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I. INTRODUCTION

The possibility of obtaining model-independent
bounds [1] on the b-number form factor F(q?) of the B
meson,

(B(®)|bv*b|B(p)) = (p+ P )* Fli* = (-7, (1)

has recently attracted some attention (Refs. [2-8]). The
interest of these bounds for phenomenology lies in their
relevance to the semileptonic B decays

B-— Dly;  and B D*li,. (2)
It has been shown [9] that in the limit of very large b and
¢ quark masses, there are new approximate symmeries
of QCD which allow one to express the six form factors
which govern these decays in terms of the b-number form
factor F(g?) in (1) alone. The conservation of b number
by the strong interactions implies

F(@®=0)=1. (3)

Further model-independent information on this form fac-
tor, e.g., about its slope at the origin, would be very use-
ful to extract the value of the mixing matrix element | V|
from the data [10,11].

The bounds proposed in Ref. [1] are based on very
general QCD properties of the two-point function II(g?)
defined as

(a"q” — ¢*¢")TI(¢?) = é / dz ¢4 (0|T(V*(2)V*(0))|0),
(4a)
with

V¥ = b(z)v*b(z) (4b)
as well as on analyticity properties which the b-number
form factor F(q?) in Eq. (1) is assumed to satisfy in the
large b-quark mass limit. In QCD, the function II(¢?)
obeys a once subtracted dispersion relation. It is there-
fore convenient to consider the first derivative of II(g?)

(Q* = —¢?, our metric is + — ——, Q@2 > 0 corresponds
to the spacelike region),
a1I(Q?) oo 1 1
&) [ L T, (5
x(@%) = -5 = [ dte s I, ()

with Im II(¢) the b-number spectral function defined by
the relation

v v 1 v
(@0 = g mll(e?) = 5 3 [ du(r)(2m)*s® (q - Zp) (O[V*(0)[T)(TIV*(0)]0), Q)
T T
[
where the summation is extended to all possible hadronic 1 11 amz\3?
states I' with the quantum numbers of the V# current, =ImlIl(t) > — - (1 - B) |F(t)|20(t — 4M3),
and with the integral over phase space extended to each 16m% 3 t

intermediate state.

Two bounds were derived in Ref. [1]. The first bound
follows from the saturation of the right-hand side (RHS)
in Eq. (6) with the lowest BB state. Since each hadronic
state contributes positively to the spectral function, we
have, in this case,

0556-2821/94/50(1)/373(8)/$06.00 50

(7)

with F(t) the same b-number form factor as in (1). The
second bound takes also into account the other two-
meson states BB*, B*B, and B*B*, assuming further
that, in the large b-quark mass limit, the four states
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BB, BB*, B*B, and B*B* are related to each other
by the resulting new spin-flavor symmetry. (The as-
sumption here is in fact similar to the one previously
made in Refs. [12,13] to predict the ratios of ete™ —
BB,BB*,B*B,B*B* cross sections.) Needless to say,
the second bound is stronger than the first, and, when
compared to the existing model-dependent determination
of the F(q?) form factor [14] and the fits to the present ex-
perimental data, turns out to be surprisingly restrictive
[15]. This has prompted several authors to reconsider
critically some of the assumptions which were made in
(1].

The basic criticism of Refs. [2-5] focuses on the analyt-
icity properties which in Ref. [1] are implicitly attributed
to the b-number form factor F(q?) in the large b-quark
mass limit, and in particular the neglect of the effect of
heavy-heavy “quarkonium” states below the 4M3 thresh-
old. None of these references, however, offers the deriva-
tion of new useful bounds compatible with the rectified
analyticity properties. The main purpose of this article
is to show how to derive new bounds on F(g?), for ¢* val-
ues relevant to the kinematics of the decays in (2), with
inclusion of the experimentally known properties of the
Y states below the onset of the physical BB threshold.

