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Generalized string models and their semiclassical approximation
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We construct an extensive family of Bose string models, all of them classically equivalent to the
Nambu and Eguchi models. The new models involve an arbitrary analytical function f(u), with
f(0)=0, and are based on the Brink-Di Vecchia-Howe and Polyakov string action. The semiclassi-
cal approximation of the models is worked out in detail.

I. INTRODUCTION

Various string models are known at present. What in
the beginning was a phenomenological device, whose aim
consisted in explaining the remarkable regularities of
Regge trajectories of hadron resonances,! has now become
a serious candidate for the string of glue connecting
quark-antiquark pairs in, say, an SU(3) gauge theory.? An
impressive amount of work has been done in this new
direction (for recent reviews see Refs. 3—5). In particular,
the following Bose string models have been studied:

Nambu-Goto® Iy=M? [ ,VEdz, (1)
Eguchi’ Iy =M* f@ hvd*z , 2)
Brink-Di Vecchia-Howe? and Polyakov’®

Ig=5M? fg‘/ggabhabdzz , (3)

where in all cases
M~ =2ma', h=dethy,, hg =0,x"3,x",

d

=
In the Euclidean formulation (which will be used
throughout) & is a compact orientable two-dimensional
manifold with boundary 8%, while x: Z—R? is an
embedding of & in d-dimensional Euclidean space (so
p=12,...,d). Summing up, z* are local coordinates on
2, and x*(z) defines the embedding. g2 is the inverse of
a new metric tensor g, (i.e., g4,8%=5¢), which has noth-
ing to do with Ag;,, and is taken as an independent vari-
able. Also, g=detg,,,.

When use is made of (1)—(3) as phenomenological
models for the Wilson loop % (a single, noninteracting
closed contour in R, the image of 02 by the embedding
is identified with €. On the other hand, we shall only
consider the case when the embedding of 2 in R? does
not have holes or handles (for a complete study with gen-
eral topology see Ref. 5). Strings with fermions!® will also
not be considered in this work.

The models (1)—(3) above lead to the classical equations
of motion

4)
a=1,2.

3,(Vhh3,x*)=0, &)

3,(h"h*9,x*)=0, (6)
8ab =Ahap, 3,(Vgg™dpx#)=0, )

respectively. The first equation describes the minimal sur-
face enclosed by the curve %, and so does the second, in
the special parametrization where A=const. Also, Eq. (7)
reduces to (5), g, being a (positive constant) multiple of
hg,. Thus, all these models are classically equivalent
(aside from boundary conditions, see Ref. 11). Fradkin
and Tseytlin® have proven that they are also equivalent in
the semiclassical approximation, but that, nevertheless,
they are not equivalent quantum mechanically. The string
propagators in the quantum versions of the models (1)—(3)
are given by the Wilson-loop Ansdtze

Wyle1= ija_@___(g[dx]e_IN[x] ) (8)
(v) _r- —a —kWIP[x]
We'l€ 1= fo dae°"? x[a@ﬂ{[dx]e B
k) =2—1/m?"1/2v), a= [_d’z, )
Wel€1= [,  _,laxlldgle . (10)

The constant k(v) in the Eguchi model is needed in order
to obtain the area law

W C1~e M4, 4= [_vhd% (11)

in the classical limit. The inequivalence of (8), (9), and
(10) shows up when one integrates over the metric g°.

II. STRING ACTIONS

Let us now come to the main point of this work, i.e. the
construction of new families of string actions, all of them
sharing with the above actions the property of being com-
pletely equivalent with them at the classical level.

Let us start with the Ansatz

I("’[x,g]=b(v)M2" fg dZng/2(gabaaxllabxﬂ)v , (12)

v being an arbitrary positive integer, and where b(v) is to
be determined in order to satisfy the area law (11). Recall
Eq. (4) for notation. Action (12) is classically equivalent
to (1)—(3). In fact, the following equations of motion are
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readily obtained:
3y [vg*/2(g%hea)" " 'g%3px*]1=0,

(13)
V8 A8ca)" [ hap — 3 (8Nca )8ap 1=0 ,
that is,
8ab =A?hgp, 3,(h*?h%9,xH*)=0, (14)

which [as (5)—(7)] describe the minimal surface enclosed
by the contour %, in the special parametrization where
h =const.

In order to determine the constant b(v), for v> 1, we
must evaluate the integral

0
fo dae—a/Ze —I(v) .

