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Abstract

The term filaminopathy was introduced after a truncating mutation in the dimerization domain of 

filamin C (FLNc) was shown to be responsible for a devastating muscle disease. Subsequently, the 

same mutation was found in patients from diverse ethnical origins, indicating that this specific 

alteration is a mutational hot spot. Patients initially present with proximal muscle weakness, while 

distal and respiratory muscles become affected with disease progression. Muscle biopsies of these 

patients show typical signs of myofibrillar myopathy, including disintegration of myofibrils and 

aggregation of several proteins into distinct intracellular deposits. Highly similar phenotypes were 

observed in patients with other mutations in Ig-like domains of FLNc that result in expression of a 

noxious protein. Biochemical and biophysical studies showed that the mutated domains acquire an 

abnormal structure causing decreased stability and eventually becoming a seed for abnormal 

aggregation with other proteins. The disease usually presents only after the fourth decade of life 

possibly as a result of ageing-related impairments in the machinery that is responsible for disposal 

of damaged proteins. This is confirmed by mutations in components of this machinery that cause a 

highly similar phenotype. Transfection studies of cultured muscle cells reflect the events observed 

in patient muscles and, therefore, may provide a helpful model for testing future dedicated 
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therapeutic strategies. More recently, FLNC mutations were also found in families with a distal 

myopathy phenotype, caused either by mutations in the actin-binding domain of FLNc that result 

in increased actin-binding and non-specific myopathic abnormalities without myofibrillar 

myopathy pathology, or a nonsense mutation in the rod domain that leads to RNA instability, 

haploinsufficiency with decreased expression levels of FLNc in the muscle fibers and myofibrillar 

abnormalities, but not to the formation of desmin-positive protein aggregates required for the 

diagnosis of myofibrillar myopathy.
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Introduction

Filaminopathies are recently identified progressive skeletal myopathies manifesting initially 

by bilateral weakness in either proximal leg muscles or in distal upper limb muscles 

spreading to other muscle groups and in some forms eventually resulting in tetraparesis and 

wheelchair dependence [6, 18, 22, 57]. Three distinct types of filaminopathy are recognized. 

The disease caused by mutations resulting in protein aggregation (so far found at various 

locations in the FLNc rod domain) presents in the fourth-to-sixth decade of life with slowly 

progressive predominantly proximal muscle weakness. Associated cardiac and respiratory 

muscle involvement severely complicate the course of illness [22, 57]. In contrast, mutations 

in the actin-binding domain (ABD) of FLNc are responsible for the second disease variant 

that is initially characterized by weakness and wasting of distal muscles, especially intrinsic 

hand muscles, manifesting in the third decade of life [6]. An intermediate filaminopathy 

phenotype affecting primarily distal muscles of the upper and lower limbs has recently been 

described [18]. Muscle biopsies of patients with aggregation-causing FLNC mutations show 

disintegration of myofibrils and formation of desmin-positive protein aggregates within 

muscle fibers [30, 39]. These are typical findings in myofibrillar myopathies (MFM), a 

clinically and genetically diverse group of progressive devastating hereditary skeletal and 

cardiac myopathies. Thus far MFM has been associated with mutations in seven genes 

(DES, MYOT, LDB3/ZASP, CRYAB, BAG3, FLNC and FHL1 [33, 40–42]). Muscle 

biopsies from patients with the second filaminopathy variant show non-specific myopathic 

abnormalities without MFM pathology [6], while histological evaluation in cases with the 

intermediate variant indicated disease-associated myofibrillar abnormalities, but desmin-

positive protein aggregates required for the diagnosis of MFM were not detected [18].

As a pathological entity, the first variant of filaminopathy related to FLNc rod mutations 

classifies with a group named protein aggregate myopathy (PAM). PAM is a general term for 

neuromuscular conditions marked by aggregation of proteins within muscle fibers. This is a 

diverse group of disorders that in addition to MFM includes among others, nemaline 

myopathy, myosin storage myopathy, cytoplasmic body myopathies, and reducing body 

myopathy [15, 16]. The other filaminopathy variants belong to autosomal dominant distal 

myopathies, of which nine types have been assigned to known genes [50]. The list includes 

Fürst et al. Page 2

Acta Neuropathol. Author manuscript; available in PMC 2016 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disorders caused by TTID, LDB3, CRYAB, FLNC and DES mutations, genes that have also 

been associated with MFM, thus indicating a close relationship between these classification 

units.

This review presents a comparative analysis of the contrasting FLNc mutation-related 

phenotypes of filaminopathy and their distinct underlying pathomechanisms. It also offers 

practical considerations regarding diagnostic procedures, severely complicated due to the 

existence of a FLNC-related pseudogene, as well as health implications and therapeutic 

strategies.

Clinical aspects

MFM-type FLNc myopathy

Evaluation of about 70 MFM patients with different FLNC mutations has revealed a 

markedly homogenous clinical phenotype ([2, 22, 23, 28, 44, 48] and our unpublished data). 

Muscle weakness mostly starts in the fourth or fifth decade of life (range 24–60 years). 

Proximal muscle weakness leading to difficulty walking uphill and climbing stairs is the 

initial sign. In the course of illness, most patients develop slowly progressive weakness in 

both distal and proximal leg and arm muscles (Fig. 1a). Winging of the scapula is a frequent 

phenomenon. Muscle weakness slowly progresses to the inability to walk. An involvement 

of respiratory muscles, often requiring nocturnal ventilation, usually occurs with disease 

progression and contributes to reduced life expectancy.

