, the motion of the former is con-
strained to the range ½0; π�. Finally, the motion of J4, which
freely slides over the arm’s longest tube, is constrained by
the cylindrical cabinet containing the collimator.

For more information about accuracy and demonstration of
an MXS probe arm, refer to previous work.10

As it will be discussed in Sec. 4, although the articulated
mechanism moves in the MXS bench, its trajectories are deter-
mined in a distinct world, in its configuration space (C-space).
Since its introduction in the field of robotics in the early 1980s,11

this space has been widely used to develop motion planning
techniques. Its main advantage is that the volume occupied
by the mechanism in its workspace becomes a single point in
the C-space. In our case, the C-space consists of all arm con-
figurations qi ¼ ðθ1i ; θ2iÞ; see Fig. 4. Two different subsets
of configurations can be distinguished there: (i) those which
are feasible and (ii) those which must be avoided; see Sec. 3.1
for more details. Therefore, during motion planning, those
potential trajectories traversing prohibited areas of the C-space
have to be immediately discarded.

3.1 Transformations

The transformations between both spaces can be carried out with
the particular solutions to the forward and inverse kinematic
problems.12 As a result of the complex structure of the mechanism,
the inverse problem is more conveniently solved by geometric
methods. However, considering the linkage model in Fig. 5, an
expression can be formulated for forward kinematics as follows:

Journal of Astronomical Telescopes, Instruments, and Systems 034001-3 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

EQ-TARGET;temp:intralink-;e001;63;152xtipðθ1; θ2Þ ¼ d13 cos θ1 þ d3tip
1ffi

1þ uðθ1; θ2Þ2
p ; (1)

EQ-TARGET;temp:intralink-;e002;63;116ytipðθ1; θ2Þ ¼ d13 sin θ1 þ d3tip
uðθ1; θ2Þffi

1þ uðθ1; θ2Þ2
p ; (2)

where u is

EQ-TARGET;temp:intralink-;e003;326;111uðθ1; θ2Þ ¼
−d13 sin θ1 þ d24 sin θ2

d12 − d13 cos θ1 − d24 cos θ2
(3)

and the position ðxtip; ytipÞ of the tip of the arm is expressed in
terms of a local coordinate frame attached to the joint J1. But,

Fig. 4 The arm C-space comprises the set of all ðθ1; θ2Þ combina-
tions. However, there is a subset of them, the ZoA, that is not feasible
due to constraints in the mechanical design of the arm. The trajecto-
ries are determined in this control space as sequences of points qi ,
each of which with an associated time profile.

Fig. 5 The probe armmodel consists of several constrained linkages.
The arm frame is at joint J1 and the position of joint J4 must be always
between stop position s1 (collimator cabinet) and s2 (end of long
tube). The articular variables θ1 and θ2 denote the degrees-of-free-
dom of the mechanism.

(a)

(b)

(d)(c)

Fig. 3 The MIRADAS MXS probe arm. (a) An aerial view of a real arm with electrical wiring and motors.
The four joints of the mechanism are labeled. J1, J2, and J3 are revolute joints, whereas J4 slides and
rotates over the tube, where the collimator cabinet is present. A protection black cap is on the pickoff
mirror to prevent scratches while the arm is not in operation. (b) The rotation angle θ1 of joint J1 incre-
ments counterclockwise, whereas θ2 increases clockwise. (c) A probe from a lateral view. (d) Several
arms. Here, the pickoff mirrors of each arm can be appreciated.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-4 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

as commented earlier, not all pairs ðθ1; θ2Þ are mechanically
feasible. Hence, the solution is subject to the constraint

ds1 < d34 < ds2 , where the value d34 for a given ðθ1; θ2Þ pair
can be obtained using the following expression:

EQ-TARGET;temp:intralink-;e004;63;718d34ðθ1; θ2Þ ¼
ffi
ðd12 − d24 cos θ2 − d13 cos θ1Þ2 þ ðd24 sin θ2 − d13 sin θ1Þ2

q
: (4)

This constraint creates the prohibited zone present in Fig. 4.

3.2 Controlling the Motion

The motion of the arm is controlled by the rotation of joints J1
and J2, each is actuated by a different stepper motor. Both step-
pers are wired to the same industrial dual-axis motor controller.
A number of switches are present in the arm. Joint J1 has two
limit switches and a datum switch, whereas J2, whose motion is
not mechanically constrained, has only a datum switch. In addi-
tion, there is a limit switch attached to the collimator cabinet.
With the help of these switches, a calibration procedure deter-
mines the real range of motion of the arm, including its asso-
ciated zone of avoidance (ZoA). Motor steps are counted
from their respective datum positions.

3.2.1 Motor controller constraint

As shown in Fig. 4, each trajectory defines a motion guided
through a sequence of waypoints expressed in the arms
C-space. Therefore, in order to execute trajectories of that
kind, a motor controller should be capable of interpolating
through those waypoints such that angular velocities and accel-
erations are smooth (differentiable). But, the commercial off-the-
shelf controller does not have that feature. The only available way
to connect any two consecutive points is through a linear segment,
an assumption also found in motion planning specialized litera-
ture. Unfortunately, this approach delivers trajectories with dis-
continuities at the end of each segment as velocities cannot be
switched instantaneously, forcing the arm to stop and restart
its motion. Since these start–stop cycles result in extra arm joints
wear, additional energy consumption and undesired increment in
arm’s travel time should be kept to a minimum.

4 Problem Description
A description of our problem follows. We refer to the m inde-
pendent parameters that specify the position of an arm by the
name of configuration. A configuration is denoted by q. The
m-dimensional space containing all possible configurations is
called the configuration-space (C-space). We consider a system
composed of any given integer number n of articulated arms
A ¼ fA1;A2: : :Ang moving in a common three-dimensional
environment represented by W. Each arm Ai patrols a reduced
area of this environment and can move at a maximum velocity
vmaxi

. Each arm Ai has its own C-space represented by Ci. In
addition, for each arm Ai, there is an area in Ci prohibited
due to mechanical constraints that we will denote by CZoAi .
The subset of Ci containing all the mechanically feasible con-
figurations is represented by Cfeasi . We use the notation AiðqÞ to
refer to the volume in the common environment occupied by the
arm Ai at configuration q ∈ Cfeasi . Each robot has been given
a starting and final configuration, qsi and qfi , respectively,
both belonging to Cfeasi . For convenience, we reduce, for each
armAi, its available Cfeasi into a smaller set known as a roadmap,
represented by Ri, which also contains qsi and qfi ; see Sec. 6.1
for an in-depth discussion about how a roadmap is constructed.

We define a path from a given qsi to a qfi as being a con-
tinuous sequence of configurations entirely belonging toRi and
a trajectory as a path parametrized by time. A trajectory forAi is
formally expressed as πi∶t ∈ ½0; Ti� → πiðtÞ ∈ Ri, such that
πið0Þ ¼ qsi and πiðTiÞ ¼ qfi . The variable t denotes time
and Ti the travel time, the instant when Ai reaches its destina-
tion and remains there. For convenience, these trajectories
will be parametrically expressed in terms of a time sample
k ∈ N ∪ f0g, where N is the set of natural numbers. The
time step between two consecutive samples is denoted by Δt.
Then, the continuous function πiðtÞ becomes the discrete func-
tion πiðkÞ ¼ fqi0 ; qi1 : : : qing, where qij ∈ Ri is the configura-
tion of Ai when k ¼ j. This way, πiðkÞ is defined by a
number of waypoints for which Ai has to pass through at a par-
ticular time k � Δt. Two trajectories πi and πj are said to be safe
if the arms following them do not collide and neither of them
moves faster than its corresponding maximum velocity.

