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Determination of anomalies in supersymmetric theories
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We develop an efficient technique to compute anomalies in supersymmetric theories by combining the
so-called nonlocal regularization method and superspace techniques. To illustrate the method we apply it to a
four-dimensional toy model with potentially anomaldus- 1 supersymmetry and prove explicitly that in this
model all the candidate supersymmetry anomalies have vanishing coefficients at the one-loop level.
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[. INTRODUCTION representations” in the terminology of(3]) which do give
rise to candidate anomalies for supersymmetry itself.

Supersymmetric quantum field theories have many re- When the cohomological analysis alone is not sufficient to
markable properties. In particular, quantum corrections arexclude candidate anomalies due to the existence of non-
usually better under control in such theories than in othersrivial solutions to the consistency conditigfor supersym-
due to nonrenormalization properties implied by supersymmetry or other symmetri@sone has to check by an explicit
metry. However, it is not clear from the outset whether thecalculation whether or not these candidate anomalies have
supersymmetry of a classical theory survives as a symmetryanishing coefficients. To that end one needs an appropriate
of the quantized theory, due to the lack of consistent reguregularization method. One of the main disadvantages of
larization methods which manifestly preserve supersymmemost of the regularization methods designed for supersym-
try in perturbation theory. Nevertheless, supersymmetrymetric theories is the lack of a consistent implementation of
“miraculously” appears to be preserved in standard superthe superspace technigugs6] — one of the main tools in
symmetric theories. supersymmetry — at the regularized ley&l. This draw-

An indirect but powerful and regularization-independentback, somewhat analogous to the dimensional regularization
tool to investigate whether or not supersymmetry can beroubles when dealing with chiral theories, becomes then rel-
anomalous consists in an analysis of the supersymmetrievant in analyzing the presence of anomalies in the model
analogue of the Wess-Zumino consistency conditigh under consideration. Indeed, naive manipulations in super-
Nontrivial solutions to this consistency condition are candi-space may lead to inconsistencies or ambiguities when com-
date supersymmetry anomalies whereas the absence of susiting divergent expressions, making it impossible to detect
solutions indicates that supersymmetry is not anomalous. and calculatéunambiguouslysuch anomalies. It would thus

The consistency condition for supersymmetry anomaliesbe desirable to design a method in which superspace compu-
in combination with the usual Wess-Zumino consistencytations were unambiguously defined.
condition in the case of supersymmetric gauge theories, has In this paper we develop a new efficient technique to in-
been studied already for variolls=4, N=1 globally super- vestigate anomaly issues in supersymmetric theories. It com-
symmetric modelqsee, e.g.[2,3]) and, recently, also for bines naturally superspace technigues, which facilitate the
minimal supergravity{4]. It turns out that whether or not perturbative calculations in supersymmetric theories consid-
candidate supersymmetry anomalies exist depends decisivedyably, with the so-called nonlocal regularizati¢it,g],
on the way supersymmetry is represented on the fields, i.ewhich has already been successfully used to compute one-
on the structure of the supersymmetry multiplets present ifi9] and higher-loop anomali¢8] in other(nonsupersymmet-
the model in question. For standard representations, such &s) theories. Among others, the method allows one to check
multiplets that can be described in terms of unconstrained owhether or not supersymmetry itself is anomalous. We illus-
chiral scalar superfields, one finds that candidate anomaliasate this by applying the method to a four-dimensional su-
for supersymmetry itself do not exist. However, this does nopersymmetric toy model whose supersymmetry is potentially
exclude the existence of supersymmetrized versions of othemomalous, as cohomological results indid&e
candidate anomalies such as Adler-Bell-JackiMBJ) chiral The paper is organized as follows. First we describe our
anomalies in super Yang-Mills theories. Moreover, there arenethod in Sec. Il. To that end we briefly recall the basic
nonstandard representations of supersymmeétmpn-QDS  concepts of nonlocal regularization, emphasizing its use to

determine anomalies, and describe how superspace tech-
nigues are naturally implemented in it. In Sec. Il we intro-
*Present address: Dept. ECM, Facultat dgida, Universidad de duce the toy model and present its candidate supersymmetry
Barcelona, Diagonal 647, 08028 Barcelona, Spain. Electronic ad-
dress: brandt@ecm.ub.es
TPresent address: Dept. ECM, Facultat dsida, University de 1«A theory is called QDS theory if thd® ,-representation decom-
Barcelona, Diagonal 647, 08028 Barcelona, Spain. Electronic adposes into a sum dfQ) and(D) multiplets and singlets which have
dress: paris@ecm.ub.es. only dotted indices’[3].
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anomalies. In Sec. IV we then apply our method to this toyRefs. [7,8], implementing afterwards the standard super-
model and prove the absence of supersymmetry anomalies sppace techniques in this framework.

the one-loop level. Three appendixes finally collect our con-

ventions. A. Basics of nonlocal regularization
Consider a theory defined by a classical act®(d?),
Il. NONLOCAL REGULARIZATION which admits a sensible perturbative decomposition into free
OF SUPERSYMMETRIC THEORIES and interacting parts:

There exist many ways in the literature to algebraically S(®)=F(®)+1(d) with F(P)=1DAF,Bdg.
compute(one-loop anomalies. All of them are essentially (2.2
based in testing the response of the — suitably regulated —
partition function of the model under th@finitesimal ver-  Introduce now a field-independent operatdi—¢),® such
sion of the symmetry transformation under study. Depar-that a second-order derivative “regulatorR,® arises
tures from unity of the Jacobian arising upon this changghrough the combination
which cannot be absorbed by suitable counterterms reflect R 1 ce B
then the presence of anomalies in the model. Ra"=(T " H)a"Fc”,