About one-third of the patients showed cardiac abnormalities, including conduction blocks, 

left ventricular hypertrophy, and diastolic dysfunction. Sudden cardiac arrest as the cause of 

death was presumed in at least five patients. Creatine kinase (CK) levels were mostly 

elevated up to tenfold of the upper limit. Electromyography regularly showed typical 

myopathic changes. Although histological findings indicated neurogenic changes in about 

one-half of skeletal muscle biopsies [22], clinical examinations and neurophysiological 

measurements did not reveal a relevant involvement of the peripheral nervous system in any 

of the FLNc patients. Chronic gastrointestinal complaints were reported by a few patients 

with p.W2710X and p.K899_V904del/V899_C900ins mutations and may indicate an 

involvement of smooth muscle [23, 28]. Late-onset cerebellar ataxia with atrophy of 

cerebellum and vermis was observed in one sporadic patient [48], but the causal relationship 

with the detected mutation in FLNc Ig-like domain 22 is unclear.

A diagnostic challenge is to discriminate FLNc-based MFM-type myopathy from other 

myopathies including MFM subtypes, limb-girdle muscular dystrophies (LGMDs), X-

chromosomal muscular dystrophy Becker type, myotonic dystrophy type 2 (PROMM), acid 

maltase deficiency (late-onset Pompe disease), and inclusion body myositis/myopathy. All 

these diseases are late-onset myopathies that typically present with proximal weakness, slow 

disease progression and mild to moderate CK elevation. The features of FLNc-based MFM-

type myopathy most useful for differential diagnosis appear to be a symmetrical involvement 

of proximal muscles in the lower extremities, respiratory weakness during the disease 

course, an autosomal dominant inheritance pattern, MFM-typical histological changes and 

characteristic muscle imaging findings (see below).
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Distal FLNc myopathy

Distal myopathy was associated with missense mutations (p.A193T; p.M251T) located in 

the N-terminal actin-binding domain of FLNc in families from Australia and Italy [6]. The 

illness developed in the third decade of life. Intrinsic hand muscles were primarily affected 

and led to reduced grip strength, followed by leg muscle weakness resulting in difficulties 

with running and jumping. CK levels were only mildly elevated up to threefold of the 

normal upper limit. Two patients displayed signs of cardiomyopathy and none had 

respiratory insufficiency.

In a recently reported Bulgarian family with a frame-shifting deletion mutation in exon 30 of 

FLNC (p.F1720LfsX63) leading to haploinsufficiency, the disease was associated with distal 

muscle weakness primarily in the upper limbs with lower limb involvement upon disease 

progression [18]. It manifests in adulthood between the ages of 20–57 years. Initial 

symptoms were distal muscle weakness mostly in the upper limbs with subsequent lower 

limb involvement upon disease progression. CK levels ranged from normal to sixfold 

elevated. Neurophysiological studies revealed normal motor and sensory nerve conduction 

velocities. None of the patients had respiratory disturbances and cardiomyopathy was 

documented in only a single patient. The main clinical differential diagnoses are adult-onset 

distal myopathies, a group of muscle diseases which share the clinical findings of 

predominant weakness in lower leg and/or hand muscles. Typical clinical findings 

characterizing distal FLNc myopathy are weakness in hand and calf muscles with an onset 

in early adulthood and a family history compatible with an autosomal dominant trait.

All mutations are further specified below in the genetics section (Fig. 3; Table 1).

Muscle imaging in FLNc myopathy

Magnetic resonance imaging (MRI) is a powerful and non-invasive tool in the diagnostic 

workup, evaluation of therapeutic efficacy and disease follow-up in neuromuscular 

disorders. MRI of lower limbs showed a rather homogenous pattern of symmetrical muscle 

involvement in MFM-type disease caused by FLNC mutations in Ig-like domain 7 and 24 

([10, 22, 23] and our unpublished data). Non fat-saturated T1-weighted images showed a 

reticular pattern of hyperintensity in less affected patients, whereas homogenous lipomatous 

alterations were visible in individuals with a more advanced disease. In proximal lower 

limbs, gluteal muscles, semimembranosus, adductor magnus and longus, long head of biceps 

femoris, vastus intermedius and vastus medialis were most affected (Fig. 1b, c). The rectus 

femoris seemed to be more affected in patients carrying the p.V930_T933del mutation than 

in those with Ig-like domain 24 mutation [23]. The sartorius and gracilis muscles appeared 

almost normal, even in patients with more advanced clinical course. In lower legs, soleus 

and the medial head of gastrocnemius were most affected, followed by tibialis anterior, 

extensor hallucis longus, extensor digitorum longus and peroneal muscles (Fig. 1d). The 

lateral head of the gastrocnemius was relatively spared. Muscular signal intensities on T2-

weighted TIRM images were only mildly elevated, indicating an absence of distinct 

intramuscular edema. The pattern of muscle involvement in patients with MFM caused by 

FLNC mutations is similar to that observed in MFM caused by MYOT or ZASP mutations, 

with only subtle differences detectable by statistical analysis, but is sharply different from 
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that observed in desminopathy or αB-crystallinopathy. Indeed, comparison with other 

genetically classified MFM subtypes revealed that the combination of the following findings 

was highly specific for MFM caused by FLNC mutations [10]: (1) semitendinosus and long 

head of biceps femoris at least equally affected as sartorius, (2) semimembranosus at least 

equally affected as adductor magnus, (3) medial head of the gastrocnemius more affected 

than the lateral head. These criteria developed initially in a retrospective study were 

validated in subsequent MRI analyses of newly identified MFM patients ([23] and our 

unpublished data).