The paper is organized as follows. Section II reviews
general positivity properties of the b-number spectral
function, as well as the analyticity properties of the b-
number form factor of the B meson. The new bounds on
this form factor, in the presence of the T states below
the onset of the physical BB threshold, are derived in
Sec. III. Section IV discusses a number of observations
relevant to the heavy quark effective theory (HQET)
which stem from this work. The technical details to de-
rive the new bounds are explained in the Appendix.

II. UNITARITY CONSTRAINTS, ANALYTICITY
PROPERTIES, AND QCD

The starting point is the dispersion relation in Eq. (5)
and the positivity property of the b-number spectral func-
tion defined in Eq. (6). The contribution to this spectral
function from each of the BB intermediate states B~ B™,
B°B°, and B%B? is the same in the limit where the light
quark mass differences are neglected. As pointed out to
us by Broadhurst (and emphasized in Refs. [6,7]), this
brings a factor ny which counts the number of light fla-
vors in the RHS of Eq. (7): i.e.,

/2
1 ny 1 aMm\’® 2 .
— > =l1- F(t)|°0(t —4M3p).
Tt > ol (1- 552 RO o - avd)

(8)

_J

2272 2
> 20
167°Mgx(Q*) > 1o i M3

4M%

where we have set y = t/4M3.

27w My, T (M3 + Q2 -2 ny
] ‘ 12
1

If necessary, one can improve this inequality by explic-
itly taking into account the contribution to the b-number
spectral function from the T states below the two-meson
threshold. (We refrain from including the contribution
of the T states above threshold as well, because of the
danger of possible double counting with the BB contin-
uum.) These contributions can be extracted from the
ete”™ — Y experimental cross section, due to the fact
that the hadronic electromagnetic current brings in the
b-number current via the term —1/3 by#b. Using the
simple parametrization

ee
Iy

o(ete™ = T) = 1272§(t — M32) 7 (9)
T

and the relation (—e/3 is the b-quark electric charge)
2
olete” = 1) = ——Z———;Imﬂr(t), (10)

we can improve Eq. (8) to

27
4o

1
— > E My, TE6(t — M2
ImII(t) i i Ti&(t My,)

3/2
nf 1 4M§ 2 2
(1= =8 t - )
+2553 (1 : |F(£)[26(t — 4M3)

(11)

Inclusion of the contribution from other two-meson in-
termediate states to the b-number spectral function nec-
essarily requires additional dynamical assumptions at the
present stage. As pointed out in Ref. [16], the HQET
cannot be reliably applied to relate the various physical
amplitudes: (BB|V*|0), (B*B|V*#|0), and (B*B*|V*|0)
in the timelike region. We shall therefore limit ourselves
to the derivation of a new bound based on the inequality
(11) only.

The function x(Q?), for a heavy quark mass m;, and
spacelike values Q% > 0, can be reliably computed using
QCD perturbation theory. At the one-loop level, asymp-
totic freedom results in (N, = number of colors)

_ N ! 22%(1 — x)?
X =53 ), Torieaooe - P

The knowledge of this function and the lower bound for
the spectral function in (11) inserted into the dispersion
relation in (5) lead to the unitary inequality

oo 2\ 2
w (vt az) v DVIREMBDP ()
B

We next turn our attention to the b-number form factor F(¢) of the B meson. On general quantum field theory
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grounds F(t) obeys a dispersion relation; and it follows from the QCD inequality above that the dispersion relation
for F(t) has at most one subtraction. Since the value of F(t) at t=0 is known [see Eq. (3)], it is convenient to use

t=0 as the subtraction point: i.e.,

F(t) = F(0) + — /0

In full generality

(p + p')*ImF(t)

with the summation extended to all possible hadronic
states I' with the quantum numbers of the V# current.
It appears then that the b-number form factor of the
B meson has a succession of branch cuts starting at
the 7w threshold, the KK threshold, the DD thresh-
old, the BB threshold, etc. Since the V# current only
involves b quarks and b quarks are heavy, their coupling
to hadronic states of lighter flavors, which can only pro-
ceed through annihilation via gluonic interactions, are
suppressed. Other possible hadronic states below the
BB threshold are the three T states Y(15), Y(2S), and
Y (3S) which to a good approximation appear as poles in
the positive real axis of the complex ¢ plane. Their contri-
bution to the b-number form factor can be parametrized
as