By configuration time, we understand the time required for
all arms to move from their initial positions to their goals. This
time, frequently known as makespan, is defined as the travel
time of the last arm reaching its destination. For a given trajec-
tory set T ¼ fπ1; : : : ; πng, it can be computed as

EQ-TARGET;temp:intralink-;sec4;326;436TT ¼ max
∀ i∈A

ktri

where ktri denotes the discrete time step in which the arm Ai
reaches its destination.

Finally, we assume that initial and final positions for each
arm come from two different feasible assignment plans deliv-
ered by the target allocator. We also assume that target allocator
has effectively performed its task; see Sec. 2.1 for details.
Therefore, there is no collision between any two initial and
any two final positions as well as the minimum distance between
the targets is met.

Problem 1 (motion planning along roadmaps): Taking into
account all previous definitions and assumptions, the problem
we want to solve is the following: given a set of n arms Ai,
where n can be any integer number, each controlled by a device
showing the start–stop behavior discussed in Sec. 3.2.1 and each
with a roadmapRi and a task hqsi ; qfii to be accomplished, find
a set T ¼ fπ1; : : : ; πng such that fulfill:

1. No two trajectories, πi and πj, are unsafe →
Requirement.

2. The number of start–stop cycles in each πi is not
greater than a given nSSC → Requirement.

3. The configuration time is equal to or less than a given
value Tp, set to 120 s → goal.

Points (2) and (3) are not related to science but to the effi-
ciency of the instrument. While point (3) originally was a strict
requirement for the MXS motion planner,10 we are now treating
this as a goal.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-5 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4.1 Sensing the Real World

To provide a high degree of flexibility and portability, the
motion planning algorithm will only retrieve information about
the n arms it can work with through a number of Boolean func-
tions. We can distinguish here functions of two kinds:

1. Those checking if a given configuration q ∈ Ci is con-
tained in the CZoAi of a given arm Ai: IsInZoA(q).

2. Those reporting if a given arm Ai configured at
q ∈ Cfeasi collides with the others at time t:
Collision(q,t).

The algorithm will need as many functions of each type as
arms have to be planned. That is, it will require n functions
IsInZoA(q), each providing particular information about
a distinct arm, as well as n functions Collision(q,t),
one for each arm. Each function IsInZoA(q) considers the

(a)

(c)

(b)

Fig. 6 The space-time set OΔ containing nine trajectories projected in the 2-D Cartesian space. (a) A
close look of the MXS bench with the arms at their destinations. Nine out of twelve probes have been
assigned to targets (dots). The circle represents the MIRADAS focal plane. (b) The nine different zones in
the MXS bench show the areas swept by the assigned arms when moving from their initial positions to
their final ones. (c) Detail of the swept areas. Although a few of these areas intersect, the arms will not
collide if a proper time profile is found.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-6 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

real ZoA of each arm as computed by the calibration procedure
mentioned in Sec. 3.2. All functions Collision(q,t) have
to take into account a safety tolerance, as explained in Sec. 2.1.
For the motion planner, these n × 2 functions are black boxes
hiding the particular kinematic characteristics of each arm in
the system. Every time the planner requires information from
a particular arm, it will call the appropriate function.

5 Prioritized Planning
The trajectories determination problem defined in Sec. 4 is a
multirobot motion planning problem (MMPP). The different
approaches to MMPP can be broadly classified into coupled
and decoupled. The former is an extension of the single-
robot motion planning problem, where the whole system is mod-
eled as a composite robot combining the states of all individual
robots. Then, the paths for all of them are jointly determined
with the help of a single-robot planner. This combined state
space, containing all possible paths, guarantees to find a solution
if it exists (completeness). Additionally, optimality can also be
obtained if the combined space is used together with a graph
search algorithm like A�13 or one of its more recent variants.14

However, this full space is exponential in the number of robots.
Thus, coupled approaches generally become computationally
intractable with systems of many robots. By contrast, decoupled
planners tend to decrease the dimensionality of the problem by
planning the motions of each robot independently and then coor-
dinating them to avoid collisions. They are faster, but, unfortu-
nately, they are also incomplete.

Prioritized planning is a practical and often effective
decoupled technique. This strategy, introduced by Erdmann
and Lozano-Pérez,15 assigns a priority to each robot and then
determines their motions sequentially. The highest priority
robot is planned first and after, in decreasing order, the lower
priority ones compute their trajectories considering the previously
planned robots as moving obstacles. Such a greedy technique is
incomplete, and its performance is sensitive to the ordering of the
agents. Some works study different priority schemes.16,17 Silver
goes one step further by exploring dynamic priorities so that every
agent has the highest priority for a short period.18 But often in
some environments, simple heuristics perform well enough.19

In Sec. 5.2, we present high-level pseudocode for the priori-
tized planning approach. However, before discussing the algo-
rithm, few concepts and notations need to be introduced.

5.1 Notation

We will work with the concept of space–time domain, which is
a four-dimension space combining the 3-D environment, where
all arms move (W), with time. It is denoted by Y and formally
defined as Y ¼ W × t, where t ∈ ½0;∞Þ. When an arm follows
a given trajectory, it can be thought of as a dynamic object occu-
pying a particular region in Y. In addition, the obstacle-time
subset, denoted by OΔ, will contain the space–time regions
occupied by all previously planner arms; see Fig. 6. Finally,
we will employ the notation AΔ

i ðπiÞ for the transformation
determining the space–time region swept by the arm Ai when
moving along the trajectory πi.

5.2 Algorithm

Two elements are required to build a prioritized solution: (i) a
strategy to prioritize the arms and (ii) a method to compute the
motions of a single arm in a known dynamic environment. First,

a priority scheme for the arms is determined. In practice, any
method for assigning priorities can be employed. However, ini-
tially, we will use one appropriate for the purpose of minimizing
the system makespan; see Sec. 7. Once the arms are arranged
in priority descending order, it can be called the function
Prioritized-Planning, which iteratively plans trajecto-
ries for each of them according to their priority; see Algorithm 1.
The trajectory of each arm is determined by Arm-Motion-
Plan (line 5), a single arm roadmap-based motion planner
described in Sec. 6. This method tries to find a trajectory in
the arm’s roadmap Ri such that avoids the space–time regions
occupied by the previously planned arms (obstacle-time setOΔ).
If Arm-Motion-Plan fails to find a safe trajectory for the
current arm, then Prioritized-Planning terminates
with failure (line 7). Otherwise, it tries to determine a motion
plan for the next arm.

6 Planning an Arm Trajectory
In this section, we present a roadmap-based motion planner for a
single arm moving in a dynamic environment known before-
hand. Algorithms relying on sampled-based roadmaps, such
as probabilistic roadmap20 and rapidly exploring random
tree,21 and their multiple variants have been successfully dem-
onstrated on different robotic platforms. They construct road-
maps by sampling C-space and checking their validity with
the help of a function sensing the environment. By limiting
the motions of the robots to the paths present in the roadmap,
the search space that has to be explored to find a feasible

Algorithm 1 Arm-prioritized planning.

Input: A: A set of n arms ordered by priority, R: a set of n roadmaps

Output: T : the set of trajectories forA if it exists. Otherwise failure (∅)

1: function PRIORITIZED-PLANNING ðA;RÞ

2: T ←∅

3: OΔ←∅ ▹ No trajectories planned yet, so empty obstacle-
time set

4: for i ← 1 to n do

5: πi ← ARM-MOTION-PLAN (Ai , Ri , OΔ) ▹ Plan trajectory
with current
obstacle-time
set

6: If πi ¼ ∅ then ▹ Has a trajectory been found for the
current arm?

