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We consider the two Higgs doublet model extension of the standard model in the limit where all physical
scalar particles are very heavy, too heavy, in fact, to be experimentally produced in forthcoming experiments.
The symmetry-breaking sector can thus be described by an effective chiral Lagrangian. We obtain the values
of the coefficients of thé(p*) operators relevant to the oblique corrections and investigate to what extent
some nondecoupling effects may remain at low energies. A comparison with recent CERN LEP data shows
that this model is indistinguishable from the standard model with one doublet and with a heavy Higgs boson,
unless the scalar mass splittings are laf§0556-282(197)04013-7

PACS numbdss): 14.80.Cp, 12.39.Fe

[. INTRODUCTION is just limited to the MSSM. Does the heavy scalar sector
decouple from low-energy~M,,) phenomenology? And if
The two Higgs doublet modé¢PHDM [1]) is one of the not, to what extent? We propose to investigate this issue
most popular extensions of the standard md&). It pro-  here.
vides a natural way of introducing an additiona({1{J (or Heavy scalar masses usually imply, at least naively, a
Peccei-Quinrf2]) symmetry, allows for spontaneous break- strongly interacting symmetry-breaking sector thus rendering
ing of CP invariance[3], and may provide an interesting the usual linear, perturbative approach gquestionable. We
phenomenology of flavor-changing neutral currgdiscom-  shall thus phrase our discussion in the language of effective
patible with the current experimental limits, if the appropri- Lagrangians. This technique is the natural one when all the
ate form of the scalar potential is chosen. In fact if nature haghysical degrees of freedom in the symmetry-breaking sector
decided that electroweak symmetry breaking should proceegire heavy, and a separation between light and heavy degrees
via elementary scalar fields, it is difficult to answer the ques-of freedom is cleafwhich is not the same as saying that the
tion as to why not two doublets instead of just one as in theheavy sector should necessarily decouple, as exemplified by
minimal standard modédMSM). technicolor models It should be said right away that the
Recent data from the CERN"e™ collider LEP[5] put  above situation does not correspond to the MSSM, where it
stringent limits on the symmetry-breaking sector of the SM.is not natural to have all scalar fields heavy, and some light
While composite and QCD-like technicolor models are not,scalar must necessarily be present. Thus our results are not
strictly speaking, ruled out yet, they are severely constrainedlirectly applicable to the MSSM. Rather, our analysis ap-
Technicolor groups larger than ®);- appear extremely plies to 2HDM where the masses of all physical scalar par-
unlikely, while the amount of custodial symmetry breakingticles are very large, typically somewhere in the TeV region.
in the techniquark mass sector is severely limited by ghe While 2HDM models with light to moderate masses have
parametef6]. Nature seems to be telling us that whateveralready been studiefd 2], heavy doublets do not appear to
physics one may think of adding to the SM, it should, to ahave been considered in detail, at least to our knowledge.
good extent, decouple at low energi@sthe technical sense The symmetry-breaking sector just described maynoost
of Appelquist and Carazzond]). Technicolor and similar likely) may not correspond to some supersymmetric theory;
theories are nondecoupling; finite and calculable correctionthis does not concern us here. If additional light fielsisch
to the low-energy paramete® T, U [8] or, equivalently, ass quarks or gaugingsare present we shall just include
€1, £, €3 [9] remain even when the mass scale of all newthem explicitly in our low-energy theory.
particles is large. This is why one is able to set severe limits We want to keep the light degrees of freedom only,
on such theories. On the contrary, the symmetry-breakinggamely, the gauge and Goldstone bosons. The latter are col
sector of the minimal supersymmetric standard modelected in a unitary matrixt) =exp(dG®T%/v) wherev is the
(MSSM) [10], which contains two Higgs doublets, is decou- vacuum expectation value that gives theandZ bosons a
pling. In such theories one can always choose the parametenzass ands, are the Goldstone modes. The matdxis an
in such a way that the additional contribution of this sector toelement of the S(2)XSU(2)/SU(2) coset space. Given this
S, T, andU is arbitrarily small(at least in the MSSM, see basic building block and gauge invariance one just constructs
[11]). The fact that the theory is decoupling implies thatthe most general Lagrangian compatible with the desired
modifications to the SM results are small and adjustable. symmetries via a derivative expansion: nam@,14],
One may wonder whether the fact that the enlarged
symmetry-breaking sector decouples from low-energy
(~M,,) phenomenology is a generic feature of 2HDM or it L=L2+ L. (1.2
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The indices denote the dimensionality of the corresponding Il. THE MODEL AND ITS NONLINEAR REALIZATION
operators, i.e., two derivatives, four derivatives, etc. Gauge