F(t) = F(0)+t23—2“i—3h—+ﬂeg(t), (16)

where fy, denote the coupling constants which govern
the electronic width of the YT; resonances,

T[T; — (v) = e*e™] = f2, My, 2o

T —3_a ’ (17)

and gy, pp the coupling constants of the Y; resonances
to the BB system. More precisely, we are considering an
effective Lagrangian interaction
€ 174
Lyy = I2—lf—r(8,‘T,, -94,Y,) F*¥, (18)
to implement the coupling of a massive spin-1 field which
describes a generic T resonance, with the electromagnetic

strength tensor F#¥¥ = 9*AY — J¥ A*, and an effective
interaction Lagrangian

Lypp =igyppYu(B'0*B - 8“B'B), (19)

to implement the coupling of the T field to the B pseu-
doscalars. The coupling constants gygp and fy are di-
mensionless and real.

The naive scaling of the coupling constants gyppg and
fr in the large b-quark mass limit implies [3]

dreg — (ml,)l/2 and fy — (mb)_l/z. (20)

In this limit, the contribution from the T states to the
RHS in Eq. (13) decouples, and, therefore, as was done
in Ref. [1], this contribution in this limit can be ignored.

dt' ImF(t))

il SV AR 14
Y —t— e (14)

Z/du(f‘) (2m) "6 (q— Zp) (BB|T)(T|V¥(0)|0), (15)

‘However, in the same limit, the residues at the Y poles in
the B-number form factor in Eq. (16) scale as (m)%. If
naive scaling holds, then the T poles of the b-number
form factor of the B meson below the BB threshold
cannot be neglected, contrary to what was done in the
derivation of the bounds in Ref. [1]. New bounds, if pos-
sible, have to be derived.

III. THE NEW BOUNDS

The derivation of the new bounds is possible with
an appropriate generalization of the method we already
used in [1]. The technical details are explained in the
Appendix. To adapt our problem to the framework of
the Appendix we shall map the entire complex y plane
(y= ﬁ,’;) onto the unit disc |z| < 1 via the transforma-
tion

'
= —1=1 +v Y (21)

Here v - v’ is the Isgur-Wise variable which denotes the
product of the four velocities of the incoming and outgo-
ing B mesons in the vertex in Eq. (1): g2 = 2M3(1—v-v').
Eventually, we are interested in bounds of the b-number
form factor F' in the physical region relevant to the de-
cays in (2), i.e.,

[y

1<v-v' < -(M/M' +M'/M) ~1.6. (22)

[\

By the transformation in (21), the physical cut 1 <y <
00 is mapped into the unit circle z = ¢, the BB thresh-
old at y = 1 into 2 = —1, and the position of the T poles

_ 2
below the BB threshold at y; = %’i— into the real points
B
zi: =1 < z; < 0,71 =1,2,3. The integral on the RHS of
Eq. (13) can then be written as an integral on the unit
circle.
In order to use the results derived in the Appendix,
Eq. (13) should be cast into the form
1 2m or12
1> — do|f(e*)|*. 23
> L[ a0 (23)
That this is always possible is guaranteed by the fact
that the integrand in (13) is positive, and a theorem.
Let ¢(e*) be real and positive, then
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h{z) = exp (517; /:wdo w“l néle 1”)) L (24)

verifies

h(e)| = ¢(e™), (25)
is analytic and has no zeros in the unit disc. The func-
tion h(z) is unique up to a global phase. This is actually
the solution of the Dirichlet problem of finding an ana-
lytic function h(z) with no zeros in the unit disc with a
boundary condition on the unit circle as given by (25).
The problem can be immediately solved with the help
of the Poisson kernels, applied to the real and imaginary
parts of Inh(z) [17]. The solution is given by (24).

