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Exact solutions of the classical equations corresponding to the leading-logarithm approxima-
tion are obtained. They are classified by an (integer) topological number.

The leading-logarithm approximation to the Euclidean functional integral of the Yang-Mills (YM) theory
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consists in replacing the classical action Syl A4] by the effective action!?
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where Sy is the first coefficient of the Callan- Symanzik B function, and « is the square of the renormalization
mass. The integral (1) is then evaluated over the classical paths only:
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This approximation to the exact Euclidean func-
tional incorporates the renormalization-group features
to one-loop order. Moreover, S has other attrac-
tive properties, as (explicit) local gauge invariance,
asymptotic freedom, and dimensional transmutation.

In Refs. 1 and 2 this leading-log model has been
studied in connection with the problem of quark con-
finement. Here we shall investigate the topological
structure of the solutions of its equations of motion
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with the boundary condition
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which has to be satisfied in order to obtain a finite
action.

We shall now construct a family of (vacuum) solu-
tions of Egs. (4) and (5) by simply imposing that
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We prove below that the following field-strength ten-
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sor is a solution of Eq. (6):
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and f(x?) is the function
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It is not difficult to see that F,, given by Eq. (7)
satisfies Eqs. (4) and (5). In fact, one explicitly gets
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where
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It is easy to see that
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Therefore,
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we finally obtain
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Thus, F,, given by (7) is indeed a solution of (4) and (5).
We shall now demonstrate that the topological index of each of these solutions is equal to the one correspond-
ing to the associated instanton potential. In fact, in the particular example we are considering,
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By F,, we denote the dual tensor F,, = €,,0Fp0/2. which substituted into the expression for the topolog-
A direct calculation gives ical index
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solution, one gets
yields the value
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Therefore, q @D
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TrlF, (%) Fup(x) 1 =Trl F ,,:, (x)F ,59 1, 19 This proves the assertion we have made above.
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