7: return ∅ ▹ Failure

8: end if

9: T ←T ∪ fπig ▹ Trajectory found, so update the set

10: OΔ←OΔ ∪ AΔ
i ðπi Þ ▹ Update obstacle-time set with the

new trajectory πi

11: end for

12: return T ▹ Success: trajectories found for all arms!

13: end function

Journal of Astronomical Telescopes, Instruments, and Systems 034001-7 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

trajectory is conveniently reduced. Once the roadmap is built, a
standard graph-search technique can be employed to find the
best path connecting two points of the roadmap according to
a given criteria.

These algorithms are said to be probabilistically complete as
its probability of failure exponentially tends to be zero when the
number of samples in the roadmap approaches to infinity.
Furthermore, the quality of the trajectories computed highly
depends on the quality of the roadmaps.22 If roadmaps accu-
rately model the real connectivity of the mechanism C-space,
this kind of planner offers a good compromise between being
practically usable in complex scenarios and completeness.

6.1 Roadmap

As its name indicates, a roadmap is a smaller set of the original
arm feasible C-space containing a series of alternative paths con-
necting a starting and a goal configuration. Every path comes
determined by two elements: its vertices and its edges. The for-
mer of these represents waypoints in the path. They can be the
initial, the final, or any intermediate point in the path. The edges
model the segments of the path that connect every two consecu-
tive waypoints. In principle, these segments can have any shape,
which will depend on the interpolation method utilized to con-
nect the two vertices involved. Here, any polynomial function
producing smooth transitions or an ad-hoc heuristic search23,24

could be effectively applied. However, for their simplicity,
straight-lines have frequently been used in theoretical works.
In our case, due to the problem constraint presented in
Sec. 3.2.1, all edges will also be straight-lines.

A roadmap is expressed in terms of a graph R ¼ ðV; EÞ
formed by the set V containing the vertices of all paths and
the set E containing the edges of all paths. By sampling the
arm C-space with the appropriate IsInZoA(q) function, intro-
duced in Sec. 4.1, paths are incrementally constructed following
a process involving three steps. The two first of them do not take
into account the initial and final configuration of the arm. In the
first step, the set of all vertices in the roadmap is determined.
There exists in literature a spectrum of approaches, ranging
from pseudorandom to grids, about how to compute this
set.25 We use a grid similar to the one in Fig. 7(a) and check
each configuration belonging to a junction for feasibility.
Those configurations in the arm’s ZoA are automatically dis-
carded while the rest are included in the set V.

Then, in the second step, we determine which pairs of ver-
tices of V will be connected, resulting this way in a different
number of edges. A predefined number of pairs ðqi; qjÞ from
V are stochastically chosen. If the straight-line connecting
a given qi and a given qj do not traverse ZoA, the edge qi →
qj is added to the roadmap edge set E. When selecting these
pairs, we impose the constraint that a given vertex qi ∈ V cannot
be present in more than one resulting edge.

Finally, in the third step, the initial qini and final qend con-
figurations of the arm are considered to form several paths
between them involving a different number of edges. First,
qini and qend are properly connected to every edge in the previ-
ously computed set E, delivering paths with three edges
(qini → qi → qj → qend). If the corresponding edges qini → qi
and qj → qend do not traverse ZoA, then the path is included
in the roadmap. Furthermore, the qini and qend points are con-
nected to every vertex qi of the set V, resulting multiple paths
with two edges (qini → qi → qend). If the edges of these paths
are mechanically feasible, the paths are added to the roadmap.

Finally, a direct path linking together qini and qend is also
included if it is feasible. In Fig. 7(b), three different paths
are represented in C-space.

6.2 Planner

Our planner uses a two-level approach to compute a collision-
free trajectory. In the first of them, the most promising unex-
plored path connecting the origin and destination of the arm
is selected from the arm’s sampled-based roadmap. Then,
on the local level, the motions of the arm along that path are
appropriately coordinated with those of the previously planned
arms. As we have seen, a path might be composed of several
edges, each of which will be adequately discretized and system-
atically explored. Finally, our solution incrementally generates
the search space as it directly depends on the previous motions
performed by the arm.

The pseudocode of the proposed motion planner is given in
Algorithm 2. It iterates over the paths in the arm’s roadmap (line
2), from the most promising in terms of estimated travel time to
the least one. If two or more paths present the same estimation,
one of them is arbitrarily selected. Then, the edges in a path are
sequentially explored (line 6) by the method Find-Edge-
Traj, as discussed in Sec. 6.4. If it founds a safe trajectory
for the current edge in the path, then the next one is visited.
Otherwise (line 8), the remaining edges are skipped and the
next path in the roadmap is checked. The search ends when col-
lision-free trajectories have been found for every edge in a path
or the entire roadmap has been unsuccessfully visited.

(a)

(b)

Fig. 7 Sampling C-space and roadmap paths. (a) The arm C-space is
sampled using a grid. Here, as an example, we show a particular 9 × 5
grid. All those configurations qi not in the ZoA will be included as ver-
tices in the arm roadmap. Additionally, a random number of pair of
vertices ðqi ; qj Þ are connected and included in the roadmap’s edge
set. (b) Three paths connecting the initial (q ini) and final (qend) position
of an arm in C-space. The feasibility of each edge is checked. If any
passes through ZoA, then the path containing it is automatically dis-
carded. In this case, the path q ini → q24 → qend is discarded due to the
infeasibility of e1 (q ini → q24).

Journal of Astronomical Telescopes, Instruments, and Systems 034001-8 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

6.3 Estimating Path Travel Time

The travel time of a given roadmap path is computed as the sum
of the estimated travel times of each of its parts. A lower-bound
estimate for the travel time of a roadmap edge eij connecting
arm configuration qi ¼ ðθi1; θi2Þ and qj ¼ ðθj1; θj2Þ can be deter-
mined as follows:

EQ-TARGET;temp:intralink-;e005;63;217teij ¼ max
∀ k∈½1;2�

jθik − θjkj
vkmax

; (5)

where θk is the k component (or degree-of-freedom) of an arm
configuration and vkmax is its maximum velocity.

6.4 Exploring an Edge of the Roadmap

In this section, we discuss how a trajectory along a given edge of
the roadmap is explored to determine if it can be safely followed
by the arm. The method we employ here is partially inspired by
a grid-based planner for robotics application.19 There, an edge of
a roadmap is discretized into a mesh of states and connections

representing valid transitions between these states. This conven-
ient representation enables addressing motion planning as a
graph search problem. Our approach differs from that work
in that we do not invariably use a three-connected grid. The
neighbors of each state are dynamically computed considering
the number of start–stop cycles accumulated during the previous
motions. Furthermore, our approach is also able to limit the
maximum number of start–stop cycles per trajectory. Finally,
we also use different granularities for the motion action time
step and for collision checking.

6.4.1 State-time space

We use the notation G ¼ ðX;CÞ to denote the graph G dynami-
cally built to coordinate the motions of an arm along a given
roadmap edge. The set X represents the nodes of the graph,
and C is the set of connections between each pair of nodes.
Each node z ¼ ðx; tÞ is formed by a compound element x defin-
ing the state of the arm and a scalar t specifying a notion of time.
The domain containing all feasible pairs ðx; tÞ is known as state-
time space. Since its inception, this representation15,26 has been
broadly used for motion planning in dynamic environments.

In our case, all the possible configurations an arm can adopt
when moving along a roadmap edge have been conveniently
reduced to a variable s, which ranges from 0 to 1. This variable
specifies the distance traveled along the edge, where s ¼ 0 and
s ¼ 1, respectively, represent the configurations of the source
and destination vertices of that edge. Then, the state of an arm
is defined as a three-tuple ðs; ns;mÞ, where ns denotes the num-
ber of start–stop cycles the arm has performed and, finally, m is
the motion action used to reach this state. This way the arm
being planned is represented by a point in four-dimensional
state-time space and the previously planned arms are treated
in each particular instant of time as static objects.