Muscle imaging data of distal myopathies caused by FLNC mutations are rather limited. In 

patients with ABD mutations [6], fatty degeneration of semimembranosus and, in contrast to 

MFM-associated filaminopathy, semitendinosus was described as an early change in thigh 

muscles, followed by involvement of all hamstring muscles and adductor magnus. Upon 

further progression of the disease, vastii muscles of the quadriceps showed lipomatous 

alterations. At the lower leg level, severe fatty degeneration of soleus muscles, asymmetrical 

involvement of peroneal muscles and a slightly lesser involvement of medial and lateral 

gastrocnemius muscle were described in a patient with p.M251T mutation. A computer 

tomography scan in a patient with p.A193T mutation showed severe fatty degeneration of 

soleus and gastrocnemii muscles and a less severe involvement of peroneal muscles. The 

anterior compartment and tibialis posterior were spared in both patients. Compared to 

filaminopathy patients with MFM phenotype, semitendinosus and lateral gastrocnemius 

seems to be more and tibialis anterior and adductor magnus less affected. Interestingly, the 

early involvement of the semitendinosus observed in patients with ABD mutations is also 

typically seen in MFM resulting from mutations in DES or CRYAB [10] and in the recently 

described hereditary myopathy with early respiratory failure (HMERF) resulting from 

mutations in the A-band portion of titin [32, 34]. In contrast, the pattern of muscle 

involvement in the lower legs shows clear differences between these diseases [10, 32, 34].

Muscle MRI of lower limbs in one patient with FLNC haploinsufficiency showed 

similarities to MFM-associated filaminopathy regarding the most severely affected muscles: 

gluteus maximus, long head of biceps femoris and semimembranosus at the thigh level and 

the soleus, medial head of gastrocnemius and the tibialis anterior in the lower legs. In 

comparison with the MFM subtype of filaminopathy, lipomatous muscle alterations were not 

only more distinct in lower legs but also markedly more pronounced in distal parts of 

muscles [18].

Muscle biopsy findings

Muscle biopsy features in filamin C myopathy largely depend on the site of mutation within 

the FLNc molecule and, more importantly, on the impact that different mutations have on its 

biophysical and biochemical properties [6, 18, 23]. Affected muscles from patients carrying 

mutations in the Ig-like domains of FLNc that lead to the expression of a toxic protein show 

typical features of MFM [23, 26, 28, 44, 48, 57]. General myopathological abnormalities 

vary from mild variation in fiber size and increased numbers of internal nuclei to more 

advanced degenerative abnormalities comprising muscle fiber atrophy and hypertrophy, fiber 
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splitting, and fibro-fatty tissue proliferation depending on the stage of illness and the muscle 

examined (Fig. 2).

Muscle fibers undergoing necrosis and phagocytosis are observed, but usually not as a 

prominent phenomenon. Rimmed and non-rimmed vacuoles are commonly seen. Non-

rimmed vacuoles are often marked with strong PAS-positivity. Additionally, increased acid 

phosphatase activity is observed in some fiber areas. Oxidative activity is partially reduced 

in some fiber areas resulting in core-like lesions, but rubbed-out fibers are rarely seen. 

ATPase staining reveals type 1 fiber predominance in the majority of cases. Typically, 

muscle fibers contain polymorphous cytoplasmic inclusions that correspond to protein 

aggregates. These are observed as single or multiple plaque-like formations within the 

cytoplasm, convoluted serpentine inclusions of varying thickness, granular deposits and 

spheroid bodies. The aggregates are eosinophilic on HE stain, dark-blue to purple on 

modified trichrome stain and mostly display strong congophilia when congo red stained 

sections are visualized in rhodamine optics. Oxidative and ATPase activities are partially 

decreased in fiber regions containing inclusions but oxidative activity is usually enhanced at 

the periphery. This reflects the absence of mitochondria within the inclusions and increased 

numbers of them at the periphery. The inclusions can be focal or diffuse occupying the entire 

cross-section of the fiber; furthermore, abnormal fibers usually show an uneven distribution 

across the fascicles. Immunohistochemical and immunofluorescence analyses (Fig. 2) show 

strong positivity for FLNc, myotilin, desmin, the four sarcoglycans, αB-crystallin, BAG3, 

Xin and multiple other proteins in areas corresponding to protein aggregates [22, 23, 44, 57]. 

Moreover, proteins involved in protein degradation pathways including heat shock proteins, 

subunits of the ubiquitin proteasome system and markers of autophagy such as LAMP2 

accumulate in areas corresponding to protein deposits (Fig. 2) [23].

Ultrastructural analyses show widespread myofibrillar abnormalities, including Z-disc 

streaming and accumulation of fine thin filaments that initially emanate at the level of the Z-

disc and later coalesce into electron dense inclusions often surrounded by groups of 

mitochondria. Additionally, nemaline bodies and collections of 15–18 nm tubulofilaments 

and granulofilamentous material are seen in severely damaged fibers. Autophagic vacuoles 

containing myelin-like figures and cellular debris are usually present [22, 23, 28, 44].