The so-called “nonlocal regularization” method, recently
introduced in[7,8], fits perfectly well in this philosophy.
Indeed, this approach proceeds by constructing from th

and construct from this object the so-called smearing opera-
tor £,® and shadow kinetic operato€( %) ,®:

original actionS(®*) and symmetry transformatiorssb , of R,B

the model a regulated actio8,(®*), invariant under a sAB=ex;{i2), (2.3
“regulated” version of the original symmetry, ® », where 2A

A stands for a cutoff or regulating parameter. Such invariant B

action, exponentiated afterwards in the path integral, gener- (O 1),B=T le dt exp(t Rc 2.4
ates then a modified set of Feynman rules and propagators A A JoAZ AT '

that yield finite Feynman integrals for finite values of the
cutoff at all loop levels and, thus, a finite partition function.  To each original fieldD , is now associated an auxiliary,
For our purposes, there are two main advantages of thisr “shadow,” field ¥ 5 with the same statistics. Both sets of
approach relative to other “standard” regularization meth-fields are then coupled by means of the auxiliary action
ods. First of all, the nonlocally regularized acti®y(®*) _ A
can just be seen as a “smooth” deformation of the original S(O,W)=F(D)-A(V)+1(®P+V), (2.5
one such that its main featur@imensionality, field content,
symmetries, etg.remain unaltered. Therefore, when dealingwith A(W), the kinetic term for the auxiliary fields, con-
with supersymmetric theories, in particular, superspace constructed with the help of Eq2.4) as
putations at a regulated level can be performed in exactly the
same way as in the original theory. Second, and on top of
that, the invariance 06, underds, directly relates potential . o
one-loop anomalies to the finite part of the functional trace2nd where the “smeared” field®, appearing in the free
— now completely regulated — of the Jacobian matrix,Part of the auxiliary actiori2.5) are defined, using E¢2.3),
namely? by ®p=(c 1) B D5
The perturbative theory described by E2.5), when only
external® lines are considered, is then seen to describe the
, (2.1 same theory as the original acti¢2). However, the special
form of propagators and couplings in Eg.5) lead the loops
formed with shadow propagators to isolate the divergent
where (- 1)*=(—1)*al stands for the Grassmann parity of parts of the original diagrams. As a consequence, dropping
the field®, . In view of these facts, nonlocal regularization out these loop contributions, i.e., the quantum fluctuations of
appears thus as an excellent candidate to implement our prthe shadow fields, by hand regularizes the theory. Su@dan
gram. hoc procedure may, however, be simply implemented by
In what follows, we briefly summarize the construction of putting the auxiliary fields¥' classically on shell. The clas-
the nonlocal actiors, and of its symmetries, , as well as  sical shadow field equations of motion,
the specific form of the anomal§2.1), along the lines of

A(W)=3VAO™ 1)\ g,

(87 Pp)

(—DA 7D

A:

0, S(®, V)
IV,

a,!
=o:»qu=(¢+B(cb+qf) Og", (2.6

2de Witt notation is assumed throughout the paper whenever capi-
tal indicesA,B, ... are used. These indices indicate the differentshould then be solved, in general, in a perturbative fashion
fields, their componentsand the space-time point on which they and its solution¥y(®) substituted in the auxiliary action
depend(unless it is explicitly displayed In this way, a summation (2.5). The result of this process is the nonlocalized action to
over A includes not only discrete summations, but also integrationbe used in regularized perturbative computations:

over (supejspace-time. The derivatives are left and right functional _
derivatives. SA(P)=8(D,Vo(D)). (2.7
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Moreover, as mentioned above, the nonlocalization proce- Fortunately this is not necessary at all since superspace
dure just presented has the merit of preserving at the trechniques are of course not restricted to true superf?dhds.
level a distorted version of any of the original continuousfact, we will show now that they apply also to “constitu-
symmetries of the theory. Indeed, assume the original actioants” of superfields such as
(2.2) to be invariant under the infinitesimal transformation . . _
o(x,0)=a(x)+ 0,b*(x) + 2 6%c(x), (2.10

(Sq)A: RA(q)) .
provideda,b,c are elementary fields. Namely we can then
Then, the auxiliary actiofi2.5) is seen to be invariant under define functional derivative$ with respect tog simply
the auxiliary infinitesimal transformations through

30p=(e")A"Re(P+T), SVp=(1-6")a Re(P+V), A S A )
dp(X, 0) aC(X)+6 ab(x) 20&a(x)’ @13

while the nonlocally regulated actia$i, (®), Eq. (2.7), be-

comes invariant under which results in
8\ = (£2) \BRG[D + W o(D)], do(x, 0) S o
AFA (8 )A B[ O( )] ()D( _) :52(6— 6’)54(X—X’)556(Z—Z’)

dep(x',0")

with W y(®) the solution of Eq(2.6). In this way, an exten-

sive use of the chain rult_i' allows us to determine a Close@ummaﬁon over their indices in de Witt's Condensﬂj nota-
form for the anomaly(2.1) in terms of propagators and ver- o1 includes then simply an integratigii®z= [ d*xd?4.

tices of the original theory as Alternatively we car(and will) use instead of the quan-

tity
J.R
—T(—1)A(s2) . B7.C A B A —
A=[(=D)"(e)a"Ig"(0x)c"],  where Jp P (2.9 (z)=exp —i056) (X, 0), (2.12
and with the regulated identity&(\)AB defined by which is antichiral in the sense that
D,»=0, (213

F) BE(SB—OC|871:58+ Ocan,
(On)a"=(n ale?) A ngl( ale?) where the standard covariant derivatives are defined as

in terms of the functional Hessian of the original interaction D 1% +,;& _ o - a (g% - (2.1
in Eqg. (2.2 a” Hpe 107000 a™ ; 10994, . (2.14
| B 90yl (2.9 However,® is not in general a superfieldee Appendix B
A IProdg” ) i.e., Eq.(2.13 does not reflect the transformation properties

of ®. The functional derivative with respect ® is then
The proof of these statements is straightforward and can beefined by means of Eq2.11) according to
found in the original referencd,8], to which we refer the
reader for further details.