Discretization: To perform a discrete-time analysis, we will
follow the approach of LaValle and Hutchison.27 We select
a global time step Δt. As a result, an edge eij of length d
can be approximated by a finite sequence containing n points.
Each of these points corresponds to the arm’s configuration at
instant kΔt, where k ∈ f0;1: : : n − 1g. We select then veij for eij
as the greatest value smaller than vmax so that the edge is divided
into an integer number of segments. Consequently, the normal-
ized length of each of those segments is Δs ¼ jveij jΔt∕d, being
d the length of the edge eij.

Motion actions and graph connections: It is assumed that the
motor controller of an arm can process a command each Δt s.
The arm, therefore, is only allowed to change velocity at each
instant kΔt and the values to choose from are constrained to
−veij , 0, and veij . That is, the arm can decide to move Δs back-
ward along the edge, to remain motionless or to move Δs for-
ward. These motion actions determine the neighbors
a graph node can reach. In practice, connections between states
must always move forward in time. Thus, if considering only the
s component of the arm state, the three potential neighbors of
a given state-time node ðs; tÞ are ðs − Δs; tþ ΔtÞ, ðs; tþ ΔtÞ,
and ðsþ Δs; tþ ΔtÞ. As shown in Fig. 8(a), this defines
a grid of potential graph connections to consider when trying
to find a safe trajectory along the edge. However, not all
these connections might be valid. When the maximum allowed
number of start–stop cycles has been reached, the arm has to be
always forced to move in the same direction. That is the main
reason why the nodes of the graph store also information about
the motion action m. This variable can only take three possible

Algorithm 2 Finding a trajectory for one arm.

Input: Ai : a given probe arm, Ri : arm’s roadmap, OΔ: obstacle-time
set

Output: πi : a trajectory for Ai if it exists. Otherwise, failure (∅)

1: function ARM-MOTION-PLAN (Ai , Ri , OΔ)

2: for all p ∈ Ri do ▹ Explore paths in Roadmap: most
promising first

3: t←0 ▹ Travel time

4: πi←∅

5: for all e ∈ p do ▹ Explore all edges in a path

6: hπe; tei← FIND-EDGE-TRAJ ðe;Ai ;OΔ; tÞ

7: if πe ¼ ∅ then ▹ Check if traj. found for the current
edge

8: Exit loop ▹ Skip remaining edges in cur. path

9: end if

10: πi←πi ∪ fπeg ▹ Update traj. with local traj. along
the edge

11: t ← t + t e ▹ Update travel time with the time spent
in the edge

12: end for

13: if trajectories found for all edges in a path then

14: return πi ▹ Trajectory found!

15: end if

16: end for

17: return ∅ ▹ Failure: no trajectory found for this arm

18: end function

Journal of Astronomical Telescopes, Instruments, and Systems 034001-9 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

values f−1;0; 1g, respectively, representing backward motion,
no motion, or forward motion.

Although it will be discussed in depth in Sec. 6.4.2, we
would like to introduce here that, in fact, the planning of
motions along a roadmap edge can be seen as a search in a more

general 3-D space. The additional axis of such search-space [see
Fig. 8(b)] is one specifying the number of start–stop cycles (ns)
accumulated. This state variable ns is of great significance since
it impacts on the geometry of the final path found by the algo-
rithm. Its maximum allowed value can adequately control the

(a)

(b)

Fig. 8 The state-time search space of a roadmap edge. (a) The grid shows the potential neighbors that
can be reached from a given state-time node ðs; tÞ, where s ∈ ½0;1� denotes the roadmap edge distance
and t denotes a scalar time step (Δt). The neighbors labeled as A, B, and C, respectively, represent a
forward motion along the roadmap edge, no motion, and a backward motion. Each of those atomic
actions has a duration of one time step. (b) The search space including a third dimension, the start–
stop cycles counter (ns). If the arm is in motion, this counter is incremented every time a motion action
different from the current one happens. The arrows show the different atomic motion actions to be
executed by the arm each Δt seconds, and the dashed area defines an obstacle-time object to be
avoided. The label 1 shows a forward motion. The label 2 represents a stop after a forward motion, there-
fore, the ns counter is incremented. The label 3 specifies a motionless (or stop) action. The sequence of
motion actions shown in the figure are: forward (2 time steps), stop (2 time steps), forward (2 time steps)
and stop (1 time step).

Journal of Astronomical Telescopes, Instruments, and Systems 034001-10 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

smoothness of the solution, which, as stated before, is a funda-
mental requirement of our design.

6.4.2 Searching a trajectory in a roadmap edge

As it has been stated in Sec. 6.4.1, the problem of finding a safe
trajectory along a roadmap edge can be formulated as a graph
search problem. The state-time grid has to be systematically
explored to find a collision-free path connecting the ðs; tÞ points
ð0; tsÞ and ð1; tfÞ, where 0 and 1, respectively, denote the source
and destination vertices of the edge and ts and tf (ts < tf), the
initial and arrival time intervals. Since we are interested in
obtaining a system makespan lower than a given value, we
will try to achieve it by individually minimizing the travel
time of each arm. In practice, the A� algorithm13 is the de
facto choice when an optimal path connecting two nodes of
a graph needs to be computed. However, in dynamic environ-
ments, a depth-first graph search (DFS) is guaranteed to be
faster than A� in computing trajectories reaching its destination
as soon as possible.19

Unfortunately, arriving too early might be inconvenient,
especially if the scenario presents goal conflicts. Conflicts of
this kind occur when the path of an arm passes by the goal loca-
tion of another one. No matter the prioritization, if a lower prior-
ity arm arrives at its goal earlier than others having higher
priorities, then further actions need to be taken to ensure safety.
To illustrate that, let us consider an arm Ai with priority pi and
another arm Aj with priority pj, such that pi > pj. The colli-
sion-free trajectory for Ai and Aj are, respectively, denoted by
πi and πj, being Ti and Tj the corresponding travel times. Then,
if Ti > Tj, πi and πj are, by construction of Algorithm 1, safe
during the time interval ½0; Tj�, but, they might not be during
ðTj; Ti�. Thus, the feasibility of πj in the later interval must
be explicitly checked.

Algorithm: The method Find-Edge-Traj computes the
motion actions safely moving the arm along a roadmap edge.
The algorithm manages status information and also backpointers
to preceding nodes for each state-time node z generated during
the search. The former, labeled as status ∈ {UNEXPLORED,
SAFE, UNSAFE}, prevents revisiting unpromising nodes,
whereas the later, labeled as parent, is required to retrieve the
sequence of motion actions forming a successful trajectory.
Its pseudocode is given in Algorithm 3.

Find-Edge-Traj first stores (line 2) the source vertex of
the edge (zs) in the sequence of state-time nodes to be explored
(N). Then, the algorithm loops over this sequence (line 3). The
state-time nodes are consumed (line 4) and visited by the helper
method Explore-Node (line 5) in LIFO order, which guarantees
a DFS. The search finishes when one collision-free node being
at the destination roadmap vertex (si ¼ 1) is found (line 6) or all
state-time nodes have been unsuccessfully explored.

Algorithm 4 shows the pseudocode for method Explore-
Node, which employs the appropriate collision checking rou-
tine Collision, as discussed in Sec. 4.1.

Each time it first explores a node z (z.status =
UNEXPLORED), this node is checked for safety (line 5) against
the environment (the obstacle-time set). If it is collision-free,
then its neighbors are computed (method Neighbors in
line 8) only if t < Tf. This upper bound of t is introduced to
abort the search if a trajectory has not been found after a
given number of time steps.