This is done by the method of steepest descent, taking into
account (11). From A =const we see that

(15)

h'2=4/a , (16)
which substituted into Eq. (15) yields
(-] 2 v
f, daexpl—% 1+26(v) |4 ] (17)
The stationary point @ is
a=[2(v—1)b(V)]'*"M?*4 , (18)
and from
— 2 v
SR P VARRY . i (R VEY/ (19)
2 a
one gets immediately
v—1
biv)= | 2=l ] !
v v
— (20)
=221y .

v

Ansatz (12) can be made much more general in the fol-
lowing way. Let f(u) be an arbitrary analytical function
in the variable u, with the only condition that f(0)=0.
The following Amnsatz can then be considered as some
“combination” of the family (12):

I'x,g1=b(f) [, d% f(M7g' 7g®B,xdpx) . (@D

Again, b(f) will be determined in order to satisfy (11) in
the classical approximation.

Let us first check that (21) is classically equivalent to
the known actions (1)—(3). The equations of motion are
now

3, Lf (Mg g h )8 g%, x1=0,

F(M?g g% 4 ) (hap — 58 “hcaar) =0 2
or, equivalently,
8ab =N Py
FUAMRYMAB b /2R 2h b, x
+f(M?n172)3,(h %R, x*)=0, (23)
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which is also the minimal surface enclosed by ¥, in a
parametrization with A=const. f'(u) is the derivative of
S with respect to u.

The constant b(f) is determined as before. Now, the
stationary point a satisfies the equation

_ 2MPAf'(M?4 /7)
a= , (24)
f(M?*4/a@)+2f(M?4 /)
and making use of Eq. (11), one gets
b(H=[f(M?4/a3)]"". (25)

As is clear, the family of actions (21) has (12) as a par-
ticular subfamily [when one takes f(u)=u"] and, on its
turn, the action (3) is one of the subfamily (12) (for v=1).
All of them are completely equivalent at the classical lev-
el, as we have just seen.

III. SEMICLASSICAL APPROXIMATION
FOR THE FIRST ANSATZ

The string propagators corresponding to the actions (12)
and (21) are, respectively, given by

W(V)[Cg]: fo“’da e_a/2

X [, —ldx]ldgle =81 (26)
WG = [° dae=sr
X S0 Laxlldgle =581 27)

Our purpose is now to investigate if the semiclassical ap-
proximations to (26) and (27) are still equivalent to the
corresponding ones of Egs. (8)—(10) (which happen, in
fact, to be equivalent among themselves).?

We start with the integrand of 1"[x,g],

g¥72(g™3,x dpx )Y , (28)

and make an expansion near a minimal surface, in both
variables x* and g,

x”=¢’“+€”7": 8ab =:hab +€Yap » (29)

where ¢* and h,, are the solutions of the classical equa-
tions of motion (14) (in particular, A, =9,¢"9,¢"). One
easily obtains

g=h+ehh®y+€y , (30)
gv/2=hv/2 1+617’Z—€2‘!?’ab7’ab+€2ﬁ(7’: )2 , (31)
2 4 8
gP=h"_ey® L yylq - - . (32)

Finally, substituting (29)—(32) into (28), we get—up to or-
der e’>—the following expression:
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gv/Z(gabaaxpabx,u)vzh V/2+€ T}h v/Z,V: —vh V/Z'yabhab +2vh V/Zh abaa‘ppab,np
2 v/2} ab v/2 v ab V2 ay2
+€” {vh¥*h 3, ", " +h — 4 Vab? +?(7“)
20y, gy — Ly i + R S D g0
+Vh Y2y %y 4 20(v— 1) YR %83, "B *h %D ¥y
—=2U(v— D"y ®h oy h 43, pHdgmt + +v(v— )R 2y %k yih ] 4o (33)
This expression can be easily simplified to the form
878 B x By x ) =h "/ | 1 — e~y G+ E[vhd,1 3y — 207 3, Py + VT 7
+ V(v —=1)(72 )2+ 2v(v— 1)(h %3, "D, n*)?
—2v(v—1)y3(h%d, "3 ")+ - -+ |, (34)
where the classical equations of motion (14) have been used, and
Vab=Vab —Thap Ve, Va=0. (35)
The semiclassical approximation to Eq. (26) is given by
© —I(V)[ﬂ, ]
WRIL = [ dae—e" <, (36)

oo —desas LAY Te

(v)

where in I3’ only the terms up to order €’ in Eq. (34) must be taken into account, and where ¢ is a parametrization of
94 . Notice that the constants 5(v) in (20) and M?" are included in I (6‘2’) [see Eq. (12)].