fields count as one derivative and explicit breaking terms ar% | h e £ all dto th . f
forbidden on account of gauge invariance. $&8] for a  P€ clear thatwe must, first of all, proceed to the separation o

classification of all possible operators up@gp®). The in- the heavy and the light degrees of freedom. The subsequent
formation on physics beyond the MSM is encoded in theStep will be to determine the actual numerical value of the
coefficients of the above effective chiral Lagrangi@cL).  relevanta; coefficients, as a function of the parameters of

There are only two independe®{p?) operators: our underlying theory. Unfortunately, this last step we can do
only within the framework of perturbation theory which is

suspect in a strongly interacting scalar theory. However,
” wiit v + ) renormalized perturbation theory turns out to be reliable in a
L= Tr(D,UD*U ) +ag - [Tr(75U'D,U)]% trivial theory, as the scalar sector of the MSM appears to be,
(1.2 because the theory is never really strongly interacfit).
Yet, this is not necessarily so in the presence of additional
interactions and fields, particularly supersymmetry, which
The first one is universal, its coefficient is fixed by ¢  may alter the ultraviolet properties of the theory. We shall
mass. The other one is related to fhearameter. In addition, thus rely as much as possible on dimensional and power
there are a fewO(p*) operators with their corresponding counting arguments and discuss to what extent these agree
coefficients: with perturbation theory.
Let us begin by reviewing the model in the usGakakly
, ) coupled linear realization. We have two Higgs doublets
£f=32199 Tr(UBWUTWM ) ¢4, ¢,. For the potential we choose the most general one
—%agngr(UT3UTWW)Tr(UT3U*Wf“’)+~ . respecting CP and the discrete symmetryp,— — ¢4,
$,— ¢,. Imposing this symmetry automatically avoids an
(1.3 . S
excessive amount of flavor violatidd6]. It also suppresses
spontaneou€ P violation:

From the considerations in the previous section it should

1)2 2

In the above expressioa,, andW,,, are the field strength

tensors associated with the @Jand U1) gauge fields. In

this paper we shall only consider the self-energy, or oblique  V(#1.,62) = 1(bld1—v5) 2+ No( dhdpr—v3)?
corrections, which are dominant in the two Higgs doublet

f,o_ 2 to_ o 2\72
model just as they are in the MSM. Accordingly, we shall +Asl(ha¢2—v3) +(h1¢1—v7)]
determine only those coefficients of the ECL that contribute 2 t TNt t
to two-point functions to leading and next-to-leading order in al($161)($262) ~ ($162) ($261)]
the momentum expansion. These consist in just the two op- +>\6[|m(¢’lf¢,2)]2, (2.2

erators quoted above after using the equations of motion
(see, howevel,15]).

Apart from vacuum polarization effects, the 2HDM intro- \\nere
duces, with respect to the SM, some additional vertex and
box corrections due to the exchange of scalar particles. Let

us phrase the discussion in terms of the famitiar €5, €3 w B 0 0
parameter$9]. The experimental bounds on these quantities ¢1:( +), ¢2:( +), <¢1>:( ) (¢2>=< )
are extracted from observables with leptons in the external @o Bo v v2
legs and, therefore, such box and vertex corrections are,