It is assumed that calling Collision every Δt, the
moments of time each arm is allowed to change its velocity,

is enough. However, if the atomic arm motions have long dura-
tion, there is a chance that the arm being planned could jump
over thin dynamic obstacles. In those cases that a finer resolu-
tion is required, a submultiple Δtcol of Δt should be used. Then,
Collision would need to be redefined so that it accordingly
interpolates the path connecting the current state-time state and
its parent and checks its feasibility every Δtcol. Employing dif-
ferent resolutions can be very convenient as the local search can
be accelerated (by reducing the branching factor) without com-
promising safety. Algorithms 5 and 6 determine the neighbors of
the node being explored considering the start–stop cycles
counter (ns). If the maximum value (nStop) has been reached,
then the method Neigh-maxNS dynamically computes the
neighbors. Otherwise, it is done by Neigh-DF. As can be
appreciated in line 2 of Algorithm 6, the method Neigh-
maxNS always generates a neighboring node containing the
same motion action. In addition, if the arm is stopped
(m ¼ 0), then the neighbor advancing toward the destination
edge is also returned (line 6). However, when nStop was not
reached, the ns variable is updated in Neigh-DF and all
three neighbors are stored in the particular order shown in
line 33 of Algorithm 6. This way of arranging the nodes

Algorithm 3 Searching a safe trajectory along a roadmap edge.

Input:

zs ¼ ðss; nss;ms; tsÞ: a state-time node

nStop: max. start-stop cycles allowed

T f : max. time to explore

Output: true if an edge trajectory exists. It can be retrieved using the
data stored in the parent field of each node z.

1: function FIND-EDGE-TRAJ (zs , nStop, T f)

2: N←
�
zs

�
▹ Sequence of state-time nodes to explore

3: while N ≠ ∅ do ▹ Are nodes pending?

4: zi←N ½−1� ▹ Get the last elem. in sequence N

5: N i← EXPLORE-NODE (zi , nStop, T f)

6: if si ¼ 1 and zi .status = SAFE then ▹ If destination
reached and
no collision
there

7: return true ▹ Trajectory found. Use backpointers
to retrieve traj.

8: end if

9: N←N −
�
zi

�
▹ Remove the current node from the

sequence

10: N←N þN i ▹ Add the neighbors at the end of the
remaining nodes

11: end while

12: return false

13: end function

Journal of Astronomical Telescopes, Instruments, and Systems 034001-11 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Algorithm 4 Exploring a state-time node.

Input:

z ¼ ðs; ns;m; tÞ: a state-time node

nStop: max. start-stop cycles allowed

T f : max. time to explore

Output:

N : a sequence with the neighbors of z sorted from the least
promising to the most promising.

z.status: node status is updated to UNSAFE or SAFE

1: function EXPLORE-NODE (z, nStop, T f)

2: N←∅

3: if z.status = UNEXPLORED then ▹ Has the node been
explored?

4: z.status ← UNSAFE

5: if not COLLISION ðs; tÞ then

6: z.status← SAFE ▹ Node is collision-free, so update
status

7: if t < T f then ▹ Get neighbors only if max. t has not
been reached

8: N← NEIGHBORS (z, nStop)

9: end if

10: end if

11: end if

12: return N

13: end function

Algorithm 5 Determining connections of a state-time node (part 1).

Input: z ¼ ðs; ns;m; tÞ: a state-time node, nStop: the max. start-stop
cycles allowed

Output: N : a sequence containing the neighbors of z

1: function NEIGHBORS (z, nStop)

2: if ns ¼ nStop then

3: N← NEIGH-MAXNS (z) ▹ Returning neighbor in same
direction

4: else

5: N← NEIGH-DF (z) ▹ Returning neighboring nodes in
depth-first order

6: end if

7: return N

8: end function

Algorithm 6 Determining connections of a state-time node (part 2).

1: function NEIGH-MAXNS(z)

2: nz←ðs þm � Δs; ns;m; t þ ΔtÞ ▹ Neighbor keeps
moving in the same
direction

3: nz.parent ←z ▹ Store neighbor’s parent state

4: N←
�
nz

�

5: if m ¼ 0 then ▹ If arm was stopped

6: nz←ðs þ Δs; ns;m; t þ ΔtÞ ▹ Add also the forward
neighbor

7: nz.parent ←z

8: N←N þ �
nz

�

9: end if

10: end function

11: function NEIGH-DF(z)

12: if m ¼ −1 then ▹ The node being explored has been
reached moving backward
(m ¼ −1)

13: ns−1←ns ▹ Num. start-stop cycles performed to
reach the backward neighbor

14: ns0←ns þ 1 ▹ Num. start-stop cycles performed to
reach the motionless neighbor

15: nsþ1←ns þ 1 ▹ Num. start-stop cycles performed to
reach the forward neighbor

16: end if

17: if mi ¼ 0 then ▹ If arm was stopped, do not increment
start-stop cycles

18: ns−1←ns

19: ns0←ns

20: nsþ1←ns

21: end if

22: if mi ¼ 1 then

23: ns−1←ns þ 1

24: ns0←ns þ 1

25: nsþ1←ns

26: end if

27: nz−1←ðs − Δs; ns−1;−1; t þ ΔtÞ ▹ Computes
backward
neighbor

28: nz−1.parent ←z ▹Store neighbor’s parent state

Journal of Astronomical Telescopes, Instruments, and Systems 034001-12 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

along with the depth-search nature of Algorithm 3 ensures that
the most promising motion action, the one approaching the arm
toward the edge destination vertex [see label A in Fig. 8(a)], is
always explored first.

Figure 9 illustrates how the method Find-Edge-Traj
explores the state-time space. The effect of the state variable
ns in the smoothness of the solution can be appreciated in
Fig. 10, where searches along a roadmap edge are performed
with different maximum values for that variable.

7 Prioritization
One of the key points when designing a prioritized planning
algorithm is the determination of a priority scheme. We have
adopted one that tries to minimize the makespan of the whole
system by reducing the maneuvering of those arms whose opti-
mal paths are longer. Let ϕi denote the optimal path of an arm Ai
and Tϕi

its estimated travel time (see Sec. 6.3). This path directly
connects the starting and final configurations, consequently,
being the one in the roadmap sweeping the minimum area in
W. Thus, those arms having to traverse longer distances are

planned first. That is, those arms presenting optimal paths
with larger estimated travel times are assigned higher priorities.

8 Experimental Results
The proposed motion planning algorithm was implemented and
tested in several scenarios with real science targets. At the end of
this section, we take the reader through one typical scenario of
the MXS system in detail. There, during their motions, the arms
were exposed to multiple instances of all identified collision
conflicts that can occur in MIRADAS.

29: nz0←ðs; ns0;0; t þ ΔtÞ ▹ Computes motion-less
neighbor

30: nz0.parent ←z

31: nzþ1←ðs þ Δs; nsþ1;1; t þ ΔtÞ ▹ Computes forward
neighbor

32: nzþ1.parent ←z

33: N←hnz−1i þ hnz0i þ hnzþ1i ▹ Store at the end of the
sequence N the
forward neighbor

34: return N

35: end function

Fig. 9 DFS of a trajectory along a given roadmap edge considering
only ðs; tÞ. The gray area represents a dynamic object expressed in
state-time. The search starts at one edge end (s ¼ 0) and completes
when the other one (s ¼ 1) is reached. The bold arrows show the
resulting trajectory, whereas the dotted ones show those motion
actions unsuccessfully explored. The neighbors are always visited in
the following order: forward, no motion, and backward. Therefore, the
DFS tries to get the arm to its final destination in a minimum number of
Δt . If there is no constraint in ns, the trajectory found will closely sur-
round the gray area, yielding, in general, a sequence of unsmooth
motions. The actions labeled as a are those producing a start–stop
cycle, consequently incrementing the ns counter.