Upon integration over da and over [dy], we obtain

» —1%9[9,7]
fo da e—a/2 &

0| ag~desdr LAY 1€

~e ML oy { —EM? [ d% h'2[h®3, 10y — (8,9 B3p 1" + 3,13y @ — hap h 3, 93 ymH)?

=e M2 exp [——EZszg d*z h %3, MM+ 2(v—1)M [} 13,7" ] :

where y3=0 has been chosen as the quantum Weyl
gauge.’ The transversal and longitudinal parts are defined
as usual (see, e.g., Fradkin and Tseytlin,> and Liischer,
Symanzyk, and Weisz”):
M0 =h8,,+ +(3%,8%p,—8°p,0%p,
—habhcd ac¢uad¢v) ’
(39)
M =8'9,3%, .

We can write

+2(v—1)(h %3, "3, 1*)?] l (37)
(38)
[
B M Y 3y =h ™9 3y — 5 (8:h5)% , (40)
with
B1hap =0, @3y " + 3, N Dy —haph“Dc@dum” , (41

and 8,/,, =0 can be taken as a coordinate gauge. Notice
the factor +, which was absent in Ref. 3 but gives, after

all, no contribution in this gauge.
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Now we are ready to perform the last integration in
(36), i.e., over [dn]. Following Ref. 3, let us write

Nu="u+nlh =Ee, @)
[dn]=[dn'1ldq!] .
We get for (36) the expression
WA E | ~eMA2Z1Z] 43)
with
Zt=[det( Do), ]~ 2(detA D2, )

ZI=[det(Ag)x 1~ 1?[det(Ng)p 172,
J

26—d
Zt~
P Ty
Zll <ex -I—InA—-L d.o0dz
P12 47 Joz OF
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where Ag=—h~1/23,(h'?h?3,). The A\, term is the
Faddeev-Popov determinant corresponding to the coordi-
nate gauge
Nap€=—(V Y+ R/2)E, , (45)
V. being the covariant derivative of A,;,, and R the curva-
ture scalar. The subscripts NV and D make reference to the
Neumann and Dirichlet boundary conditions for A,
respectively.
Finally, all these determinants can be explicitly calcu-

lated for h,, =e2°8,,, with the result (for more details and
notation see Ref. 3 and the last Ref. 7)

— Bl [ @uoraz-222 [ Kiodi— [ a0ds|[det—00,10797, D=eA,,

(46)

Summing up, the semiclassical approximation (36) of the string propagator (26) is equivalent to the semiclassical approx-

imations of the known strings (8)—(10).

1V. SEMICLASSICAL APPROXIMATION: THE GENERAL CASE

Let us now turn to the more general Ansatz (27). Its semiclassical approximation is given by

wLIC = fow dae—°"?

1| 3 ~dc/dt
If

Slu)= i a,u”

v=1

[dnlldyle ™"

is the series expansion of the analytical function f [f(0)=0], the exponent I g ) has the explicit form

I2ny1=bN 1 3 a,M> [ hd%Z— = 3 apM™ [ h*"yid’
v=1 v=1

+& 3 a,M? [ d%z k" [vh 3, mtdymt —2v7 B, @ By + $VF Ty
v=1

The constant b (f) is given by (24), (25). Equation (49) can be written in the more compact form

I(e{)[,n’,y]=b(f) fgdZZf(MZh 1/2)__ §M2 f_@dzzh 1/2fl(M2h 1/2)7’2

+EM? [ d%z h 2 f (MR ) (RS Py — 27 Boe @ By + 37 PV ap)

47)
(48)
+ V(v —D(y3 )+ 2v(v—1)(h %3, ¢#d, n*)?
—2v(v—1)y2(h%3,¢"*3.7")] | . (49)
+M2h I/ZfN(MZh 1/2)[%(7/: )2+2(h abaawabnp)Z
—2y(h*d,*3. 1)1} | - (50)
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When in (47) the integrations over da and [dy] are carried out, one obtains the result

© ~1! )[ ”V]
fo dae=°"? [dyle A

—Mug
0| g ~de/dt eXp [

—2¢e% (f)M“i; f
a

(M2 | A f d%2 h'Y[ hgd, 0" — +(81h)?]

M?4

fg dZZh I/Z(habaa‘puabny)Z] ,

(51)

where, as in the preceding case, ¥% =0 has been chosen as the quantum Weyl gauge. The term 8,4, is given by (41).