Two families carrying mutations in the actin-binding domain of FLNc have been reported so 

far [6]. Muscle biopsies in four affected patients only showed non-specific myopathic 

features that varied from mild variation of fiber size to more severe dystrophic changes with 

prominent fibro fatty tissue proliferation. Many fibers showed an uneven distribution of 

oxidative enzyme activity, but no vacuoles and no protein aggregates were observed. Ultra-

structural analysis performed in a single patient revealed no abnormalities [58].

Finally, muscle biopsy from a patient with FLNC haploinsufficiency showed increased 

variability of fiber size, fiber splitting and pyknotic nuclear clumps. ATPase revealed type I 

fiber predominance. Oxidative enzyme activity was partially reduced in some fiber areas. 

Although a few fibers displayed few fine myotilin granular deposits, no definite protein 

aggregates suggestive of MFM were detected, probably because the truncated mutant protein 

is not expressed. Ultrastructural analysis revealed some unspecific myofibrillar 

Fürst et al. Page 6

Acta Neuropathol. Author manuscript; available in PMC 2016 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



abnormalities including Z-disc streaming, nemaline bodies, and dappled dense bodies all of 

which are also observed in patients with the MFM type of filaminopathy [18].

Genetics

Affected gene and its structure

FLNc is a filamin isoform mainly expressed in striated muscles; it contains 2,725 amino 

acids and has a molecular mass of 291 kDa (GenBank isoform a: NP_001449.3). The FLNC 
gene is located in 7q32-q35 chromosome band, comprises ~29.5 kb of genomic DNA and 

contains 49 coding exons [4, 13, 29]. Since the exon encoding the FLNC-specific unique 

insert in Ig-like domain 20 was numbered 40a, the last FLNC exon carries number 48, not 

49 [4]. Conversely, the splice variant that is predominantly expressed in skeletal and cardiac 

muscles (GenBank isoform b: NP_001120959) lacks exon 32 that encodes the hinge region 

between Ig-like domains 15 and 16, resulting in a protein of 2,692 amino acids with a 

molecular mass of 287 kDa [60].

Molecular diagnosis of filaminopathy is hampered by the presence of a pseudogene 

(pseFLNC) located approximately 53.6 kilobases downstream of the functional FLNC gene 

in inverted orientation. It is 1,178 base pairs in length and >98 % identical to the functional 

FLNC exons 46, 47, 48 (including part of the 3′ untranslated region), as well as introns 45 

(partly), 46 and 47. In a recent work [31], DNA sequence mismatches between the 

functional FLNC and pseFLNC have been fully characterized, and an optimized strategy 

was devised enabling the differentiation of mutations occurring in FLNC from those 

accumulating in pseFLNC. Reflecting on the difficulty of differentiating between mutations 

in the functional gene and the pseudogene, some results of FLNC gene studies have been 

erroneous, as for example a report implicating a c.8107delG variant as the cause of 

filaminopathy in six patients [24]. The authors tested FLNC exon 48 with primers that 

amplify both the functional gene and the pseudogene, and the c.8107delG that is present in 

the pseudogene was misinterpreted as the cause of illness. This mistake could have been 

avoided, if the functional gene and the pseudogene were sequenced separately [31, 55].

Mutation spectrum

The first FLNc-related disease was described in 2005 when a nonsense mutation (c.G8130A, 

p.W2710X) in the FLNc dimerization domain was shown to cause skeletal and cardiac 

myopathy in a large German MFM family [57]. A haplotype-sharing set of further German 

families also carrying the p.W2710X FLNc mutation was described soon after the first 

report [22], and the identical mutation was found in three kinships of the Mayo MFM cohort 

that were not described in detail [41], as well as in two further families from Macedonia and 

China [23]. These observations established that the p.W2710X mutation is the cause of 

filaminopathy in genetically unrelated families originating from different ethnic groups, 

implying that FLNC codon 2710 is a mutational hotspot.

Two families with filamin C myopathy harboring mutations in FLNc Ig-like domain 7 of rod 

1 segment have been reported: one harboring an internal 12-nucleotide deletion (c.

2997_3008del, p.V930_T933del) [44] and a second exhibiting an 18-nucleotide deletion/6 
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nucleotide insertion (c.2695–2712del/GTTTGT ins, p.K899_V904del/V899_C900ins) [28]. 

In addition, an MFM family with a p.Y1216N mutation in Ig-like domain 10 and a single 

patient with proximal weakness at presentation and MFM-type pathology harboring a 

c.C7256T, p.T2419M mutation located in FLNc Ig-like domain 22 were recently described 

[2, 48].

In three distantly related Bulgarian distal myopathy families, a deletion (c.5160delC, 

p.F1720LfsX63) in exon 30 encoding FLNc Ig-like domain 15 triggers a frameshift, 

nonsense-mediated decay and haploinsufficiency [18]. Finally, a disorder caused by two 

different point mutations located in the ABD domain of FLNc (c.577G>A, p.A193T and c.

752T>C, p.M251T) has also been associated with a distal myopathy with non-specific 

myopathic abnormalities on muscle biopsy [6]. Currently known FLNc mutations are shown 

on mutation chart of Fig. 3 and in Table 1.