roughly speaking, suppressed by a factofm/M,,cosB)?
with respect to typical gauge correctichslere m is the
lepton mass and t@*v,/v, depends on the ratio between
the two vacuum expectation valu¢¥EV’s) appearing in . .
2HDM. With thepcurrent expéerimen?[al pl:;imit gtﬁw vy, vz are real, and\;=0. We consider the following
<0.5M, (GeV) [17] (M, is the charged Higgs boson 2X%2 matrices(as usuakp=ir,¢*)

massg, and setting foM . the valueM , ~600 GeV, we get

tanB<300. Then the additional box and vertex contributions _ _

due to scalar exchange can be safely neglected even far the D= (P12), Po=(dod1), DPy=7P,7.
lepton. The limit of vacuum polarization dominance is, (2.3
therefore, justified and we can compare our results with the

values fore; extracted from lepton data.

(2.2

Under a SY(2)xXU(1l) transformation, &;—
exdir a]d;exg —irs- B3]. @1, and @, transform in fact in

This holds for the so-called type Il models. For type | models thethe same way under the larger_group 1 $2) X SUr(2),

relevant parameter is adinstead of tag; apart from this, the same hamely, ®;;—ex(ir- a]‘pijeXF{_iTﬁ]- In terms of®;; we
considerations hold. Sdé6]. define the auxiliary matrices
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|:¢)12q>12, J:q)’le@ﬂ, (2.4 freedom will enter the unitary matrix) and the rest will
o o eventually be integrated out in the coefficieats The prob-
| and J both transform as —exgir B]l exd—irB]. Fur- lem is somewhat nontrivial. Suppose, for instance, that, in
thermore, analogy to the one doublet case, we write the2matrices
®,, andd,, as the product of a unitary matrix and an Her-
mitian one; e.g.,

+
(= 2 + 5> T3 ()=v1v,. (2.9
D ,=UH5. (2.9

We would like to point out that other parametrizations are

possible. For instance, we could have embedded the two ch_her; the2 unitary matrix/=exp(6/v)exp(7Glv), wherev
lar fields in two 2< 2 matrices in this way: =(v1+v3)/2 is the combination of vacuum expectation val-

ues(VEV’s) relevant for theW mass, would hopefully col-
L o lect the Goldstone bosons amth,=(cl+ 7-y) would be
D=(P101), DPr=(drch,). (2.6) the extension to the two doublet casedff (notice the ap-
pearance of the additional phagen the 2HDM). Unfortu-
In this case the S(2)XSU(2) symmetry is implemented in a nately, this separation is far too naive. In fact, although the
slightly different way[19]. However, we choose Eq2.3) G fields do not appear in the scalar potential, they mix with
because Goldstone bosonfields appear quite naturally in thfe fields inH due to the kinetic term and, therefore, cannot
nonlinear parametrization, as we shall see. be identified as Goldstone bosons.

In terms of the above matrices the kinetic term reads Yet the above decomposition is quite Suggestive because
when one substitutes back in the scalar potential any decom-
position of the form®,,=UM,,, whereM,, is not neces-
sarily Hermitian,U drops from the potential exactly. Thus
instead of assuming th&d is Hermitian, we shall allow for
and the potential can be expressed as a more general matri¢his is just fine, as long as the decom-
position is still uniqug We single out the Goldstone bosons
by making an infinitesimal gauge transformation specialized
to the broken generators:

T(®1)=3Tr(D,P1,D*D]) 2.7)

A
V(D q,,Dp) = vy [T =) (14 75) )2

s S,=1+iTE E+iTRR=1+iTL G, +iT - G_
+ 2 AT = (N (A =7)]} o

T5-T3
g +i > Gy. (2.10
N T = ()]} + ZTr[IZ—(I 73)%]
e [ 1 2 Acting with such a transformation on the vacuum configura-

+ 7 {ZTr[J—JT] . (2.8)  tion for, e.g.,®1,, we obtain
This potential is invariant under ${R)xU(1), but some 1iG V1 Wole v2
terms are not invariant under $(2) X SUg(2). They break vt iBo v I -
custodial symmetry and may lead, at least potentially, to siz- 0P 1,= v ol | (2.1
able contributions to the parameter. iv2G_ ?l v,—iGy 72