— J
=exp(—i0d0)——.
9P (2) I¢(x,0)
B. Implementation of superspace techniques

o . This results in
The nonlocal regularization procedure outlined above ap-

plies of course to all kinds of perturbative models, including ab(z) 1

supersymmetric ones. Now, it is well known that in super- ) 2 D*8%(z—-7), (2.19
symmetric theories perturbative calculations can often be

considerably simplified by means of superspace techniquesye to the identity

due to the cancellation of terms caused by supersymmetry. It o o

is therefore natural to look for a way to implement these exp(—i000+i6'90")8%(z—2")=3D?*8%(z—7").
techniques in the nonlocal regularization procedure. An ob-

vious idea is to replace ordinary fields by superfields. How+ormula(2.15 can indeed be found in many textbooks on
ever, one faces immediately the following related difficul- supersymmetry for functional derivatives with respect to an-
ties: How should one define functional derivatives withtichiral superfields — we just extend it to constituents of
respect to arbitraryconstraineflsuperfields and integrations superfields satisfying Eq2.13. Because of the presence of
over their “superspace coordinates?” These two problemshe antichiral projectogD? in Eq. (2.15, summation over
appear to make the simple substitution “fields super-

fields” impossible except in very special cases where one——

deals only with particular superfields such as unconstrained3see Appendix B for a discussion of the concept of a superfield.
or chiral ones. Thus in general we cannot simply take the “For definiteness all formulas are written for left derivatives in
®’s of the previous subsections to be superfields. this subsection.
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TABLE I. Supersymmetry multiplet of the toy model.

é Xp A Vs 7 1p F
D¢ spA 0 2idgxgteap  200A 200,V e F 2000
D.¢ Va Wi 8o eapF 0 0
dim(¢) 1/2 1 1 3/2 312 2

the indices of these constituents does not involve the integraanomaly coefficients. However, for the reasons we have just
tion fd®z but again only an integratiofid®z. Analogous explained, we will apply a somewhat unconventional ap-
formulas hold of course for functional right derivatives andproach involving not only true superfields but also special
chiral quantities. constituents of them, which will be introduced and discussed
We conclude that we can use quantities such as Eq#n the following.
(2.10 or (2.12 in nonlocal regularization instead of ordinary ~ The fundamental“defining” ) superfield of the multiplet
fields. This remains true even if it is impossible to combineof Table I is
all the elementary fields in such quantities — the remaining -
elementary fields may be treated as usual; i.e., one can use G*=exp(#D+6D)x*=H"+ 6K, 3.3
quantities(2.10 or (2.12 and ordinary fields simultaneously .
if necessary. The only thing one has to keep in mind wher{"!
dealing with such constituents is that operators such as Egs.
(2.14 or the usual generators of supersymmetry transforma-
tions,

th
He=exp(—i0960)h®, K=exg —i6d0)k, (3.9

h*=exp( D) x*= x*+ 0,V + 1 62y, (3.9

P R—
V== —1 6%,

— 0 —
YT o s V@z—ﬁzﬂeaam, (2.16 k=exp 6D)A=A+ 0,4*+ 3 6°F, (3.6

) ) _ ] where we used the identit§Al), Table |, and the notation
do not have the same interpretation acting on constituents oéaa—: 679 - 0% 0?=6%0. and@’=0-6° The split of G®
superfields as on superfields themselves: In particular the OBito the c‘z)anst}tuentﬂa aa’nd K will b‘é uéeful later on. in

eratprs(2.16) do not represent the supersymmetry tranSfor'particular since the latter are “antichiral” in the sense that
mations any longer on all of the constituent fields.

D,Hz=D,K=0, 3.7
11l. MODEL
_ _ whereasG* itself satisfies the “constraint”
A. Multiplet and supersymmetry transformations
The four-dimensional toy model we are going to use con- D(aGpy=0. 3.8
tains only a supersymmetry multiplet considered in Sec. 7 o
[3]. This multiplet consists of complex Weyl spinogs ,
and z, a complex vector field/, and two complex scalar
fields A andF. On these fields the abstract supersymmetr