(a)

(b)

(c)

Fig. 10 How the variable ns impacts on the smoothness of the tra-
jectory found along one edge. (a) The search is guided by the maxi-
mum number of start–stop cycles (ns) allowed. In this scenario, there
is no any constraint in the maximum value the variable can take.
Therefore, no smoothness control is considered when exploring
the search space, yielding a final motion profile consisting of nine
real motion actions (and four start–stop cycles). (b) Here, the maxi-
mum value of ns is constrained to 2, then the solution returned will
perform two or less start–stop cycles. The real motion actions com-
posing the trajectory are forward, stop, backward, stop, and forward.
(c) Here, the maximum value of ns is constrained to 0. The resulting
arm motion profile is formed by a motionless action during nine time
steps followed by a forward action. This trajectory actually can be
executed with a single real arm controller command.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-13 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

In all cases, a particular roadmap was built for each arm in
the system. Each dimension of the 2-D probe arm C-space was
divided into equidistant segments, forming a 8 × 6 grid.
Additional connections were set between random pairs of points
in the grid, yielding more than 64 potential alternative routes.
Then, the initial and final positions in C-space of each arm
were connected to each of those points. Those paths with esti-
mated travel time greater than 120 s or forcing the arm to
pass through any infeasible configuration were automatically
discarded. The maximum joint velocity used for each joint
was 0.031416 rad∕s, which are the maximum achievable by
the real mechanism, as confirmed by laboratory tests. Finally,
the maximum number of start–stop cycles allowed per trajectory
was 1.

By design, the running time of our solution tightly depends
on the collision checking time step (Δtcol) and on the motion
action time step (Δt). We employed different resolutions for
each of them. The value of Δt was chosen taking into account
the duration of one of the longest direct motions an arm can
execute. That motion takes around 100 s, as empirically deter-
mined with real hardware. The value utilized for Δt was 6 s,
assuring a good trade-off between arm maneuverability and
graph branching factor. Finally, the value of Δtcol used in the
experiments was 100 ms. That figure was considered small
enough in relation to the real velocities of the arms to detect
collision between two different bodies correctly.

Finally, we use the target allocator to generate 200 different
assignment plans containing real science objects. We compute
trajectories for these plans in two different experiments. In the
first of them, for each assignment plan, the arms start their
motions from their corresponding park positions [see Fig. 11(a)]
and end at their assigned targets. Before determining the trajec-
tories for each of the assignment plans, the arms were numeri-
cally prioritized according to the estimated travel of their
corresponding optimal paths. The higher that time, the greater
the priority assigned to the arm. We find that in the 97% of the
assignment plans, the algorithm successfully computes collision
free-trajectories with a configuration time inferior to 120 s. The
median configuration time is 102.55 s, ranging from a minimum
of 96 s to a maximum of 114 s.

In the second experiment, all arms start their trajectories at
their park locations and finish them at the targets of the first
assignment plan. From there, the arms move to the second
assignment plan and so on. As in the previous case, before deter-
mining the corresponding trajectories, arms are prioritized
according to their estimated travel times. In this case, 93% of
all assignments were successfully planed with a median con-
figuration time of 90.6 s and a maximum of 108 s. The median
value here is smaller than in the previous case because arms
now start the next set of observations from a closer position.
However, the success rate is inferior since arms are closer
and consequently the probability of collision is greater.

Please note that in all the previous tests, we have only run the
motion planning algorithm once, as the purpose was to show the
algorithm capability to find adequate solutions with the initial
priority scheme. In the real cases, the planner will be run several
times, changing the assigned arm priorities on each run, before a
given set of targets would be declared as failed.

8.1 Scenario in Detail

Here, we provide full details about a particular scenario. In
Fig. 11, the initial and final positions of the arms can be

appreciated. During their motions, the arms were exposed to
multiple occurrences of all identified collision conflicts that
can appear in MIRADAS. Respectively, they are: (i) goal con-
flicts when the path of an arm passes by the goal location of
another one and (ii) en-route conflicts when two paths intersect
with each other, but the common point is not the goal location of
any of them.

We executed a single run of our algorithm with an initial pri-
ority policy. Here, as in the previous simulations, arms with
larger travel times were given higher priorities. A successful
motion plan for all arms was computed in 16.14 s on a 3.2 GHz
2-Core Intel i5 with 4 GB of RAM, as can be seen in Table 1,
requiring a total of 75,684 collision checks. As expected, the
computation time for each arm trajectory depends on the number
of collision checks performed. A trajectory was returned almost
immediately for arm 6, the one with the highest priority, since
the dynamic environment was empty. However, for arm 10,
more than 15,000 checks were needed, yielding a running time

(a)

(b)

Fig. 11 Typical scenario presenting en-route and goal collision con-
flicts. (a) Top view of the MXS system bench with the 12 arms located
at their initial positions. They are numbered, starting from Arm0,
counterclockwise. The arms are at their default park locations.
(b) Detail of the MXS system with the arms located at their final place-
ments. The numbered black stars at the center of the figure are
targets.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-14 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

of around 3.6 s. The number of alternative paths present in each
arm roadmap was proven to be sufficient for this scenario, accu-
rately representing, therefore, the arms C-space connectivity.

The trajectories found for each arm are given in Table 2. The
MXS system arms, their priorities, as well as their estimated
travel times, are respectively, shown in column arm, priority,
and est. trav. To the right of those columns, the table presents
three different groups. The first of them, named accepted traj.,
refers to the collision-free trajectories returned by our method.
The second and the third ones, opt. traj. and roadmap, respec-
tively, show the duration of the optimal trajectory (in Δt units)
and information about the paths in each arm’s roadmap. The
column labeled as path specifies the route followed by each arm.

Arm 6, the one expected to arrive last at the destination, was
the first for which a trajectory was computed. Its arrival time, as
shown in Table 2, was 19 simulation time steps Δt (114 s),
where the optimal trajectory would have taken 18 Δt. For this
arm, three different paths with minimal estimated travel time
were present in its roadmap. The algorithm randomly selected
one of them since that is the normal behavior in such cases, as
indicated in Sec. 6. The path first explored comprised two linear
segments in the arm’s C-space. The associated trajectory had
only a single start–stop cycle, performed in the intermediate
point A (see field path in Table 2), and during the execution of
each segment, there was no any additional stop (nΔt stop = 0).
The C-space paths followed by this and all other arms as well as
the path followed by the centre of each of the pickoff mirrors can
be visualized in Figs. 12(a) and 12(b), respectively.

For arm 10, a safe direct trajectory linking the initial and final
configurations was found. This single motion trajectory can be
seen in Fig. 12(b), where the pickoff mirror trajectory does not
present, in contrast with arm 6, any discontinuity. The arm tra-
jectory took a total of 16 Δt, during 2 of which the arm was
stopped. These two Δt were carried out in the two first simu-
lation time steps as no start–stop cycles were generated.

Table 1 Running time and collision checks.

Arm Priority Running time (s) Num. col. checks

6 12 0.002 0

4 11 0.283 1142

5 10 0.616 2164

9 9 0.723 3186

3 8 0.901 4148

8 7 1.401 6103

10 6 3.623 15717

7 5 1.403 6974

2 4 1.548 7816

11 3 1.911 8657

0 2 1.949 9498

1 1 1.780 10279

Total time . . . 16.140 . . .

Average time . . . 1.345 . . .

Total col. check 75684

Average col. check 6307

Table 2 Trajectories found.