After symmetry breaking to )., the matriced and
J get a VEV and new fluctuations around the vacuum state
appear. Some are masslés®e three Goldstone bosgrend  And an analogous expression fbp,. Goldstone bosons and
other massivéby hypothesis, very massive in our cas&/e  massive excitations must be orthonormal for the kinetic
want to separate these very different degrees of freedom tierms to be diagonal. Once the former have been identified,
all orders in perturbation theory. The massless degrees dhe latter are uniquely determined. We obtain

U2

. U1 U2 U1 .
R ag] +i 60?+A0? V2| H., 7+IG+7

(I)12: (212
U2

\/i(H x +iG%) R o]+

U2 U1
-Gy —+Ay —
) Ov)
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Keeping terms at most linear in the fieldB;, can also be

T
written as ;TF[T%G((MQWMIF F*M M1 )")]
. Uo U1 [2E1%) e
o7 Reaol+iAg = V2H, = =2—5"Tr(3,G19"Ag) =0. (2.19
(I)]_z: ex | e .
V2H Y2 Re Bo] +iA, Y1 We are then left with the canonical diagonal kinetic terms for
v 1%

(213 the fieldsG, Aq, H?, HY, H. , H_. The fieldsH? andH}
' are the mass eigenvalues of the mass matrix in the

Notice that an alternative form fob,,, useful for calcula- CP-éven neutral sector. This leads to the appearance of the

tions, is mixi.ng anglea which depends on the parameters of the po-
tential
Vo 0
- - R « R
.G =V H)= d0] cosa+ 450l sine,
D=exgi e (o+iAg+7H) e | 2
o -t
v
R « R
(2.14 HO=— Re ao] sina + R Aol cosw (2.20
_ V2
with
NeitherH$ nor HY have simple interaction terms. In particu-
1 [Rdap] R€pS] lar, both have nonvanishing VEV’'s. The combinations
2v2 \ sing cosB /'’

S=sin(a— B)H+cog a— B)HY,

H=cog a— B)H?—sin(a— B)HY, (2.21)

. (2.19

3=

1 (Re[ao]_ Re Bo]
sin co
2v2 g ¥ on the other hand, “diagonalize” the interaction pieces in
This is the expression we were after. It satisfies the following€ Lagrangian. By this we mean that the fieldwhich has
properties(1) It is a parametrization of,,; (2) itis of the ~ (H)=v) has exactly the same interaction terms as the stan-
form ®,,=UM,, whereU e SU(2); (3) it diagonalizes the dard Higgs boson would have, in particular the coupling

kinetic terms by construction() it can be proven to be IMwHW'W™, characteristic of a spontaneously broken
unique. theory (yet H is not an eigenstate of the mass matrix, as

does not have any couplings of the above form. This obser-

G 71 e vation turns out to be important to understand our results.

Oy = 71, P, =UMy= exr{i —|(o—=iApg—7H) Although classicallyay, a,, andag vanish in the limit
v where all scalar particles are very massive, at the quantum
vy level these coefficients will be generically nonzero. To ob-
o 0 tain their true value we must integrate out the fields con-

% ) (2.16 tained in the matrice®M ;, and M.

0 v2 Since it accompanies a custodially breaking operatgr,

v must on symmetry grounds be proportional to a typical mass

splitting or a custodial-breaking parameter, sucly%s Na-
We now plug the above decompositidn,= UM, into the ively,
kinetic term(2.7)
. , g2 AMZ g12 I Mg -
T=3Tr{D,(UM;»(D,(UMy))']. (2.17 A0~ 1672 M2, " 1677 n MZ[ (2.22

M, does not appear here, but it does in the potential term
Naively, setting the masses of all heavy particles to infin
ity would take us to the minimum of the potentidy},,
=(Myy. Plugging this back in Eq.(2.7), and using
Tr(73D,UD#UT)=0 we recover at the classical level the
lowest-dimensional terszr(DMU D#U™) in the ECL. Let-
ting M,,—(Myp) andD ,—d, we obtain the kinetic terms