It is important to realize and keep in mind thdt, is not a
superfield since it does not satisfy the first identiB1).
)}?ather, its supersymmetry transformations are given by

algebra B DHy=V HytesK, DaHg=ViHs. (3.9
[Pa,Pp]=[Pa,Qal=[Pa,Q.]=0, In contrastK is a true superfield and thus satisfies EBfl):
{Qu.Qp=1{Q..Q5}=0, {Q,.Q)}=-2ic%,P. (3.1 K=1iD,G* D,K=V,K, D,K=V.K. (3.10

is represented byR,,Q,,Q.)=(d,,D,,D,) according to We remark that the supersymmetry multiplet of Table |
Table I (using X, =02, Xa). can be truncate¢consistently with the supersymmetry alge-
The assignment of the dimensiofdim) to the fields in  bra) in two ways, by setting to zero either all the fields
Table | follows from the choice diny) =1/2, which will be  x,V,» or all the fieldsA, ¢,F. One would then be left with
the power-counting dimension ¢f, and from the standard standard antichiral supersymmetry multiplets given by
convention dimp,) = dim(D_,)=1/2, dim(@,)=1. Super- (A,,F) and (y,V, n), respectively, corresponding kK and
symmetry transformationégsy of the fields in Table | are H€¢, respectively. Hence, the supersymmetry multiplet of
then defined according to the relation Table | may be regarded as a nontrivial merger of these two
. multiplets. Alternatively, one can regard it itself as the trun-
Ssusy= €D+ €,D*=€%D,,, (3.2

where the parametees$’ are constant anticommuting spinors. SThroughout the paper superfields or constituents thereof are
The supersymmetry multiplet and transformation laws ofcalled antichiral if they satisfy Eq3.7) and(functions oj elemen-

Table | can also be formulated in superspédfe Appendix tary fields and their derivatives are called antichiral if they fulfill
B) which will be useful within the computation of the D_¢=0.
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cation of a full complex vector multiplet corresponding to ani.e., we will set to zero the Wess-Zumino superpotential
unconstrained complex scalar superfield. (3.16) as well as the coefficients; andb,. Furthermore, we
will assume

B. Action
. . a;#0, a;+a,#0, (3.18
Using the techniques df3] one can prove that the most

general real action for the supersymmetry multiplet of Tablesince otherwise Eq:3.17) does not give well-defined propa-
[, which is (a) polynomial in the elementary fields and their gators for all the fieldsa; # 0 is imposed since otherwise the
derivatives,(b) constructible out of field monomials of di- kinetic terms of Eq.(3.17) reduce to those of the Wess-
mension<4 (with dimensions as in Table),I(c) Poincare  Zumino model forA, #,F and the remaining fields would not
invariant, and(d) invariant (up to surface termsunder the propagatea;+ a,# 0 warrants that Eq3.17) have no gauge

supersymmetry transformatiols, andD, given in Table |,  invariance.
can be written, up to surface terms, in terms of superspace
integrals in the form C. Candidate anomalies
By standard arguments, analogous to those usgt ind
S=f d*X(Ly+Ly+La+Ly), (3.1)  applied to the vertex functionakffective action, one con-

cludes from theclassical supersymmetry algebr@.1) that
. at lowest order ik supersymmetry anomalies must satisfy
L1=J d20{ u’K+ c.c}, (3.12  the consistency conditions

Di,Ap=D;Ap=D,A;+D;A,=0, (3.19

_ 45 ~ a
Lz_f d"6{ia, GIG +aKK where the contributiond , and A, to such an anomaly are

_ local functionals of the fields. Furthermore, one can assume

+(%a3GD?’G+imGG+H c.c)l, (3.13 o

A,#D g, A,#D,I'g, (3.20

L3=J d*6{(3b;GGK+3b,GGK)+ c.c}, (3.14  for any local functionall, of the fields since otherwise the
anomaly can be removed through a local counterterm, at
L least up to terms of higher order in
|_4:f d*93:b;GGGG, (3.15 The consistency conditiori3.19 and the nontriviality
condition(3.20 are most efficiently formulated and analyzed

. ) . . using cohomological techniques. To that end one introduces
whereG* andK are the superfields given in Eq8.3) and a "Becchi-Rouet-Stora-Tyutin”(BRST) operators corre-

(3.4; w?az,mb;,b, are complex parameters and ; .
a,,a,,b; are real parameters. The action is spelled out ex§pond|ng to the algebred. 1):
plicitly in Appendix C. —9
Some special features of this general action merit now s=£9D,+£&°D,+C,+2iéo?é—3,
special consideration. First of all, the terms in E(&12- JC
(3.15 corresponding to the parameteré,m,b, give rise to
a superpotentialg*K — mK2—b,K?3) for the antichiral mul-

tiplet (A,#,F) since one has

where&® are constant commuting supersymmetry ghosts and
C? are constant anticommuting translation ghods, @nd

D, vanish on the ghoskss is nilpotent and allows us to
reformulate Eqs(3.19 and(3.20 through

f d26_,u2K+%Jd40(mGG+bZGGK)
sA=0, A#sly, (3.2)

= f d26( u2K —mK2—b,K3), (3.16  With

. I . = EOA + EOA
where= denotes equality up to a total derivative. Expression A=At A,

(3.16 together with the kinetic term corresponding to the, Egs.(3.19 and (3.2)) it is understoood that the operators
parameter, constitutes thus nothing but the familiar action (D, and s, respectively act on the integrands of tha’s

of anss—Zuming model for the fields i, F mgking up the andT'; and, in general, equalities need to hold only on shell
(antichiral superfieldK, K. The other terms in the action (yp to surface terms

ASyF. _ . (3.21) have been given in Sec. 7 [8]:
For simplicity we will later not work with the above gen-

eral action but restrict ourselves to the simpler action -
Alzga d4XD XQ:—Z&“J’ d4X7]av

fdsz(ialeae_+a2KK_+%bleG?Jr%blGGK); o
(3.17 Az=§“f d*xD?(x. ' '), (3.22
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where? is the combination of the operatory/, defined in Eq.(2.16 instead of theD,
. (recall that theV's represent the supersymmetry transforma-
zﬁ;: Yo+ 210 ,,x° (3.23  tions only on true superfielgls