This clearly differentiates two FLNc associated phenotypes, one with involvement of 

predominantly limb-girdle muscles, cardiomyopathy, respiratory failure, and MFM-type 

pathologies caused by mutations occurring in FLNc Ig-like domains 7, 10, 22 and 24; the 

other characterized by myopathy seen in distal muscles, no cardiomyopathy or respiratory 

disturbances, and no typical MFM-type pathology with mutations in the ABD or Ig-like 

domain 15. This indicates that, as has previously been shown for FLNa and FLNb [3, 7, 37], 

mutations in different functional domains of filamins can lead to distinct disease phenotypes.

Molecular diagnostics

Timely molecular diagnosis of filaminopathy is important for the prediction and prevention 

of life-threatening cardiac arrhythmias and respiratory failure that may occur in these 

patients. A precise diagnosis is also crucial for appropriate counseling. Routine testing of 

patients for FLNC mutations should be recommended in cases showing limb-girdle 

distribution of weakness and MFM-type pathological phenomena. Since exon 48 is a hot 

spot for mutations causing this type of disease, it should be analyzed first. A mutation in the 

ABD domain of FLNc (exons 1–3 and part of 4) needs to be considered in patients with 

distal myopathy, especially if thenar and intrinsic hand muscle atrophy are the first clinical 

symptoms and the family history is consistent with an autosomal dominant pattern of 

inheritance. This will have to be followed by a full FLNC sequencing in case of a negative 

result.

Pathophysiology

Protein expression and function

The mammalian filamin family includes three members, A, B and C (FLNa, FLNb and 

FLNc). They exhibit about 70 % amino acid identity [35]. Whereas Northern blots only 

detect FLNC mRNA in striated muscles [29], the more sensitive RT-PCR analysis reveal low 

levels of FLNC expression in multiple other tissues [60]. The lack of FLNc-specific 

antibodies hampered analysis at the protein level. Staining of multi-tissue slides with an 

antibody against the carboxy-terminus of FLNc by “the Human Protein Atlas” (http://
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www.proteinatlas.org/) [51] showed that apart from skeletal and cardiac myocytes, smooth 

muscle cells, glandular cells and neuronal cells in several tissues are also stained.

Filamins are large proteins that bind to actin and many other proteins (Fig. 4) having diverse 

physiological functions. Through these connections, filamins stabilize delicate three-

dimensional actin filament networks and link it to cellular membranes, thus integrating cell 

architectural and signaling functions. All three filamin variants bind a plethora of proteins, in 

particular via their carboxy-terminal Ig-like domains [9, 35, 46, 52]. Some of these 

interactions may be irrelevant in vivo because of differential expression patterns or 

significantly differing binding affinities. A prediction of interactions based on simple 

extrapolation is, therefore, highly questionable.

FLNc binds essentially two groups of ligands: (1) proteins of the Z-disc including myotilin 

[17, 56], myopodin [25], the calsarcins [8, 11, 47] and nebulette [21]; (2) sarcolemma-

associated proteins such as dystrophin-associated proteins γ-and δ-sarcoglycan [49], the 

NRAP-talin complex [27], the ponsin-Nck2 complex [14, 61] and β1A integrin [17]. 

Although often suggested to occur, a direct interaction with the costameric β1D-integrin 

isoform has been excluded [17]. This implies that only during early developmental stages, 

FLNc–β1A-integrin interaction may be involved in membrane anchorage of (pre)myofibrils. 

In mature muscle cells, FLNc most likely indirectly links myofibrils to sarcolemma-

associated integrins via the above-mentioned protein complexes. At the same time, FLNc 

mediates assembly of Z-discs through its interaction with several Z-disc components. Early 

expression of FLNc during myofibril assembly and its localization to Z-bodies are in line 

with the proposed role for FLNc in this process [54]. It was also suggested that by shuttling 

between the sarcolemma and the Z-disc FLNc is involved in signal transduction processes 

[49, 56].

Protein structure

Filamins consist of an aminoterminal actin-binding domain composed of two calponin 

homology (CH) domains followed by 24 immunoglobulin-like (Ig-like) domains of 93–103 

amino acid residues each (Fig. 3). Two filamin molecules form a homodimer via self-

association of their Ig-like domains 24, thus giving rise to large, elongated, Y-shaped 

molecules that form flexible bridges between two actin filaments [20, 36, 45]. Ig-like 

domains form an extended rod separated into two segments by hinge regions located 

between Ig-like domains 15 and 16 and Ig-like domains 23 and 24. However, the FLNc 

variant that is predominantly expressed in cross-striated muscles lacks the first hinge, 

implying that this isoform is less flexible than FLNa, and FLNb and FLNc isoforms 

containing this hinge region [60].

A conspicuous difference between FLNc and the other filamins is a unique insertion in Ig-

like domain 20 that is involved in interaction with the Xin-repeat proteins Xin [53] and 

XIRP2 (unpublished data).