Accepted traj. Optim. traj. Roadmap

Arm Priority Est. trav. (s) Path nΔt nΔt go nΔt stop nStart–Stop nΔt Total Minimum nΔt Average nΔt

6 12 107.75 Start-A-end 19 19 0 1 18 32 19 21.34

4 11 95.24 Start-B-end 17 17 0 1 16 33 16 17.88

5 10 92.86 Start-C-end 17 17 0 1 16 33 16 18

9 9 85.29 Start-D-end 16 16 0 1 15 33 15 18.50

3 8 84.46 Start-end 15 15 0 0 15 33 15 16.85

8 7 83.34 Start-E-end 16 15 1 1 14 33 14 17.51

10 6 82.42 Start-end 16 14 2 0 14 33 14 16.79

7 5 81.12 Start-end 14 0 0 0 14 34 14 16.67

2 4 79.63 Start-F-end 14 14 0 1 14 34 14 16.38

11 3 78.45 Start-end 14 14 0 0 14 33 14 16.33

0 2 77.55 Start-end 13 13 0 0 13 33 13 16.78

1 1 63.82 Start-G-end 12 12 0 1 11 33 11 15.82

Journal of Astronomical Telescopes, Instruments, and Systems 034001-15 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Consequently, when the rest of arms started their respective
motions, arm 10 remained in its initial position during 12 s.
Finally, as an example of the versatility of the algorithm, it is
worth mentioning the result found for arm 8. For this probe,
a path with two segments was computed, yielding a start–
stop cycle in the connecting point. During one of the 16 time
steps that took the trajectory, the arm was stopped. This stop
was performed at the beginning of the second segment, remain-
ing the arm at the initial configuration of that segment during 1
Δt. In Fig. 13, we show the sequence of the different motions
performed by each arm.

9 Discussion and Conclusion
In this paper, we have presented a motion planning technique for
the MXS probe arms of MIRADAS instrument. The algorithm,
given a set of 12 initial and final arm positions, computes the
collision-free trajectories to be followed by each arm to reach
their destinations. Our method is iterative. It assigns a priority
to each arm and in descending order tries to find a safe trajectory
for each of them independently. The approach samples the con-
trol space of the arms, constructing roadmaps comprising sev-
eral alternative paths. Then, these roadmaps are systematically
explored in a state-time space with the help of a DFS strategy,
where the number of changes in arm’s velocity is strictly moni-
tored and restricted.

The algorithm uses two different parameters, the principal
simulation step (Δt) and the collision check step (Δtcol), to per-
form a discrete time analysis. While the former constraints the
duration of the atomic motions an arm can perform, the latter, in
practice, controls the number of collision checks to carry out per

atomic motion. The decoupling of both concepts utilizing two
distinct time steps enables our approach to have an extra level of
customization. By adequately tuning both, we can achieve a
proper trade-off between branching factor, collision detection,
and speed.

We have seen that the computation time of each trajectory is
tightly bounded to the number of collision checks. The number
of checks, in general, increases in every iteration as there are
more trajectories previously planned that need to be checked.
Furthermore, the execution time of the proposed algorithm is
also dependent on the branching factor, which comes deter-
mined by the Δt step. The fewer the value of such step, the
higher the maneuverability of our arms. However, an increment
in the degree of maneuverability comes always at the expense of
also incrementing the running time. On the other hand, travel
times of the trajectories found are always expressed in multiples
of Δt. Thus, by approaching that step to zero, these times can be
compacted more and more. But, as expected, that might also
affect negatively on the computation time of the solutions.

It has been also shown that trajectories for a typical
MIRADAS scenario were computed in around 16 s. Although
it might be considered an excessive execution time, it is not
when taking into account the operational procedures of the
instrument. The motion plans for the different targets to be
observed at night will be determined well in advance during
day-time. Therefore, the approach is not constrained by online
motion planning requirements. However, algorithm running
times might be severely decreased if further actions are taken
in two particular directions: first, optimization of the colli-
sion-checking routines and second, introducing an adaptive

(a) (b)

Fig. 12 Paths in C-space and workspace for the typical scenario. (a) The C-space paths followed by the
arms. The numbered dots are the same targets than the ones found in Fig. 11. Arrows show the direction
motion. All arms start their motions at the same configuration (θ1 ¼ π and θ2 ¼ 0) and finish at their cor-
responding targets. (b) The paths followed by the centers of the pickoff mirrors represented in the arms
workspace, the MXS bench. A few arms such as number eight take detours (discontinuities in their paths)
to avoid goal-conflicts.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-16 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13 The sequence of the motions of the 12 arms in the MXS bench. (a) The arms at their start posi-
tions. The dots in the center of the figure are the 12 targets. The numbered bold circles point to the target
assigned to the corresponding arm. (b) Every probe, except arm 10, starts their motions simultaneously.
Arm 10 remains in its initial position. (c) Arm 10 is in motion. Arm 6 is approaching the arm 7 target. As
long as arm 6 leaves behind that target before arm 7 reaches it, there will be no goal-conflict. (d) Arm 1
has reached its destination. Arm 6 has left behind the target of arm 7. However, it is invading the arm 8
target and is about to do the same with arm 9 target. Therefore, arm 8 remains motionless. Additionally,
arm 9 is over the arm 10 target. (e) More arms (0, 2, 7, 11) keep arriving at their destinations. Arm 6 is
leaving behind the targets of arms 8 and 9. Moreover, Arm 9 is leaving also behind arm 10 target.
Therefore, Arms 8, 9, and 10 can continue its motions. (f) Arms 8, 9, and 10 are approaching their respec-
tive targets. No arm is interfering in their paths, so they are able to safely reach their destinations. (g) All
arms, except number 4 and 6, are at their destinations. (h) Arm 6 is about to reach its assigned target.
(i) All arms at their final positions.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-17 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

dynamic collision checking technique.28 A strategy of that kind
would be able to efficiently adapt its resolution to the concrete
difficulty of the environment, and, at the same time, assuring no
collision would be missed even if obstacles are very thin.
Moreover, during experimentation, we noticed that an optimiza-
tion improving performance could also be introduced in the
algorithm. Specifically, we found out that in certain situations,
a search could be prematurely aborted even before the sequence
containing the following states to be visited becomes depleted,
saving many unnecessary iterations as well as collision checks.
Consequently, once this optimization is implemented, we expect
a reduction in the algorithm’s execution time.

Simulations for several real science targets show that the
algorithm presented with only one pass was able to find in
95% of the cases collision-free trajectories with a configuration
time inferior to 120 s. In the scenarios where the planner failed,
it was because the motions of a high priority arm prevented a
lower priority one reaching its assigned target. This is a situation
that can occur in a prioritized motion planner since it is incre-
mental in nature. Therefore, as commented in Sec. 2.1, by
default, a replanning with a different arm-priority ordering is
performed. In addition, constructing roadmaps with more alter-
native paths could be also considered. But, unfortunately, these
extensions cannot provide completeness to this decoupled
approach and, after an array of replannings, it might be that
we were not able to determine an acceptable motion planning.
In such case, different targets are selected and the process
restarts again.

A future step for incrementing the initial success rate of the
motion planner will be to include in each roadmap a reserved
“garage” location specific to each arm. Circulation along
such areas would be only allowed to its respective owners.
Additionally, future research also includes, once an arm has
reached its goal, opportunistically moving it away to leave
room for other arms to pass. In this way, the occasions where
higher priority arms prevent motions of the lower ones will be
decremented. Finally, another area we plan to explore is using
variable arm priorities. That is, in every simulation discrete time
step, a different arm will possess the highest priority and, con-
sequently, its motions will not be constrained by the motions of
the other arms.