%/vhereMs is a typical heavy-scalar mass. In fact, we will see
‘that the dependence on the quadratic mass splittifidy?
=M2—M§, is quadratic and not linear. At any rate nonde-
coupling effects may be important if large mass splittings are
present(As is well known, the Appelquist-Carazzone decou-
pling theorem does not go through for spontaneously broken
theorieq20].) Other potential nondecoupling effects are con-
tained in the coefficients of th@(p*) operators. On dimen-

1 @ —
2 9,G*GTr({M (M 1) ")+ Tr( %Mlzﬂ”'\/'lrz)- sional grounds these coefficients will be of order
249 L LM cro 2] ko). @29
a~ == |In—+c — [ . (2.
The crossed term vanishes: Lo1emt [T My, Mg (179




1756 P. CIAFALONI AND D. ESPRIU 56

c is a finite constant and/ is the mass of theCP-odd g'?2 3 Mg
scalar, taken as reference scale. These terms will be less 2~ 16728 In M2 (3.4
important at low energies since it is clear that the leading s
pieces in the momentum expansion are contained indthe 1 1 M2
=2 terms. At energieg?<16m2v? the O(p*) operators will ~ — w
gieg (p") op a4~ 157 15N 12 (3.5

be suppressed with respect to thép?) ones, although they
rapidly become important as the energy increases.
At this point we should reexamine the field contents of ag~0. 3.6

our theory in the nonlinear realization. We have three Gold-B truction this | thmic d d . i :
stone bosons collected in the unitary matdx two charged y construction this fogarithmic dependence IS exact, even in

Higgs bosonsH, andH_, two CP-even neutral fieldsr the nonperturbative largil ¢ limit. The above are renormal-
and H. or equit/alently ﬁb HO and theCP-odd neutral ized coefficients in the modified minimal subtraction scheme
3 1] 3 3 [} -

(MS) scheme.

Ao All of them are supposed to be heavy. The coefficientsa; contain, in addition, constant and
O(AM?/M?2) corrections. These subleading contributions
are nonuniversal and have to be determined by matching,

The part of theO(p*) effective Lagrangian relevant for €.g., the renormalized self-energies, or an appropriate com-
the determination of the oblique corrections is the one giverbination thereof, between fundamental and effective theories.
in Eg. (1.3. The corresponding coefficients contain the For instance, we can match the combinations of self-energies
traces of the underlying theory accessible at experimentappearing in Eq(3.1). When we compute the values of the
much below the energy scaléd or 47v, whichever is @& coefficients via the matching conditions, most of the dia-
smaller. grams cancel between both sides of the matching equation.

It is customary to parametrize possible departures frononly those containing at least one heavy particle contribute,
the MSM with the parameters,, e,, andes [9]. These properly expanded ip?, to the coefficients of the ECL.
parameters, in the limit of vacuum polarization dominance, The values of the:; in a 2HDM have already been cal-

coincide with thee; parameters defined by culated in the padtl2] in the linear perturbative regime. In
the nonlinear realization there are differences already at the
level of Feynman rules, and some simplifications worth

S

Ill. THE EFFECTIVE LAGRANGIAN COEFFICIENTS

Wv [As(0) —Aww(0)]=ey, pointing out. For instance, the vertex with one scalar neutral
Higgs bosorH,, one charged Goldstone bosGn , and one
Fuw(M§) —Fs(M§)=e,, (3.)  9auge bosowV, , is given bygHz9, G W,, in the nonlinear
case, and byg(/2)H3§’MG+W; in the linear parametriza-
tion.
c
- F3O(M§)Ee3 We are interested only in the leading corrections in the
S .. 2 2 . N
limit g°~My,<Mg, where M is a typical heavy-scalar
in terms of the vacuum polarization amplitudes mass. Then we can sé,=Mg=0 (Mg is the gauge-
dependent Goldstone bosons mass the internal lines.
- o N st o ) . I
I ,(q)=—ig,,[AT(0)+?F(g?)]+q,q, terms, Moreover, when calculating the diagrams contributingeo

(3.2 andes, those with gauge bosons in the internal lines do not
contribute. These simplifications follow from simple-
wherei,j=W,0,3, stand for thav*, B, andW® gauge bo- dimensional considerations. For instance, the diagrams con-
son fields, respectively. Th®, T, andU parameter$8] are  taining one internal vector-boson line are proportional to
trivially related to the above. gZM\ZN and their overall contribution te; is ultraviolet finite.

