Dietary Restriction: Standing Up for Sirtuins

JOSEPH A. BAUR1, DANICA CHEN2, EDUARDO N. CHINI3, KATRIN CHUA4, HAIM Y. COHEN5, RAFAEL DE CABO6, CHUXIA DENG7, STEFANIE DIMMELER8, DAVID GIUS9, LEONARD P. GUARENTE10,*, STEPHEN L. HELFAND11, SHIN-ICHIRO IMAI12, HIROSHI ITOH13, TAKASHI KADOWAKI14, DAISUKE KOYA15, CHRISTIAAN LEEUWENBURGH16, MICHAEL MCBURNEY17, YO-ICHI NABESHIMA18, CHRISTIAN NERI19, PHILIPP OBERDOERFFER20, RICHARD G. PESTELL21, BLANKA ROGINA22, JUNICHI SADOSHIMA23, VITTORIO SARTORELLI24, MANUEL SERRANO25, DAVID A. SINCLAIR26, CLEMENS STEEGBORN27, MARC TATAR28,*, HEIDI A. TISSENBAUM29, QIANG TONG30, KAZUO TSUBOTA31, ALEJANDRO VAQUERO32, and ERIC VERDIN33

1Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
2Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720–3104, USA
3Anesthesia Research, St. Mary’s Hospital, Mayo Clinic, Rochester, MN 55905, USA
4Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
5The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
6Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
7Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
8Molecular Cardiology, Department of Internal Medicine III, J. W. Goethe University, 60325 Frankfurt, Germany
9Department of Radiation Oncology and Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
10Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
11Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
12Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA

*To whom correspondence should be addressed. leng@mit.edu (L.P.G.); marc_tatar@brown.edu (M.T.).

L.P.G. and D.A.S. are co-chairs, and S.I. and E.V. are members of the scientific advisory board for Sirtris, a GSK company. D.A.S. owns shares in GSK. E.N.C. has a sponsored research agreement with Sirtris/GSK. R.d.C. has a cooperative research and development agreement with Sirtris/GSK. All other authors declare that they have no conflicts of interest.
13Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
14Department of Diabetes and Metabolic Diseases, The University of Tokyo, 160-8582 Tokyo, Japan
15Diabetes and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
16Department of Aging and Geriatrics, University of Florida, Gainesville, FL 32611, USA
17Department of Medicine and Biochemistry, Ottawa Health Research Institute, Ottawa, ON K1H 8L6, Canada
18Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima-Minamimachi Chuo-ku Kobe 650-0047 Japan
19INSERM, Unit 894, Laboratory of Neuronal Cell Biology and Pathology, 75014 Paris, France
20Mouse Cancer Genetics Program, National Cancer Institute/National Institutes of Health, Frederick, MD 21702, USA
21Department of Cancer Biology and Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
22Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
23Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
24Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
25Spanish National Cancer Research Center (CNIO), Madrid, Spain
26Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
27Department of Biochemistry, University of Bayreuth, Germany
28Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
29Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
30Baylor College of Medicine, Houston, TX 77030, USA
31Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
32Cancer Epigenetics and Biology Program (PEBC), ICREA, and IDIBELL, L’Hospitalet de Llobregat, Barcelona, 08907, Spain
33Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
We believe that L. Fontana, L. Partridge, and V. D. Longo should have included a discussion of sirtuins in their Review “Extending healthy life span—From yeast to humans” (16 April, p. 321). We also believe that some of the references used are misleading.

The authors state that the purpose of their Review is to “consider the role of nutrient-sensing signaling pathways in mediating the beneficial effects of dietary restriction.” Yet there was no mention of the sirtuins, a family of critically important nutrient-sensing proteins that promote health span from yeast to mammals, as shown by more than 1000 peer-reviewed publications from labs around the world. The authors state that “[i]t is unlikely that a single, linear pathway mediates the effects of dietary restriction in any organism,” and we agree. Indeed, the aging field now recognizes that healthy life span is under the influence of several nutrient-sensing pathways, and there is at least as much evidence for the involvement of sirtuins in the dietary restriction response as for any of the pathways discussed in the Review (1).

Numerous independent studies show that dietary restriction does not extend life span when sirtuins are deleted. This result has been shown in multiple organisms, from yeast to flies and even in mice (2). Moreover, deleting SIRT1, SIRT3, SIRT4, or SIRT5 abrogates various physiological aspects of dietary restriction and fasting, including longevity (3). SIRT1 activity in mice increases during dietary restriction, and enforced SIRT1 activity results in a dietary restriction–like physiology and protection from many of the same degenerative diseases that are protected by dietary restriction in mice, including cancer, neurodegeneration, inflammatory disorders, metabolic syndrome and type 2 diabetes, and cardiovascular disease (4). In humans, there is also evidence that sirtuins may be involved in mediating the response to dietary restriction and increasing health span. For example, SIRT1 levels increase in humans practicing dietary restriction (5), and there are strong associations between alleles that increase SIRT1 expression and increased metabolic rate, as well as protection from type 2 diabetes (6).

Collectively, these studies provide strong support for a central role of sirtuins, as well as other nutrient-sensing proteins, as mediators of the effects of dietary restriction and the extension of healthy life span.

We also believe that the Review fails to assign due credit for major discoveries in the aging field, and not just from the sirtuin field. In some cases, credit is incorrectly attributed. For instance, the ablation of *Drosophila* germ line as it affects insulin-like peptides (dlps) and...
life span was performed by Flatt et al. (7). In another instance, data is selectively used to support the view that insulin signaling plays a role in dietary restriction, which is the opposite of what the original paper shows (8).

The Review shows dietary restriction working through insulin signaling in nematodes and flies, both of which are controversial. Studies indicate that daf-16/FoxO is not required for life-span extension by dietary restriction in nematodes (9) or in flies (8). Published data further demonstrate that dietary restriction robustly extends fly life span even when RNAi has suppressed diet-associated changes in insulin-like peptides.

References