Biochemical and biophysical analysis of mutant proteins

Studies performed in animal models and the data obtained from human patients with 

haploinsufficiency for FLNc (see below) have demonstrated that the precise stoichiometry of 
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FLNc is of critical importance for muscle function and maintenance. Of particular interest is, 

therefore, a study that has unraveled a new pathway essential for muscle maintenance that 

was termed ‘chaperone-assisted selective autophagy’ (CASA). This pathway, which includes 

the co-chaperone BAG3, the ubiquitin ligase CHIP, the autophagy adaptor p62 and DNAJB6 

[1, 38], is essential for the homeostasis of certain proteins, including FLNc [1]. CASA 

continuously operates at the Z-disc to dispose of mechanically damaged proteins, which 

distinguishes it from the atrophy-driven degradation pathways [59]. Impairment of this 

pathway leads to the formation of FLNc-containing protein aggregates, Z-disc disintegration 

and progressive muscle weakness [1, 19, 38, 43]. In the case of FLNc mutations causing 

partial protein destabilization, incorrectly folded and damaged mutant FLNc directly drives 

protein aggregation, thus aggravating CASA (Fig. 5). Indeed, molecular components of 

CASA were found to be increased in biopsies from such patients (Fig. 2) [23]. Recently, 

mutations in the DNAJB6 gene have been identified as a cause of limb-girdle muscular 

dystrophy (LGMD1D) [19, 38].

Pathomechanisms

Since the first description of a family with a FLNC mutation causative for a muscle disease, 

several additional mutations have been found in different parts of the gene. Grossly these 

mutations can be subdivided in three classes (Fig. 6):

1. Mutations that lead to the expression of misfolded FLNc, thereby 

overstraining the ubiquitin proteasome and autophagy pathways in the 

long run;

2. Mutations that do not affect protein solubility properties but give rise to a 

toxic gain of function by altering ligand binding properties;

3. Mutations causing a premature stop codon and concomitant nonsense-

mediated decay, resulting in haploinsufficiency.

While the first type of mutations results in protein aggregation and subsequent impairment 

of protein homeostasis, giving rise to the typical MFM phenotype, the other two types of 

mutations result in distal myopathy with no protein aggregates. Although until now 

aggregation-causing mutations have only been found in Ig-like domains, such mutations 

may also occur in other portions of the molecule.

Thus far, MFM-causing mutations in Ig-like domains 7 (p.V930_T933del) and 24 

(p.W2710X) have been analyzed at the biochemical and cellular level [23, 26, 57]. Since the 

latter mutation is localized in the last exon (exon 48) of FLNC [57], the mutant mRNA is 

stable and not prone to degradation by nonsense-mediated decay. The affected part of FLNc 

is its dimerization domain that is truncated and lacks the carboxyterminal 16 amino acids. 

Circular dichroism spectroscopy showed that the mutant domain is improperly folded, 

making it less stable and more susceptible to proteolysis. Hence, the p.W2710X mutation in 

FLNc impedes its ability to dimerize [26, 57] and instead, the mutant protein acquires a 

strong tendency for uncontrolled aggregation (Fig. 6a). This results in the deposition of 

massive protein aggregates that attract multiple other proteins including desmin and other Z-
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disc-associated proteins. These events ultimately lead to disintegration of myofibrils [26, 

57].

The deletion of four amino acids in the β-strand of Ig-like domain 7 that is involved in 

interactions stabilizing the fold, also causes significant changes in the three-dimensional 

structure of the mutant domain, as illustrated by a higher proportion of unfolded or 

disordered structures, reduced stability and increased protease sensitivity (Fig. 6b) [23].

The mutations in the ABD of FLNc that were found in two distal myopathy families 

apparently cause only minimal structural alterations. Amino acid substitutions, however, are 

predicted to alter intradomain interactions, thereby facilitating binding to actin and 

increasing its binding constant (Fig. 6c) [6].

In contrast to the nonsense mutation in Ig-like domain 24, the frameshift deletion mutation 

in Ig-like domain 15 (c.5160delC, p.F1720LfsX63) does not occur in the last exon and thus 

activates nonsense-mediated decay of the mutant mRNA [18]. Since no truncated protein 

could be detected in the patients’ muscles, the 50 % reduction of FLNC mRNA and protein 

levels is the most probable reason for the disease phenotype (Fig. 6d). The lack of 

expression of mutant protein precludes the development of major protein aggregates that are 

a hallmark of MFM.

Cell and animal models

Cell models

The effects of the expression of truncated and full length mutated FLNc constructs were 

analyzed in tissue culture. Initially, the expression of mutant p.W2710X “mini-filamins” 

consisting of the ABD and Ig-like domains 15–24 was shown to be sufficient for 

spontaneous aggregation of the mutant protein in cultured cells [26]. The same effect was 

found upon transfection of full-length p.W2710X and p.V930_T933del FLNc in C2C12 

mouse myoblasts [23]. The up to ten times higher number of transfected cells showing 

mutant FLNc aggregates in cells transfected with p.W2710X protein indicated that this 

mutant makes the cells more vulnerable to spontaneous aggregation. Transfection of the 

FLNc variants p.M251T and p.A193T also resulted in the development of protein aggregates 

in transfected non-muscle and muscle cells. Many of these aggregates also contained F-actin 

[6]. These cell models might become valuable tools to study the mechanisms of protein 

aggregation and evaluate treatments that prevent or reverse this phenomenon.

shRNA constructs in lentiviral vectors were used to generate a C2C12 cell line with a 

reduction in the level of Flnc mRNA of 93 % [5]. These cells, that expressed only very low 

levels of FLNc protein, proliferate and fuse normally, but instead of developing long 

myotubes, cells round up and form multinucleate myoballs upon fusion. This process is 

associated with a decrease in the expression of myogenin and muscle-specific genes, 

indicating a direct effect on myogenesis. For these experiments, a cell line showing the 

highest reduction in Flnc expression was selected. A variant with a more modest knock-

down efficiency of Flnc expression could provide a model system for human diseases 

associated with Flnc haploinsufficiency.
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Animal models