In an effective theory, such as the one described by thSincee; is proportional to the dimensionless derivatives of
Lagrangiang1.2) and(1.3), €1, €,, ande; receive one-loop  the vacuum polarization, there must b&/g in the denomi-
contributions  from  the leading O(p”*)  term  npator, and so the contribution is proportionahd,/M?2 and,
v?Tr(D,UD*UT) and the tree level contributions from the therefore, subleading. In the same way it is possible to see by
a;. Thus inspection that some diagrartsuch as tadpolg¢slo not con-
tribute in the matching relations fe, . We are left with the
diagrams in Fig. 1 for the matching relations far, e,, and
) e;. The only nonzero masses in these diagrams are the
ez=—ga;t- -, (83  heavy-scalar masses.

If we neglect terms 0O(M3/M?2) the values one obtains
Cfrom Eq. (A3) for the a; coefficients are

81:2a0+... , 82:—92a8+"' ,

where the ellipses symbolize the one-lo®gp?) contribu-
tions. The latter are totally independent of the specifi

symmetry-breaking sector. The nonlinear nature£dfin- 9 1 Ai(Ai—SZAi—CZAg) g'2 3

duces new divergences which are absorbed by a proper re-  a,= > — 5 + 5=
definition of thea;. These divergences are by construction 16m° 24 MMy 167° 8
independent of the underlying theory, so we automatically M2 A2
L < W i
know the logarithmic dependence of the coefficients for any x| n +-—40 (3.7
- MZT 6 T M2
two Higgs doublet mod€l13,14: s s
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s G
3 7 > ~ /)3‘ ~
WM \ o w! / \ B,
~ < a \3//
S
3 /7 ~ B
] N
r\/\/\/\w\/\/\
(a) N
- /
</
H
R
weoTN W
B . .
¥ FIG. 1. Feynman diagrams required to evalu-

ate the coefficients; via matching conditions for
¢;. Diagrams(a) are for €5, diagrams(c) for
&,, and[diagrams(c)+diagram (b)] for ¢, .

H A,
P P
w7 \\ W w o/ \ W’

N s / N_s 7

~< ~< -

(c)

+ H*

/}‘I)\ PN
N Ao / \ H /

\(,/ \(_/

1 1 2 5 A? 2 _
= - - — : — — cogbyag+ g°sirhya; + g’coghyag, (3.1

(3.9

These expressions are valid in the liif,<A?<M?2. Here
s? andc? are the sinus and cosinus @f 8, wherea is the

which is zero in the MSM in the limit of a heavy Higgs
boson mass, is still zero in the 2HDM provided thaf
<M§. (The above combination corresponds to straight lines
in theTl'|, sirgs6y plane. Se¢15).)

Can we understand this? As discussed[20,27), the
source of the nondecoupling effects can be traced back to the

angle that mixes the two neutral scalars andBtan,/v;.

The quantities\? denote the quadratic mass splittings of theappearance of mixed heavy or light vertices without deriva-

scalar labeled (i=+,— correspond to the charged Higgs tive couplings. These are characteristic of spontaneously bro-

bosonsj=1,2 to the twoC P-even neutralswith respect to ken theoriegin which one shifts some fie)pIAn archetypi-

the CP-odd neutral scalar, whose mass is taken as referenc@®! example has already been mentioned: the vertex

scale; that isA?>=M?—M2. In the above expressions we IMwHW W™, but also vertices such agHG"W". The

have kept the dominant terms only. point is that, once we write the neu_tral scala_r sec_tor in terms
The first observation is that the constant pieces in EqOf the H and S fields, these couplings are identical to the

(3.7)—(3.9) are the same ones as those obtaindd 21,23  ©nes in thg M.SM.H is the only culprit of nondecoupling

in a similar calculation in the MSM, with the obvious re- effects, while fields such &, H, , H_, andA, leave, after

placementM —M,,. Some nondecoupling effects do re- integrating them out, contributions suppressed by powers of

main in the 2HDM, but they are identical to the MSM ones. héavy masses, i.e., they decouple.