It is easy to find directly the function h which cor-
responds to the two factors which multiply |F|? in the
integrand in Eq. (13) with the help of the relations

(z— 2z:)(1 — z2;)

oy = 4R T
y—y (1—2:)%(1—2)2
2
zi—z (142 1+z2
= , 26
1~ziz(1—zi+1—z> (26)

where z, z; are the images by (21) of y, y;, respectively.
Factors of the type (z — a)/(1 — za*) (a € C) are ubig-
uitous in the analysis; they are unimodular on the unit
circle and, therefore, drop from the integrand in Eq. (23).

For the sake of simplicity we shall choose Q% = 0 in
the unitary inequality in (13) and ignore here the ques-
tion of optimizing the choice of Q2. We shall also adopt
the lowest-order result in Eq. (12) as a good estimate
of the QCD evaluation of x(0). Perturbative a, correc-
tions to this result are known to be small at the m? scale.
Since we shall be ignoring a, corrections, which are posi-
tive, it seems prudent to neglect as well the contribution
from the Y states on the RHS of the unitarity inequality.
As already mentioned they decouple in the large b-quark
mass limit in any case. We shall also take Mp and ms
to be equal. The unitarity inequality in (12) then reads

f * ~7/2 3/21 |2
1> d -1 F|°. 27
> 16NC/1 yy iy — 1)V F| (27)

But for the ny factor, this coincides with Eq. (14) in
Ref. [1].

Equation (27) can now be written in the canonical form
of Eq. (23), by setting

Fe=- \/i~—z1+z)2H <z~zl>[;

In the case where a; — 1 (z; — —1), and correcting
for the ny factor, the formula coincides with Eq. (16)
of [1]. Using the experimental values for the T masses
below threshold, we obtain in particular upper and lower
bounds on the slope of the b-number form factor of the
B meson at the origin:

f(z) = o(2)Flg*(2)], (28)

with
p(2) = p(0)V1 - 2(1 + 2)° (29a)

and
©(0) = T m (29b)

As a function of the variable z, F[g%(z)] is an analytic
function in the unit disc, except for the three poles at
—1 < z; < 0, corresponding to the locations of the three
Y states below the BB threshold. These poles of F(q?)
give rise to poles of the function f(z) in (28) at the same
location —1 < z; < 0, with residues

11—z
e = p(0)a(1+ 5)(1 - %)

R; = p(z)

i=1,2,3, (30a)

where 7); denotes the product of coupling constants:

W = 397,55 x, (30b)
The modulus of the couplings |fr,| can be determined
from the experimental electronic widths [see Eq. (17)].
Unfortunately, the couplings gy, g5 for the three Y’s be-
low the BB threshold are unknown, and therefore the
sizes of the residues are also unkown. As discussed in
the Appendix, it is nervertheless possible to obtain up-
per and lower bounds on the form factor F(¢?) using the
fact that F(0) = 1 [see Eq. (3)], if the locations of the
poles z; of the function f(z) are known. These are deter-
mined, via Eq. (21), by the masses of the three T states
below the BB threshold; i.e., the parameters

2
My,

—t 31
v (31)

a; =

We find, in this case [see Eq. (A17) in the Appendix]
F_(z) < F(z) < Fy(2), (32)

where

512N, 1 1
- —11. 33
\/1—z2\/57r ng FZ(O)I;sz (33)

—6.0< F'(v-v' =1) <4.5. (34)

The lower bound, although rather generous, is not trivial.
As indicated in the Appendix, it is also possible, with
the same input, to obtain bounds on the 7; residues:
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TABLE I. Data and coupling constants for the T states. The coupling constants fy and gygp
are defined by the effective Lagrangians in Egs. (18) and (19).