(b) The dimensions oA ; andA, indicate that they would

The explicit form of A, is given in Appendix C. We note play different roles if they would occur in th@nomalous
that bothA; andA, give in fact rise to two independent real Jacobian of supersymmetry transformatiofs: has dimen-
solutions of Eq.(3.21), given by their real and imaginary sion 1 and thus would eventually arise adi@ergentcontri-
parts, respectively. bution to that Jacobian, in contrastA@ which has canonical

Using the methods df3] and extending them to the on- dimension 4 and is interpreted as a genuine potential
shell problerfi one can prove that, up to trivial solutions of anomaly.
the formsI’, and surface terms, the functiond3.22 and
their complex conjugates are indeed the only inequivalenjy. coMPUTATION OF THE ANOMALY COEFFICIENTS
solutions to Eq(3.21) in our model which have the correct
Lorentz transformation properties and are polynomials in all Let us finally pass to investigate the actual presence of the
the fields and their derivatives with didj<4 [using candidate anomalie€3.22 in our toy model by applying
dim(&) = —1/2]. expression(2.8) of the nonlocally regularized form of the

It is evident that both functiona8.22 indeed solve the anomaly to it. For the sake of simplicity, to illustrate the

first condition(3.21), using the fact thag’ is antichiral, i.e., p_rocedure and results we res_trict ourselves to the simple ver-
sion (3.17) of the general actio3.11).

= The structure of the superfiel(B.3) and the previous
o, =0. . : : ; S
considerations immediately suggest to work with its
“ (antichiral” constituentq3.4) and use as a basis to express

FurthermoreA; andA, are cohomologically nontrivial; i.e., e
the matrixlike operators

there is no local functional’y of the fields such thasl',
equalsA; or A, on-shell modulo a surface term. This can be H
verified straightforwardly by an explicit inspection of all the @
relevant candidates foF,. In fact there are only finitely - D,
many such candidates as only functionals need to be consid®”=(®? ®z)=(H*K;H,, ,K), CDAE( —)E
ered which have the same dimension as the respedtiie

and 4, respectivelyand which are Lorentz invariant, thanks

to the properties o$.

Without going into details we remark that the presence ofwhere latin indices express compactly antichia and chi-
candidate supersymmetry anomalies in our model is due teal (a) components. In terms of thegantichiral compo-
the fact that the representation of the supersymmetry algebrgents, the actioit3.17) reads then
given in Table | of Sec. lll A does not have “QDS struc-
ture” in the terminology of 3], in contrast to more standard _ [ 4 . o T T —
representations of supersymmetry. Furthermore, we note thgt_f d°z{iay(H*+ 6°K) daa(H+ 6°K) +a,KK
the non-QDS property itself can be traced back to the “con- _
straint” (3.9). +[3bi(H*H +2H“0, K+ #?°K?)K+ (c.c)]}. 4.1

Finally we add two comments concerning the consistency
condition for supersymmetry anomalies in general and its As pointed out in Sec. Il Band in many textbooksthe
solutionsA; andA,. constrained character of thegant)chiral components re-

(@ In superspace notatioh; andA, read quires some reinterpretation of their superspace integration
and functional differentiation rules. First of all, the func-
tional derivative rules fofantichiral fields(2.15, now read-

ﬁl; ’

—gaf d826%G,, Azz—gaf d8262G W'V’

ing
(3.29
_ b2 9Dy, .
with G, as in Eq.(3.3) and¥’ being the antichiral superfield EroLa aq) =3;D%6y,

whose lowest component field i, Eq. (3.23:

— — — where 8; encodes, according to the compact notation we are

W =exp(6D + 6D) ¢, =D K+2i3d,,G". using, a discrete identity as well as the eight-dimensional

delta functions®(z—z') in superspace, express nothing but

The presence of? in the integrands in Eq3.24 indicates the fact that(antichiral fields and operators obtained from
that A; and Az cannot be written as superspace integralsunctional differentiation with respect to them naturally live
Jd®z (or [d®Z) over true(antichira) superfields. This shows in six-dimensional superspace. This fact is conveniently ex-
that in general it would be misleading to formulate the con-pressed by introducing the projector in the space of
sistency condition$3.19 and(3.21), respectively, in terms antichiral-chiral superfieldsF(q)AB:

(Ps® 0 | [3D%° 0
0 (P9,

5This is done efficiently by introducing antifields in the manner of (pq)AB:
[10].
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verifying’ computation, namely, the Jacobigh8) of the original trans-
formation, the Hessian of the interactiéh9), and the regu-
c b_ 6571 2 o iy2 - lating objects related to the kinetic operat@r2). The Jaco-
(Pg)a(Po)c J °773D;0%(2-2")3 Dy 82"~ 2') bian of the original transformatiof8.2) adopts in the above
basis, according to Eg$3.9 and(3.10), the form
= 1D202-2)= (P, @2 910 Ea39 and(3-10
12 7Db
and an analogous relation for the chiral sectolArt- B:’?r(‘SSUSVCDA) = (JP)\B= 2D°Ja 0
ti)Chiral” kernels will thus be typically expressed, in com- A Py @A 0 %Dzj?b— '
pact notation, as 4.3
Ma®=(Pg)aA®McP(Pg)pP=(PgMPg) 4%, with its antichiral and chiral sectors given by
so that supermatrix multiplication will then yield, according €V, 5. e, _ ezvaadﬁ e
to Eq. (4.2, b= - , = - :
q.(4.2 Ja 0o ev. | T 0 v,