Thus in the limit where the mass splittings are negligile A Sécond remark is that the dependenceagfon the

compared to the typical scale in the symmetry-breaking secduadratic mass splittings is of ordeg?(Af)?/M{M3 or

tor the two Higgs doublet model cannot be distinguished byg'*(A?)/MZ2. Once we understand that nondecoupling ef-

any low-energy experiment from the minimal standardfects must be the same in the Iirmtf/Mg—>0 as in the

model. For instance, the combination of coefficients MSM, it is clear that the naive counting in E@®.22 cannot
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hold. We need an additional power bf? in the denomina-
tor, and that force&zki2 to appear quadratically.

What happens beyond perturbation theory? This we can-
not answer precisely, of course. But we can stand by the
order of magnitude estimates derived from the general argu-
ments given above. We cannot prove that the constant pieces
in a;, for instance, will be the same after a nonperturbative
calculation. However, we can certainly conjecture that the
nondecoupling piecedhose not suppressed by inverse pow-
ers ofM?2) will be the same as those in the MSM. And for
the latter, perturbation theory turns out to be eventually reli- . 50
able as previously discussed.

Some nonstandard nondecoupling effects remain, how-

1000 e1

100 150 200
Maximum mass splitting in GeV

everé in th? case where the mass splittings are s?z;&tﬁe] ~ FIG. 2. Maximum(continuous ling and minimum(dashed ling
~Mg. To discuss to what extent these effects are visible it iossible values for £x &, in the 2HDM as a function of the larg-
best to return to the; parameters. est scalar linear mass splittirg,,,,. The grey zone corresponds to

the allowed experimental values.

IV. COMPARISON WITH EXPERIMENT . max.min ) » )
AND CONCLUSIONS pressions forde; """ are, however, simplified approxima-

tions to the corresponding 2maximum and minimum of Eq.
2 3 i
We now compare the results an parameters with the ('?‘3)t' '(rje_rms"of order'fl} t/ Mtsh) t?r:]d higher ha\_/e beden n?- q
experimental data from LEP and SLAC Large Detectord SCt€d IN all cases. Ivole thal hese expressions do not de-

oo . . pend at all on sing—p). Moreover, we checked that they
(SLD). Our aim is to restrict thg allqwed parameter space InSiffer from the actual minimum obtained from Ed#1) by
the sort of models we are considering. If we set a maximu

5 ; - 5 > Mess than 5% if the mass splittings are less than 150 GeV.
valugA for all the quadratic mass spllttlngﬁli |<A%, we The extraction of thes; parameters from experiment can
obtain from Eq.(A3) that thee; parameters lie between two e done, e.g., along the lines[@3]. Using the latest experi-
extreme values given below. To ease the comparison withyental data from LEF5], we obtain[24]

the MSM we quote below the deviations with respect to the .
values fore; obtained there. This is the reason why the value £1=(4.7£1.3)X10°",
of M (the Higgs boson mass in the MSMppears in the i 3
expressions £,=(—7.8£3.3) X10°, 4.2

£3=(4.8+1.4x10 3.

. 392 MZ1 A% (g2 A% 3
de1 ~~ 772N M—a+ 1672 M2\ 6 WV“L 29 &, is the most restrictive parameter due to its strong depen-
dence on the splittings and we focus our attention on it. In
3 A? Fig. 2 we plot maximum and minimum values fey in
+ ) g M2/ (4138 function of the maximally allowed linear mass splitting
s A ma=A%2M (that is,|M; — M <A« for all i). These val-
- 3 g2 M§ 1 A2 (g2 A2 3 , 'tjeks fo][sl afrze?’]obtagned by adding&gelgs(hd/rl 1ct(;nt'z\ibutlion as
SeMine _ — In — = -q’ aken from and our expressiong.13, (4.1b. A value
! 4 167 VQH_ 16m° W (48Wv 29 for My in the MSM of 300 GeV was chosen, but the graph
3 A2 itself is, of course, independent of the particular value of
--g'? _2) (4.1 My one chooses. Also, the experimentally allowed values
8 Mg for £, are shown; it is easy to see that splittings of the order

) 202 of 100 GeV or more around a reference mass of approxi-
SeMaxe 9 i ( A ) (4.10 mately 600 GeV are perfectly allowed.