377

State Mass I(i —»e*eT)| [fr.| x10?| T(i = BB) | |gx,s8l| Ini| = 3lgx,ppfr:]
(MeV) (keV) (MeV)
T(1S)| 9460.32 + 0.22 1.34+ 0.04 2.5 ?
T(2S)| 10023.30 + 0.31 0.56 1.6 !
T(3S)| 10355.3 + 0.5 0.44 1.4 ?
T(4S)| 10580.1 + 3.5 0.24+ 0.05 1.0 < 23.8 + 2.2 <25 < 0.75
~3.3x10% <7 < 3.3 x 103 of the same size. We propose to use this phenomeno-
’ - ’ logical observation as a guiding ansatz for possible input
3 3
—5.7 X 103 S 8.7 % 103 ’ values of the 7; residues, ¢ = 1,2,3, and to derive the
—2.7x10° <73 <2.7x10°. (35)  corresponding bounds® for F'(¢2).

As we shall next discuss, these bounds allow for huge
values of the unknown couplings gy, p5.

In order to get a feeling for what is a reasonable ex-
pected size for the 7); residues, we propose to extract the
value of the 74 residue corresponding to the Y(4S5) state
which is already above the 4M3 threshold from experi-
ment. The experimental data, as well as the correspond-
ing couplings, are shown in Table I. The decay rate of the
Y(4S) into BB calculated with the effective Lagrangian
in Eq. (19) is

The relevant analytic form of the upper and the lower
bounds for F'(g?) when both the positions and the mod-
ulus of the residues of the T poles are known is given
by Egs. (A16) and (A19) of the Appendix. In the limit
where |n;| = 0, i = 1,2,3, we reproduce the first bound
given in [1] (corrected by the famous ny factor): i.e.,

~0.89 < F'(1) <052 . (38)
The corresponding upper and lower bounds of the slope
F'(v-v’' = 1) for a specific set of input values of the mod-
ulus of the reduced residues |n;| of about the same size

_ 1 4M3 3/2 9 as the upper bounds known from experiment are given in

I'(Y(45) » BB) = 4_8;;MT4 (1 - M2 ) 9x.BB" Table III. We observe from the results in this table that
‘ the bounds are rather insensitive to small variations of

(36)  the |7:|’s. (Increasing all |n;| by a factor 4 diminishes the

From Egs. (17) and (36) and the knowledge of the exper-
imental total width, we obtain for 74 in (30b),

|n4(expt)| < 0.75 + 0.15, (37)
i.e., a value about 3 orders of magnitude smaller than the
limits allowed by the bounds for the other 7;,7 = 1,2, 3.

It is also instructive to extract from experiment the
corresponding residues for the charmonium states 1(35)
and (4S5) which are above the DD threshold. The ex-
perimental data as well as the corresponding couplings
are shown in Table II. It is noteworthy that the experi-
mental upper values of the 7 residues for the (3S5) and
1(4S) states, and the 74 residue of the Y(4S5) state are

lower bound by 50%.) The upper bounds in Table III
are not interesting since they all have a positive slope
and we expect from Bjorken’s bound [19] that F(v - v')
is a decreasing function for v - v’ > 1. The lower bounds
however are certainly nontrivial and may be useful for
phenomenology and model building.

We conclude from our analysis above that the only
rigorous lower bound we have at present on the slope of
the b-number form factor of the B meson at the origin is
the one in Eq. (34). Nevertheless, on phenomenological

grounds, we consider that a lower bound
F'(1) > -1.7 (39)

is a conservative estimate.

TABLE II. Data and coupling constants for the charmonium states. The coupling constants fy
and g,pp are those of effective Lagrangians analogous to Egs. (18) and (19).