MASNB=(PMP ) A (P NP, cB= (P MPNP)AB.
ATEC d VA TaThalC a @A In an analogous way, the Hessian of the interaction term

The nonlocal regularization of the modét.1) requires in Eq. (4.1 results inIABz(PqIPq)AB, with the “naive”
now the identification of the basic quantities involved in theHessianZ,? expressed as

b,8,PK b,6,K 0 b,G,
- bi6PK b.6%K biG;  (0,G%0,+b,G,6%
1o b, G* by 64K by 6°K
biG#  (0,G%0,+b,G,0%) byOzK b, 6°K

Finally, the kinetic operator is found to &%= (P, FP) A®, with the “naive” kinetic termF,° given by

0 0 121005 ialaa;ﬁﬁ_
0 0 12,0%d,3 ax+ia 090
}"AB: . .
ia; 0% ia,0*f0, 0 0
ia,0,0F a,+ia 000 0 0

Introducing then as operatol ! the free propagator of the model in superspace up o] !, namely,
(T™HAB=(PyT 'Pg)a° with

i(a;+2ay) —
0 i il . T I
2a,01 s Vali| O
(71),8- L 0 0 0 -1
AT dag+ay | fi(a+2a,) - — — ’
S %a“ﬁ—eaeﬁ) P 0 0
1
6P -1 0 0

a suitable regulator, diagonal and quadratic in space-timén this way the corresponding smearing and shadow kinetic
derivatives, arises: operatorg2.3) and(2.4), adapted to the chiral case, result in

2y B_ .2 B B_~ 1 B
e =g4(P , Op\°=0o(P,T P ,
RAB: _D(Pq)AB- ( )A ( q)A A ( q q)A

with £2 and o defined as
"Recall that matrix multiplication among projectoPs must be

performed using an integration in the corresponding six- 82=exp(—D/A2) o= Jlitgexq—tD/Az).
dimensional superspaces, i.e., eitfidfz or [d°z. oA
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The form of the candidate anomali€3.22, involving  where the expressions for the antichiral sector operators are
only either products of antichiral fieldd*, K, or of chiral ~ found to be, upon use of the commutation relation
fieldsH®, K, but no crossed terms, indicates that the evalu[févgﬂa]: €as
ation of their coefficients by means of the supertréz®)

can now be considerably simplified by considering, for in- (An) P=e23D[ €2V 50,— €,1(S'D,)" 1SP3D?
stance, only the antichiral sector, i.e., by neglecting the fields -

H* andK, and by further restricting the computation to only =£23D%0,€°V 5(S'D,)" 1S3 DA,

linear and trilinear terms it “, K, namely, to the first- and -

third-order interaction termfSThe coefficients coming from An=sZ%DZe‘_SVf(S“/Dy)”*laﬁsﬁ%l)z, @.7)

the chiral sector contributions can then be automatically de-
termined by complex conjugation. Therefore, from now on

we are going to concentrate our attention on the terms  \VWhereas the chiral sector operator is directly given by

-Zn: [( _ 1)A(82)ABJBC(OCDI DA)n]anti forn= 1,3, CnI 826§V§%'D2'Dalgal%lpz' . %DZD%Q““%DZ. (48)
(4.9 _
The general expression of,, Eg. (4.4), is thus
where the subscript “anti” indicates that all terms involving
H* andK are neglected. A =T = (AL S+ A+ THCL], 4.9
Our main task shall now consist of determining the diag-
onal entries of the matrix involved in expressi@h4). First  where the extra minus sign comes from taking the discrete
of all, thenth power of the matrix0,°I c® reads, under the trace over the fermionic fields, while the symbols Tr and
above restrictions, Tr stand, respectively, for the functional traces in the anti-
chiral and chiral superspaces, namely,

o an [ (O
(OA IC )anti: 0 (Ol )?— ' p—
n/ b Tr[A]=Jd6ﬁ(z,z’)|Z:7, Tr[C]=jd62C(z,z’)|z=z,.
Its diagonal blocks — the relevant ones taking into account (4.10
the block diagonal form of the Jacobidd.3) — can be o )

easily found by using the commutation relation Upon substitution of expressioni.7) and (4.8), both
traces in Eq(4.9 are then seen to share similar structures.
[1D2,0.1=D, . @5 However, there is the fundamental difference that such func-

tional traces are taken in different superspaces, according to
o Eqg. (4.10. Therefore, in order to compare both expressions,
resulting in some mechanism should be found to relate supertraces of

s et s et antichiral expressions to those of chiral ones. Fortunately, it
0,(S'D,) —0,(S"D,) 03) L2 is not difficult to verify, as shown in Appendix D, that for
—(S" D))"t (SD,)" 1, 27" chiral operators4, namely, those verifyin@,.A=0, the fol-
lowing relation holds:

(@ n)ab: %Dz(

o _ - o
(Ol %= %DZ< ) 317, T 3D2AL D2 =TI AL D?4D2). (4.11

0o (p,gM"
Using this result as well as the commutation relatidrb)
and the cyclic property of the regulated trace, the antichiral
sector contribution Tr—(A,),“+A,] to Eq. (4.9 can be
oG*?, (4.6) rewritten in chiral form as

in terms of the quantitieS*, G* defined as

1

a_;_Z o« a_
A VTP

. T = (An) 2+ An]=Tr By], 4.1
where all the operators are understood to act on everything T~ (An)a n]=TBy] 4.12

on their right. Terms indicated by ellipses in the above Mas it the operatoB. given b
trices turn out to be irrelevant for the present computation. P nd y
Afterwards, straightforward matrix multiplication yields — — — —
Bn=8€’V 53D°G1D,, ;D - - s D°G*D,, 3D?,
diad (£)APIe“(Oc®l p5)"ani= (An) o?,An;0.Cy),
after substitution o8* by its explicit expressiofé.6). In this
way, B, is seen to “almost” coincide withC,, Eq. (4.8),
8This restriction is indeed sufficient even though candidatewhen reading it from the right to the left.