Mouse model—The only Flnc mouse model that has been created thus far is B6;129-

Flnctm1Lmk/J. In these mice, the last eight exons (exons 41–48) of the Flnc gene were 

deleted by targeted mutation [5]. This mutation results in the expression of reduced levels of 

truncated mRNA and very low levels of truncated FLNc protein consisting of the ABD and 

Ig-like domains 1–19 and part of Ig-like domain 20 that is truncated after the FLNc-unique 

insertion. Mice homozygous for the knockout allele die at birth due to the inability to breath 

caused by severe abnormalities of their skeletal muscles. Whereas the heart has a normal 

appearance, the development of skeletal muscles is grossly disturbed, leading to reduced 

numbers of muscle fibers, often containing centrally located nuclei. Specifically, intercostal 

muscles and the diaphragm showed infiltration of connective tissue. Heterozygous mice 

were viable and fertile, and no abnormalities were reported, indicating that neither the low 

level of truncated FLNc nor the reduction of the level of wildtype FLNc results in an 

obvious phenotype [5]. Unfortunately, these mice apparently were not analyzed at older age. 

Since in man FLNC haploinsufficiency leads to distal myopathy at an average age of 

approximately 40 years [18], these mice might be a valuable model for this disease.

Medaka—A mutation in one of two flnc genes of medaka (Oryzias latipes, a teleost fish) 

was identified in zacro (zac) mutants [12]. This strain, which was obtained by N-ethyl-N-

nitrosourea treatment, is characterized by disorganization of skeletal muscle fibers and 

abnormal development of the heart associated with a rupture of the myocardial layer. The 

causative mutation was found to be a nucleotide substitution in one of the flnc genes, leading 

to the introduction of a stop codon that would result in the expression of an FLNc variant 

that is truncated in Ig-like domain 15. Fish heterozygous for the mutation developed 

normally. All embryos showing the zac phenotype were homozygous for the mutant allele. 

Instability of the mutant mRNA most likely leads to nonsense-mediated decay and 

significantly lower the level of flnc mRNA. Although expression of a truncated protein was 

not analyzed, the lack of FLNc and not the expression of a toxic protein seems to be the 

most probable explanation for the observed phenotype. This was supported by morpholino-

based antisense RNA experiments that resulted in a similar phenotype, at least in the heart 

[12] which explains why no alterations typical for MFM were found in the muscle of the 

zacro mutant fish. Heterozygous fish that are expected to be haploinsufficient for flnc should 

be studied at late adult age to conform to a model for distal myopathy caused by 

haploinsufficiency.

Future perspectives for research and therapy

The continuing search for mutations in FLNC will certainly result in the identification of 

more and more disease-associated mutations. Whereas the pathomechanisms of the 

mutations described thus far are roughly explained, it will be interesting to learn whether 

mutations in the rod2 segment have an impact on the association of FLNc with its many 

ligands, and how such a defect would influence the disease phenotype.

The main goal of future research should be the search for approaches to prevent the 

formation of aggregates in the muscle fibers of filaminopathy (and other MFM) patients. A 
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promising strategy may be the induction of chaperones. For this purpose, appropriate cell 

and animal models are needed. Preliminary studies in cultured muscle cells indicate that 

transfection with mutant FLNc leads to aggregate formation. Cell lines stably transfected 

with constructs expressing mutant FLNc might, therefore, be an invaluable tool. 

Alternatively, skeletal muscle satellite cells from filaminopathy patients could be 

immortalized for such studies. Finally, patient fibroblasts could be converted to embryonic 

stem cells and be forced to develop into skeletal muscle cells.

The currently existing FLNC-related animal models only represent the type of filaminopathy 

associated with reduced expression levels but not the protein aggregation phenotype. To 

allow for testing therapeutic interventions in patients with the MFM type of filaminopathy, 

the development of an animal model would be of great value. A prime candidate would be a 

knock-in mouse carrying, e.g., the c.G8130A, p.W2710X mutation in one allele, since this 

represents the most frequent type of human filaminopathy.
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Fig. 1. 
Image and transverse T1-weighted muscle MRI of MFM patients harboring mutations in the 

dimerization domain of FLNc. The patient (a) has predominantly proximal muscle atrophy 

in the upper and lower limbs and winged scapula. MRI images demonstrate a typical pattern 

of muscle involvement (hyperintensities reflect lipomatous alterations). On the thigh level 

(b, c), semimembranosus (SM), adductor magnus (AM) and longus (AL), long head of 

biceps femoris (BF), vastus intermedius (VI) and medialis (VM) are most affected. Sartorius 

(SA) and gracilis (GR) appear normal and the semitendinosus (ST) shows only mild 

lipomatous alterations. In lower legs (d), the soleus muscle (SO) shows pronounced fatty 

changes. The medial head of the gastrocnemius (GM), the tibialis anterior (TA), extensor 

digitorum longus, extensor hallucis longus (ED/EH), and peroneal muscles show mild to 

moderate lipomatous alterations whereas the lateral head of the gastrocnemius (GL) is 

almost spared
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Fig. 2. 
Histochemical and immunofluorescence findings in MFM-type FLNc myopathy. Myopathic 

changes vary from mild variability in fiber size (a), to more pronounced fiber size variation, 

with atrophic and hypertrophic fibers, and moderate (b) to severe (c) fibro-fatty tissue 

proliferation. Abnormal fibers show darkly stained areas and small vacuoles (d); ATPase 

staining reveals type I fiber predominance (e); COX activity is partially reduced in some 

fiber regions (f). Immunofluorescence analysis showing accumulation of FLNc (g), myotilin 