State Mass | T(i — ee”)| fy.] x 10°| T — DD) ‘ lg.ﬁ,.mn‘ imi] = L5194, 00 ol
(MeV) (keV) (MeV)
J/$(1S)| 3096.93 + 0.09| 5.35 + 0.29 8.8 ?
¥(2S) | 3686.00+ 0.10| 2.14 £+ 0.21 5.1 ?
¥(3S) 3769.9 £+ 2.5 0.26 &= 0.4 1.8 < 23.6 +£2.7 <16.8 < 0.47
¥(4S5) 4040 £+ 10 0.75 + 0.15 2.9 <5210 < 4.0 <0.17

'We have assumed flavor SU(3) symmetry and used the same constants gg BY;> DDy, for any of the three light flavor species
u,d, s of the mesons B and D, respectively. This allows us to improve the bounds on the residues by including all possible
channels. Notice that not all the channels are always allowed by phase space.
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TABLE III. Upper and lower bounds for the slope of the
b-number form factor of the B meson for various phenomeno-
logical input values of the residues 7; [see Egs. (30b) and (16)
in the text].

|m| | [n2] I |73 ! F,(l)lowerl F,(l)upper
0.5 0.5 0.5 -1.23 0.79
1.0 1.0 1.0 —1.51 1.00
1.0 0.5 0.3 —-1.36 0.92
1.5 1.5 1.5 —-1.73 1.04

IV. COMMENTS ON THE HEAVY QUARK
EFFECTIVE THEORY

Related to the work described in the previous sections,
there are a number of observations we wish to make which
are relevant to the heavy quark effective theory formula-
tion [20] of the Isgur-Wise symmetries.

First we shall comment on the limit m, — oo of our
bounds. As my grows bigger and bigger, there appear an
increasing number of T resonances below the BB thresh-
old (a semiclassical estimate based on nonrelativistic po-
tential models gives that this growth goes like (m)/?
[21]). In order to be able to take the m; — oo limit on
our expressions for the bounds, more information should
be known about the m; dependence of the location of the
poles z;(m3), as well as of the residues n;(ms). However,
if the behavior n;(mp) — const and a finite number of
poles below threshold are assumed in the mp — oo limit,
as done in [4], then, since z;(ms) — —1, the results in
Ref. [1] are again recovered. The authors of Ref. [4] found
that the effect of such poles is to broaden the bounds.
This is just an artifact of the approximation they use.
As shown in the Appendix, stronger bounds can be de-
rived leading to the same results as in [1].

The second observation is of a phenomenological na-
ture. Based on naive scaling [3] of the coupling constants
fr and fy in the large b-quark mass limit and the large
c-quark mass limit, one expects the ratios of these cou-
plings to scale as

1/2
I (1) , (40)

f¢, mp

where the factor 2 takes care of the different quark
charges of the b and c quarks. Except for the : = 3
states [and in fact the electronic width of the T(3S) is

poorly known], the experimental ratios
2 1T L o57, 2 I%2 ~ 063, 2 LXs
fu ™ Fus

~0.69, (41)

are not incompatible with the empirically allowed range
of quark mass values [18]:

0.5 < (me/ms)** < 0.6. (42)

Our last comment has to do with the compatibility of
the bounds with models of the Isgur-Wise function. In
Ref. [1] we proposed as a simple-minded model of this
function the one provided by the triangle graph vertex

with two heavy quark lines and one light quark across
with a constituent mass which acts as a regulator and no
gluons across. The resulting Isgur-Wise function has the
form

1
Ew-v' =w) = T In(w + vVw? —1). (43)
w —_—
The slope at zero recoil is £/(1) = —1/3, in confortable

agreement with the lower bound in Eq. (38). The func-
tion in (43) has been recently found again in a toy field
theory model which tries to implement both heavy and
light quark symmetries [8]. Bardeen and Hill dismiss
however this solution on the grounds of “residual mass
invariance” of the heavy quark effective theory [22,23]
and conclude that the Isgur-Wise function in their model
is given by

2

= 44
+v-v (44)

The slope at zero recoil of this function is /(1) = —1/2,
also compatible with the lower bound in (38).
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APPENDIX

The mathematical tools needed to derive the bounds
on the form factor F(q?) in Eq. (1) follow from analyt-
icity properties and positivity. Let f(z) be an analytic
function on the unit disc, and let

1= [ iR = 5 f Ll

211 Jw]=1 w

w=¢e" (A1)

The basic inequality follows from

0< - / " 461 () — FO)2 = I1f] - SO, (A2)

I£(0)* < I[f].