anomalies are defined only modulo trivial solutions of the consis- This similarity may conveniently be exploited by using
tency conditions. The reason is that the supersymmetry transformahe property that the traces of an operator and of its transpose
tions of Table | are linear and do not mix the fields of the chiral andcoincide. Combining further this fact with the cyclic property
antichiral sectors. of regulated traces, the following relations are seen to hold:
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ﬁ[Bn]:ﬁ[g%ﬁv_&%ﬁgalpal%ﬁ. : .%ﬁganpan%ﬁ] o matriceso?®, 5 (a, row index; 3, column index
=TI[4D?GD, iD? .- D*GD, 1D 57 o (O L (01
1 n B g = 3 g = 1]
- B 0 1 10
= —(—)2"T[s2€V ;1 D*D,, G
v ; (o —|) (1 0)
_ _ — o=\ . , o0°= .
X % D2.. % DZD%Q“"%DZ] | 0 0 -1
— o matrices
=-TrCy], 7
so that the contribution coming from the antichiral sector, o2t =gPe Py,

Tr[B,], Eq. (4.12), is seen to exactly cancel that coming
from the chiral sector, TC,], for all n. The present compu-
tation leads thus to the vanishing gf,, Eq. (4.9), for all ab f_1, ab_ ba B ~——aba. _ 1, _b_ b _aa.
n and, with it, of the potential anomalies of our model. ¢ =a(0707—0m0%),", 0T =a(0t0tm0n)
Therefore, we conclude that the latter, potentially present on . _ . .
cohomological grounds, actually do not show up in the 2. Spinors, grading, and complex conjugation

model we have analyzed at the one-loop level. We have also \ye work with two-component Weyl spinors. Undotted

checked that this remains valid for supersymmetric actions L e
which differ from Eq.(3.17) and arise from Eq(3.1D) by and dotted spinor indices and a distinguish the §,0) and

1 i iu-
turning on other(combinations of coefficients such aas, (0.5) representations of SL(@) related by complex conju

m, or b;. However, we have not performed the computationgatlon' Raising and lowering of spinor indices:
for the most general actio(8.11), as the main purpose of _ B a_ _ap o B e _aB, .
considering the toy model was the illustration of the method% Saplts Y=g YT eaplts U=,

outlined in Sec. II. Contraction of spinor indices:

and o2°, 72 matrices

V. CONCLUSION I =Ny X=X
The purpose of this paper is to show that implementation oo . . ,

of superspace techniques in the framework of nonlocal regu-Oréntz vector indices in spinor notation:

larization constitutes a suitable and efficient tool to analyze

anomaly issues. To outline and illustrate the method, we

have applied it to a toy model whose supersymmetry, by

cohomological arguments, is potentially anomalous, but

turns out to be actually nonanomalous at the one-loop levef

As a by-product, the result of the computation gives furthe®

evidence that the remarkable quantum stability of supersym- S

metry even extends to models which admit nontrivial solu- |XZ1,_.Z:'|:m+ n+gh(X) (mod2).

tions of the consistency condition for supersymmetry anoma-

lies. Finally, although not proved, our construction alsoThe grading of the fieldaﬁi determines their statistics,

points to nonlocal regularization as a possible candidate for a

supersymmetric invariant regularization method. &' ¢j:(_)\¢i\\¢j\¢j ¢

Vaa=0%aVa.
The grading(Grassmann parijy| X| of a field or an op-
rator X is determined by the number of its spinor indices

nd its ghost numbeigh):
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APPENDIX A: CONVENTIONS AND NOTATION - —
Aap=(—)?alag
1. Lorentz- (SL(2,C)-) invariant tensors
Minkowski metric, e tensors and thus the minus sign in front éf96 in Eqgs.(2.16 and
(2.14.
Nab= diag(l,—l,— 1,_ 1)’ sabcdzs[abcci]’ 80123: 1’
R cB _83&, p12— 12 1, 3. S—uperspace conventions and useful identities
. , 0* and #* are odd graded, constant, and related by com-
ey P=6,P=diag1,)), e,,e7P=6",=diag1,1). plex conjugation. Superspace integration
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J dae=JdW:1, szo:fdazdel,

f dZg= f dolde?, f d*o= f d2¢d?g,

J d6z:f d*xd?g, fdﬁz_=J d*xd?6,
fdgz=f d*xd*e.

(0-0)=—3(6—6")3

S functions

(0—6')=—3(6-0')?,
8%(z—2")=5%0—0")8*(x—x"),
85(z—7)=5%(6—0')8*(x—x"),

88(z—2')=6%(6—0')6%(6— 0') *(x—x).
Useful identities
exp 6D + 6D) = expli #36)exp( 6D )exp D)
=exp(—i036)exp( 6D)exp 6D), (A1)
D,exp( 6D+ 6D)=exy 6D+ 6D)D, .
0 integrations over superfield82) thus result in

J d20exp( 6D+ D) F(b,db, . . .)