Making use of (25), (39), and (40), Eq. (51) can be written as

© ~1 )["IyY]
—ar2 & —M242 2142 231728 op | agplab | o= L (@ lab
fO dae ° ‘nlag"’d"/‘i’[d'y]e exp‘ €M f@d zh /“9,m M, +2a @ )M 9 nv’ , (52)
I
her: 2 "=
where 2 i M_A _ V2V1 ’ zaf’((it)) —2(v—1), (55)
a= M’A . (53) a Sf(a
a from where we recover (38).
Let us now compare Egs. (52) and (38). We see that, In the particular case v=1, this is the Brink-Di

apart from the factor in front of M!l, which in the general
case (21) is different from that of the particular Ansatz
(12), the rest of these expressions are exactly the same. In
particular, the transverse part is identical in both cases.
As a consequence, and except for a global factor, the re-
sult one obtains for the string propagator (27) in the semi-
classical approximation (47) is the same (43), (46) that one
gets for the semiclassical approximation (36) of the more
particular Ansatz (26). Therefore, the semiclassical ap-
proximation of (27) is also the same as the semiclassical
approximations of the string propagators (8)—(10). And
this is true for any analytical function f in (27).

V. ANALYSIS FOR SOME PARTICULAR
FUNCTIONS f

The scope of different, in principle admissible (i.e., clas-
sically and semiclassically equivalent to the already known
ones) string actions, has been widely implemented. Of
course, in general, the quantization (26), (27) of these
models will have to face the same dlfflcultles one en-
counters in the Nambu and Eguchi cases. Nevertheless,
due to the extreme arbitrariness in choosing the function
f, a door is left open to some particular Ansatz which
could be free from such troubles.

For the sake of concretion, let us now compute @, a,
and b (f), as well as the constant in front of M, I, for some
particular functions f.

(i) For f(u)=u" we must recover the particular case
(26). In fact, f'(u)=vu""", f"(u)=v(v—1)u*"?, and we

get
2 —_—
g 2M’Av a2 1M2A,
v+2M?*4/a
(54)

2 v—1

b(f)_l M4 2(v—1)] 1
a v v

which coincide with (20), and

Vecchia-Howe® and Polyakov® model, and we get only the
transverse part in (38) [see Egs. (4.20) and (4.29) in Ref.
3].

(ii) Take f(u)=e“—1. In this case f'(u)=f"(u)=e",
and Egs. (24), (25) turn out to be

~ &
23" ()5_3)e®42=0, b(f)=e~7.
3e*—2

Solving the transcendent equation in &, we get the approx-
imate solution

1=

(56)

a=1.198, b(f)=0.302. (57)
Moreover,
2&ﬂ§l22&=2.396 (58)
(@)

is the coefficient of the longitudinal part in (52).

(iii) As the third and last example, let us consider
f)=(u?+c?)"1—c~2?, with c=const. Now f'(u)
=—2u/w?+c??, f"(u)=203u*—c?/W+c?)? and we
obtain from (24)

2a—1)f"(@)=2f(a@), a—c?@+c?=0. (59)

We could give @ in terms of c2. Instead, for simplicity,

we shall set c2=8. Then

a=2, b(f)=—36, 2al 2 _
f'@)

For this particular value of c?, both the transverse and
longitudinal parts contnbute in Eq (52).
On the contrary, setting ¢2= 2", we obtain

(60)

m]N

f”(a)
f'(@)

=0. (61)

vjw

a=2, b(f)=—27, 2al"%

In this case only the transverse part in Eq. (52) contri-
butes.
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VI. CONCLUSIONS

Guided by the aspect of the different Bose string ac-
tions proposed by several authors [Egs. (1)—(3)], we have
constructed a very large family of new actions (21), which
contains Polyakov’sg'9 action (3) as a particular case, and
contains also a subfamily of actions (12), which corre-
sponds to the Eguchi family’ “modified” according to
Polyakov’s procedure [just in the same way that
Polyakov’s action (3) is a “modification” of Nambu’s ac-
tion (1)].

All the new actions constructed have been proven to be
both classically and semiclassically equivalent to the al-
ready existing ones (which, at these levels, are also
equivalent among themselves®). Actually, this statement

E. ELIZALDE 29

is true, in principle, only if one forgets about the boundary
conditions implied by the different actions,!! a question
that has not been dealt with in this paper. A careful
analysis of this point could provide very interesting re-
sults.

The quantization of the models presented in this work
(at least of some of them, for particular types of function
f) is also a challenging task to be done. It may happen
that the same difficulties of the Nambu® and Eguchi’
models would show up here, in general. But one can still
hope to be able to simplify the calculations—for particular
analytical functions f—in the sense of Polyakov.” More-
over, an important role will be played in the quantization
by the topology of the embedding of 2 in R? (number of
holes and handles, see Ref. 5).
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