(h), δ-sarcoglycan (i), Hsp22 (j), ubiquitin (k) and LAMP-2 (l) in fiber regions 

corresponding to protein aggregates. a–c HE; d modified trichrome; e ATPase at pH 4,65; f 

COX. Scale bar in c (also applies to a, b) 100 μm, scale bar in l (also applies to d–k) 50 μm
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Fig. 3. 
Schematic diagram representing the structure of FLNc and the distribution of muscle-

disease-associated mutations in FLNc. The aminoterminus consists of two calponin 

homology domains that together constitute the actin-binding domain (ABD). The ABD is 

followed by 24 Ig-like domains, the most carboxy terminal of which is responsible for 

dimerization. Ig-like domain 20 is colored differently since it contains a unique insertion. 

The positions of the published mutations within FLNc are depicted at the top
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Fig. 4. 
Schematic diagram illustrating the complex interactome of FLNc within the Z-disc and at 

the sarcolemma. Each protein is depicted as an ellipse and direct protein interactions are 

depicted as connecting lines
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Fig. 5. 
FLNc protein homeostasis. Upon increased muscle activity, damaged FLNc is degraded by 

BAG3 and CHIP-regulated chaperone-assisted selective autophagy (CASA). a The scheme 

summarizes the mechanism of selective FLNc release from the Z-disc by BAG3, resulting in 

ubiquitination, subsequent autophagosome formation and lysosomal degradation. b In 

LAMP2−/− mice autophagy is blocked and FLNc no longer localizes at Z-discs but instead 

forms massive aggregates (arrows). Reproduced with permission from [1]
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Fig. 6. 
Pathomechanisms of FLNc mutations. a Top panel disturbed dimerization of pW2710X 

FLNc (top) revealed by chemical cross-linking experiments using wild type (d23–24) and 

mutant (d23–24mut) filamin constructs. In the presence (+) of the cross-linker EGS, the wild 

type protein was mainly found in dimer form (d), while the mutant construct was detected in 

higher molecular mass complexes representing trimers (t) and aggregated (a) oligomers. a 
Bottom panel analytical gel chromatography shows greatly decreased retention times for the 

mutant FLNc d23–24 protein indicating aggregation of the mutant but not the wild-type 

protein. b Decreased stability and increased protease-sensitivity of the p.V930_T933del 

mutant FLNc. The top panel shows the digestion of wild type and mutant FLNc 

d5-9ΔVKYT with the protease thermolysin, resulting in complete digestion of the mutant 

protein after 30 min, while a significant portion of the wild type variant was still intact after 

60 min of incubation, indicating less stable folding of the mutant protein. The bottom panel 
shows temperature denaturation experiments for FLNc d7-8 and deletion mutant FLNc 

d7-8ΔVKYT. The melting temperature Tm is determined at the inflection point of the 

fluorescence signal, the first derivative of which is reported here. Solid line represents the 
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wild type, dashed line the deletion mutant, scaled to the wild-type. Note that the mutant 

protein has a significantly reduced melting temperature in comparison to wild type protein. c 
Mutant FLNc ABDs have similar structure but stronger actin-binding affinity. The top panel 
gives circular dichroism spectra obtained with wild-type and mutant filamin ABD 

constructs, demonstrating that wild-type and p.A193T mutant spectra are almost identical 

and only minor changes for the p.M251T mutant, indicating only minor structural effects of 

these mutations. The bottom panel gives high-speed F-actin cosedimentation assays with 

FLNc wild-type and mutant ABDs, showing increased actin binding activity of the mutant 

proteins. d Decreased FLNC mRNA and protein levels in patients with the p.F1720LfsX63 

mutation. Quantitative FLNC transcript and protein analysis in muscle tissue from patients 

(Pt) and controls (Ctrl) reveals an approximately 50 % reduction in FLNC mRNA and 

protein levels in muscle samples from patients. An antibody directed against N-terminal 

FLNc did not detect expression of a truncated FLNc protein (~190 kDa). Reproduced with 

permission or adapted from a [26], b [23], c [6] and d [18]
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Table 1

Summary of the reported mutations in FLNc

Mutation Domain Type Disease References

p.A193T ABD Point mutation Distal myopathy Duff et al. [6]

p.M251T ABD Point mutation Distal myopathy Duff et al. [6]

p.K899_V904del/V899_C900ins Ig-like 7 Deletion/insertion MFM, gastrointestinal complaints Luan et al. [28]

p.V930_T933del Ig-like 7 Deletion MFM Shatunov et al. [44]

p.Y1216N Ig-like 10 Point mutation MFM Avila-Smirnov et al. [2]

p.F1720LfsX63 Ig-like 15 Frameshift deletion Distal myopathy Guergueltcheva et al. [18]

p.T2419M Ig-like 22 Point mutation MFM, ataxia Tasca et al. [48]

p.W2710X Ig-like 24 Nonsense MFM Vorgerd et al. [57]
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