=1D2exp 0D) (b0, . . .),

J d*0exp( 0D+ D) F(b,db, .. .)

=1D2D2f(¢,d¢, . ..),

where= denotes equality up to a total derivative.

APPENDIX B: SUPERFIELDS AND CONSTITUENTS

2407

transformations of the latter according to the conventions
used in this paper. As usual we implement the supersymme-
try transformations on superfields through the operators
V.. V.. Eq. (2.16. Then, given a(linean representation
D,.,D, of the supersymmetry algebré8.1) on ordinary
fields ¢' such as in Table | of Sec. Il A, superfields are

defined as function& of the 6, ¢, ¢' and of the deriva-
tives of theg', 3=32(6,6,¢,9¢, . ..), satisfying

D,3=V,S, D,3=V.3, (B1)

whereD, and D, act nontrivially only on thep' and their
derivatives and anticommute with all tt#s and #’'s. The
operatorsV ., V., Eqg.(2.16), provide then a representation
of the supersymmetry algebré3.1) with (P,,Q..Q.)
=(—d,,—V,,—V,). Note thatV,3 is not a superfield
since itsD;, transformation is not given by .,V 2, but
rather by

Instead, and in contrast to th&s, the standard “covariant”
derivativesD,,, D,,, Eq. (2.14, map superfields to super-
fields because they anticommute both with Bs and with
the V's.

Having characterized superfields abstractly by &Bf),
we can now construct them explicitly: Any superfield, i.e.,
any solution of Eq(B1), can be written in the form

S =exp(6D+ 6D)f(h,d, . ..), (B2)

wheref(¢,d¢, . ..) is afunction of the(ordinary) fields and
their derivatives and we used the summation conventions

6D=0°D, and D= 6,D“. The proof of this statement is
straightforward using that) Eq. (B2) satisfies Eq(B1) for
anyf(¢,d¢, ...), as can beasily checked directly, and)
any nonvanishing superfield has a nonvanishing
#-independent part which is required by EB1). The asser-
tion is now proved as follows: Given a nonvanishing solution
> of Eq. (B1) with #-independent parf(¢,de, ...) we
considery,’' =3, —exp(@D+ 6D)f(¢,d¢, . . . ). Thelatter is a

In this appendix, we briefly review the construction of superfield due tdi) and must vanish due t@i) since by
superfields out of ordinary fields for given supersymmetryconstruction it has n@-independent part.

APPENDIX C: LAGRANGIAN AND CANDIDATE ANOMALY IN EXPLICIT FORM

The various part$3.12—(3.15 of the general Lagrangian read, expliciflyp to total derivatives

f d20K=—F,

f d*0iGIG=i nin—i Y+ 290 x+ 2 x— 4i YT oy — AATA— 4(9,V3) VP + 2F oo F 30+ 2iF 9,V3— 2iF 9,V

j d*0KK=— 4ACIA— 2i o+ FF.
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f d*01GD2G=2i pay+ 45 x— 4V, OVA— F2—4iF 9,V?,
f d*0GG= — 24+ 4FA,

f d40%GG?E —Agip— ZXXm;F 2iX0'a%aA_—A771//+ V“a(ﬁl//a— ZiXaﬁﬂéth)

— 4IAV39,A—F(V3V,— x7) + F(2AA— y4),

f d*0LGGK=— Ayy+A%F,

f 003G GGG=1APAZ+ VAV, AA+ 12VAV, VPV, — F (xVx— Axx) — x 1VaVe+ xV7A— xo%0 YV oV~ XVYA

~2XUAATT (A IXA) = 2AAVA3(00 ~ (V" x8) dac GNP + B b= 3000 (4
+ixxda(¢ox) — (xx)D(xx) +c.c.,

With F o= 9,V— 3V, and 0 = d,0%= 14,999,
The integrand of the candidate anomaly in Eq. (3.22 reads, explicitly,

ID2(Exy' §') = Ex{21 820K yuF o B(3,V2) dpVP+ AF P 20— 2F2— BIF 0,V3+4iyf dm} — Emyp’ o' — 26V’ F

— 4 E0PTP Y N 1AV, -

APPENDIX D: PROOF OF RELATION (4.11)

In the perturbative computation of the anomaly coefficients performed in Sec. 1V, relatidih has been seen to be crucial
in checking their vanishing. In this appendix, we prove that relation.
Consider a generic chiral operatdr namely, an object verifyin@,.A=0, and a typical trace over this quantity of the form

TH3D?A3D?)= f A3 D? AL D258z~ 7)) 7= 7= f 5207’ [$D?AED?6%(z-2)][3D?6%(2 ~2)]. (DY)
The identity for chiral expressions,
A(z)= f d°2'3D?6% (2~ 2") A(2"),
allows us to rewrite Eq(D1) as
fdGz_dGz_'d6z"[%D%ﬁa%z—z”)][I(z”)%Dzag(z"—z')][%pzag(z'—z)]
- J d52d°2'[ A(2')3D?6%(2' - 2)[[3D*4 D2 8%z~ 2')], (D2)

where in writing the second expression use has been made of the pr@b@rfpr the antichiral projecto$D?. By exactly the
same arguments, EGD2) can be further rewritten as

fd%ﬁz’dﬁz"[%ﬁas(z"—z’)][ﬂz')épzag(z'—z)][%DZ%ﬁag(z—z")]
=f d%2' d®2'[3 D282~ 2') [ A(Z) s D?3D? 882"~ 2')]
- [ doa (20702 2 = THATDPTR),

which finally shows the fulfillment of relatio4.12).
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