A similar inequality may be derived at any point z in the
unit disc. With the help of the Mobius transformation

(A3)

z—x
w = b

T 1-z*z l2* <1,

(A4)

at fixed z, the problem of finding a bound on |f(2)] is
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reduced to finding a bound at z = 0. Indeed, (A4) maps
the unit circle |w| = 1 onto the unit circle |z| = 1, and
the point w = z is mapped into z = 0. In terms of the
variable z,

_ 1 de|iaED)]
M=0-1gsf  TITEE @9
for which inequality (A3) gives, at ¢ = 0,
I
lﬂﬂ?sljﬂp. (A6)

This is the generalization of (A3).
Suppose f has a simple zero in the disc, at z = a. One
may build

*z

b(z) = F(2) =22, (A7)

z a

which is analytic on the disc and is such that [f(2)| =
|#(2)| at |z| = 1; therefore I[¢)] = I[f] and applying (A6)
to ¥(z) yields

I[f) z—a |?
2
<
f@F < 0| 2o (A8)
Notice that
2
z—a |° o (1-]a)(1 -2
1—a*z| ! |1 —a*z|? <L (49)

since |z|, |a] < 1. Knowledge of the location of a simple
zero inside the disc leads to an inequality (A8), which
is more constraining. The generalization to higher-order
zeros is immediate. One can proceed similarly when f(z)
has a simple pole at z = p in the unit disc. In that case
one may build

¥(e) = F) 7 (A10)

which is analytic on the disc. Equation (A6) then reads

) < UL

1- |22

1-p*z 2

zZ—p

) (A11)

which for a given I[f] is less constraining than® (A6).
Letting z — p, a bound on the residue R is also obtained:

|RI* < I[£](1 - |pI*).

Notice that in each case the bounds only depend on the
information that is provided about the function.

(A12)

2Equation (A11) is however more constraining than the
bounds obtained in [4], which would give in this case

1f]
1—|z)?

2

+1[f]

1—p*z 2

z —

4

2
F)P < 2

’

and for the residue

|R|> < I[f].

If the residue R is also known, 9(2) = f(2) — zfp is
analytic on the disc, Eq. (A6) applies and yields

2
- 2| < 72 (A13)
with
1 = 11f] - {2 (A14)

After these examples, let us consider the cases of in-
terest to us discussed in the text: (i) f(0) is known;
(ii) f(0) is known as well as the location of the poles
-1 < 21 < z3 < 23 < 0; (iii) the residues Ry, Ry, R3 of
these poles are also known.

(i) Build ¥(2) = f(z) — f(0), for which ¥(0) = 0.
Equation (A8) applies with a = 0 and yields

1] - 1FOF

1f(z) = FO)F < —=— P (A15)

This is the inequality used in [1].

(ii) Build
_z—z z—23 Z—23
Y(z) = 1—zzl-zz1- z;zf(z) + 212223 (0),
1(0) = 0. The bounds are given by (A8):
I[y]
2 < 2
W < =l (A16)

with
I[P = I[f] — |z12223 £ (0)[%.

Bounds on the residues follow from (A16),

(A17)

2

- - R
21— 22 21— 23 1 +zlz2z3f(0)

1—23211— 23211 — |22

< ;2 (a9

and similarly, mutatis mutandis, for R, and Rs.

(iii) Build

_ Ry R, Rs
¥(2) = £(2) z2—21 z—2zy 2z—23
R R R
-{4+J+i+mo,
z1 z2 z3
¥(0) = 0. The bounds are given by Eq. (A16) with
R, R, R 2
Iy =I[f] - | = + =+ = + £(0)
4l 4 z3
_|R® R[> |Rsf?
I—|z1f? 1—]z2[? 1-—|z)?
—2Re ( RiRs RaR; RoRs ) (A19)
1—2125 1—2z123 1— 2223
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