’ In conclusion, we have analyzed the situation in which the
symmetry-breaking sector of the SM consists in two scalar
9 1 [A%\? doublets with masses in the TeV region. We have separated
672 30 ' (4.1d the light and heavy degrees of freedom and constructed an

effective chiral Lagrangian for the former. The information
g2 1 M2 g2 5 A2 g% 1 [A?%\? about the latter is contained in a few low-energy coefficients.
162 12 In W+ 1672224 M2 1672 O( ) , We have shown that these coefficients can be calculated in
terms of a few Feynman diagranisee Fig. 1L We have
(4.1¢  found that the models exhibits nondecoupling effects; that is,
nonzero values for the coefficients of operators with dimen-
2 sionality d<4 even in theM—« limit. These nondecou-
M_§ - (419 pling effects in the limit of exact custodial symmetry are
exactly the same ones as those in the MSM. We have ana-
Expressiong4.13—(4.10 are the exact maxima and minima lyzed which restrictions current data set on two Higgs dou-
of the corresponding expressions given in E8). The ex-  blet models; due to the equivalence between the two Higgs

max__
583 ~

92 1 AZ 92 1 2

162 12 M2 ' 16n2 24
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doublet model and the MSM in the limit of exact custodial where
symmetry in the scalar potential the current bounds are very

weak.
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neutral scalars, and t8rv,/v,. My is the MSM Higgs bo-
APPENDIX: FORMULAS FOR &, PARAMETERS son mass. These results coincide with the ones previously

) published[12]. We obtained them in the Feynman—'t Hooft
We present here the exact result in the ZHDgﬂHgﬁ thegauge with linear gauge fixingl5]. Since we are interested
og; parameters at one loop, defined a&;=e¢; in the large scalar masses limit, we set a reference mass

—SiMSM3 Ms=M p0, assumed large, and expand functi¢Ag) in the
. quadratic mass splittings. Definidgf=M?Z— M2, we obtain
— 2 2 2 2 2 2
581—Wm[8 f(MH+,MH2)+C f(MH+,MHclJ)
2 2
+f(MaJr,Mio)—szf(Mio,MHg)—czf(Mio,MH(])-)] So. gz iAi(Ai_SZAE_CZAg)_§ g/2 lnM_g
5 5 11672 12 MM, 4 16m* " M
9’ Mg Mg 2 ) ) A2
— —_ 2 2 3 ! 3 !
> sIn| —=- | +cfIn| —| |, > 9 2 A1} S 49 2 A2
167< 4 M M 416772C|n 1+ M2 4—167723In 1+ YHE
Se ——g—zi[szg(M + Myo) +c2g(M2. M%)
2= H™» H +
1672 12 2 R 5 g 1 A%(A%-sPA-c?A))
€2~ 2 20 4 ,
+g(M M0 = $°0(M 0, M) = cG(M 20, M o), 167° 60 Mg
g> 1
583:@1_2 Szg(MAO,MH(1))+C29(MAO,MH2) Som g2 iSZ(A§)2+CZ(A§)2+ gz i
, 37 16n2 120 M2 1672 12
M2 M3 2 | Mpo
+£In /20 —In|— [+ 1+e ) n Hzl Mg 1+c? AT|  1+¢? A3
2 Mg Mg 2 M X|nM—a+T|ﬂ 1+M_§ +Tln 1+|\/|_§
2
+ 1+Sz| e Al | 1+Ai (A3)
—In — 1.
2 "™z ] (A1) M2
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