References
1. S. S. Eikenberry et al., “MIRADAS for the Gran Telescopio Canarias:

system overview,” Proc. SPIE 8446, 844657 (2012).
2. J. Sabater et al., “Target allocation and prioritized motion planning for

MIRADAS probe arms,” Proc. SPIE 9913, 99132P (2016).
3. W. J. Cook et al., Combinatorial Optimization, Wiley-Interscience

Series in Discrete Mathematics and Optimization, John Wiley and
Sons, Inc., New York (1998).

4. E. L. Chapin et al., “The infrared imaging spectrograph (IRIS) for TMT:
motion planning with collision avoidance for the on-instrument wave-
front sensors,” Proc. SPIE 9913, 99130T (2016).

5. L. Makarem et al., “Collision avoidance in next-generation fiber posi-
tioner robotic systems for large survey spectrographs,” Astron.
Astrophys. 566, A84 (2014).

6. L. Makarem, J.-P. Kneib, and D. Gillet, “Collision-free coordination of
fiber positioners in multi-object spectrographs,” Proc. SPIE 9913,
99130V (2016).

7. M. Goodwin et al., “Field target allocation and routing algorithms for
Starbugs,” Proc. SPIE 9152, 91520S (2014).

8. R. Sharples et al., “Recent progress on the KMOS multi-object
integral-field spectrograph for ESO VLT,” Proc. SPIE 7735, 773515
(2010).

9. M. Wegner and B. Muschielok, “KARMA: the observation preparation
tool for KMOS,” Proc. SPIE 7019, 70190T (2008).

10. S. S. Eikenberry et al., “Demonstration of high-performance cryo-
genic probe arms for deployable IFUs,” Proc. SPIE 9147, 91470X
(2014).

11. T. Lozano-Pérez, “Spatial planning: a configuration space approach,”
IEEE Trans. Comput. 32, 108–120 (1983).

12. J. Sabater et al., “Kinematic modeling and path planning for MIRADAS
arms,” Proc. SPIE 9151, 91515S (2014).

13. P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.
4, 100–107 (1968).

14. M. Likhachev et al., “Anytime dynamic A*: an anytime, replanning
algorithm,” in Proc. of the 15th Int. Conf. on Automated Planning
and Scheduling, pp. 262–271 (2005).

15. M. Erdmann and T. Lozano-Pérez, “On multiple moving objects,”
Algorithmica 2(4), 477–521 (1987).

16. S. Buckley, “Fast motion planning for multiple moving robots,” in Proc.
of IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 322–326
(1989).

17. M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing
solvable priority schemes for decoupled path planning techniques
for teams of mobile robots,” Rob. Autom. Syst. 41(2–3), 89–99
(2002).

18. D. Silver, “Cooperative pathfinding,” in 1st Conf. on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 1, pp. 117–
122 (2005).

19. J. P. Van Den Berg and M. H. Overmars, “Roadmap-based motion plan-
ning in dynamic environments,” IEEE Trans. Rob. 21(5), 885–897
(2005).

20. L. E. Kavraki et al., “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces,” IEEE Trans. Rob. Autom. 12, 566-
580 (1996).

21. S. M. Lavalle and J. J. Kuffner Jr., “Rapidly-exploring random
trees: progress and prospects,” in 4th, Workshop on the Algorithmic
Foundations of Robotics; Algorithmic and Computational
Robotics, New Directions, Wellesley, Massachusetts, pp. 293–308
(2000).

22. S. Lindemann and S. LaValle, “Current issues in sampling-based motion
planning,” in Robotics Research. The Eleventh Int. Symp., P. Dario and
R. Chatila, Eds., Springer Tracts in Advanced Robotics, Vol. 15, pp. 36–
54, Springer, Berlin, Heidelberg (2005).

23. P. Isto, “Constructing probabilistic roadmaps with powerful local plan-
ning and path optimization,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Vol. 3, pp. 2323–2328 (2002).

24. R. Geraerts and M. H. Overmars, “Reachability analysis of sampling
based planners,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, pp. 404–410 (2005).

25. S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the relation-
ship between classical grid search and probabilistic roadmaps,” Int. J.
Rob. Res. 23(7–8), 673–692 (2004).

26. T. Fraichard, “Trajectory planning in a dynamic workspace: a ‘state-
time space’ approach,” Adv. Rob. 13(1), 75–94 (1998).

27. S. LaValle and S. Hutchinson, “Optimal motion planning for multiple
robots having independent goals,” IEEE Trans. Rob. Autom. 14, 912–
925 (1998).

28. F. Schwarzer, M. Saha, and J. C. Latombe, “Adaptive dynamic collision
checking for single and multiple articulated robots in complex environ-
ments,” IEEE Trans. Rob. 21, 338–353 (2005).

Josep Sabater is a researcher at Institut d’Estudis Espacials de
Catalunya (IEEC). He received his BS and MS degrees in computer
engineering from University Ramon Llull, Barcelona, Spain, in 2000
and 2001, respectively. Additionally, he obtained his MS degree in
electronics from Universitat de Barcelona in 2010. He is currently
developing the control system for MIRADAS instrument for Gran
Telescopio Canarias. His current research interests include motion
planning, robotics, control systems, and artificial intelligence.

Santiago Torres is an assistant professor at Universidad de La
Laguna. At the same university, he received his BS and MS degrees
in physics in 1998 and 2000, respectively, and his BS degree in elec-
tronic engineering in 2005. In 2008, he received his PhD from

Journal of Astronomical Telescopes, Instruments, and Systems 034001-18 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/12.925686
https://doi.org/10.1117/12.2232108
https://doi.org/10.1117/12.2233608
https://doi.org/10.1051/0004-6361/201323202
https://doi.org/10.1051/0004-6361/201323202
https://doi.org/10.1117/12.2231716
https://doi.org/10.1117/12.2055047
https://doi.org/10.1117/12.856125
https://doi.org/10.1117/12.787190
https://doi.org/10.1117/12.2057107
https://doi.org/10.1109/TC.1983.1676196
https://doi.org/10.1117/12.2055466
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/BF01840371
https://doi.org/10.1109/ROBOT.1989.100008
https://doi.org/10.1109/ROBOT.1989.100008
https://doi.org/10.1016/S0921-8890(02)00256-7
https://doi.org/10.1109/TRO.2005.851378
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/IRDS.2002.1041614
https://doi.org/10.1109/IRDS.2002.1041614
https://doi.org/10.1109/ROBOT.2005.1570152
https://doi.org/10.1109/ROBOT.2005.1570152
https://doi.org/10.1177/0278364904045481
https://doi.org/10.1177/0278364904045481
https://doi.org/10.1163/156855399X00928
https://doi.org/10.1109/70.736775
https://doi.org/10.1109/TRO.2004.838012

Universidad de La Laguna. He is the author of more than 50 journal
and conference papers. His current research interests include
robotics, control of anesthesia process, and automation.

Francisco Garzón is a full professor at the Department of
Astrophysics from Universidad de La Laguna. After receiving his
degree in physics from Universidad Complutense de Madrid in 1982,
he obtained his PhD in 1987 fromUniversidad de La Laguna. He is the
author of more than 200 papers and has supervised 13 PhD theses.

His research interests lie in the field of galactic astronomy and astro-
nomical instrumentation.

José M. Gómez is an associated professor at Universitat de
Barcelona. He is also member of the Institute of Cosmos Sciences
(ICC) of University of Barcelona. He collaborates in the development
of MIRADAS for Gran Telescopio de Canarias. His research is
focused on the development of ground based and space borne instru-
mentation for telescopes.

Journal of Astronomical Telescopes, Instruments, and Systems 034001-19 Jul–Sep 2018 • Vol. 4(3)

Sabater et al.: Roadmap search based motion planning for MIRADAS probe arms

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

