
d

PHYSICAL REVIEW D 1 JULY 1996VOLUME 54, NUMBER 1

055
Discriminating signal from background using neural networks:
Application to top-quark search at the Fermilab Tevatron
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The application of neural networks in high energy physics to the separation of signal from background
events is studied. A variety of problems usually encountered in this sort of analysis, from variable selection to
systematic errors, are presented. The top-quark search is used as an example to illustrate the problems an
proposed solutions.@S0556-2821~96!06013-4#
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It is well known that neural networks~NN’s! are useful
tools for pattern recognition. In high energy physics, th
have been used or proposed as good candidates for tas
signal versus background classification. However, most
the existing studies are somewhat academic, in the sense
they essentially compare the NN performances with ot
classical techniques of classification using Monte Ca
~MC! events for that purpose. In realistic applications, re
events should be analyzed and compared with simula
events, introducing systematic effects which have to be ta
into account and could significantly modify the efficiency
the analysis. We try to give some insight in this directio
using the top quark search at the Fermilab Tevatron as il
tration. The top quark has been observed by the Colli
Detector at Fermilab~CDF! @1# and D0 @2# collaborations.
Recently, NN’s have been applied to experimental top-qu
searches by the D0 Collaboration@3#, for a fixed top-quark
mass, concluding that NN’s are more efficient than tra
tional methods, in agreement with previous parton level st
ies @4#.

In this paper we continue and complete the analysis
Ref. @4# for the top-quark search at the Tevatron. A mo
realistic study is performed by including parton hadroniz
tion and detector simulation with jet reconstruction. In ad
tion, contrary to Ref.@4# where the top mass was fixed, th
present study is valid for a large range of top mass valu
Moreover, the number of kinematical variables considered
enlarged and different ways of selecting subsets of the m
relevant ones to the process under consideration are
cussed. Finally, the influence of systematic errors on the
results is studied.

The analysis is focused on the top-quark search at
pp̄ Fermilab Tevatron operating atAs51.8 TeV. The one-
charged-lepton channel,pp̄→t t̄→ ln j j j j with l5e6, m6, is
considered as the signal to look for. The main backgroun
pp̄→Wj j j j→ ln j j j j . Exact tree-level amplitudes with spi
correlations were used to generate MC samples for both
nal and background. The latter was evaluated withVECBOS

@5#. The CTEQ structure functions@6# at the scaleQ5mt
(Q5^pt&) for the top signal~background! were utilized. The
LUND fragmentation model@7# was used to hadronize th
546-2821/96/54~1!/1233~4!/$10.00
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quarks and/or gluons. The obtained events were pas
through a fast MC program which simulates the segmen
tion of a D0-like calorimeter. Jets are reconstructed with
simple algorithm based on the routine used in the LUN
package and electrons are defined as isolated clusters w
more than 90% electromagnetic energy.

Uncorrelated MC signal samples were generated for t
massesmt5150, 168, 174, 189, and 200 GeV. Events wit
one-charged-lepton and four jets satisfying the following a
ceptance cuts were selected:pt

j , pt
l , p” t.20 GeV;

uh j u,uh l u,2 andDRjl ,DRj j.0.7. The symbolpt (h) stands
for transverse momentum~pseudorapidity! and the indices
j51, 4, andl refer to the four jets and charged lepton, re
spectively;p” t is the missing transverse momentum assoc
ated with the undetected neutrino an
DR5A(Dh)21(Df)2 is the distance in theh2f space,
wheref is the azimuthal angle. The cross sections after t
acceptance cuts for the signal and the background are gi
in Table I.

In order to use NN’s as signal/background classifiers, w
considered layered feed-forward NN’s with topologie
Ni3Nh3No (Ni , Nh , andNo are the number of input, hid-
den, and output neurons, respectively!, with back propaga-
tion as the learning algorithm to minimize a quadratic outp
error. Using a set of physical variables as inputs and taki
the desired output as 1 for signal events and 0 for bac
ground events, the network output gives, after learning, t
conditional probability that new test events are of signal
background type@8,9#, provided that the signal/background
ratio used in the learning phase corresponds to the real o

The robustness of the NN method is shown by making t
results independent of the top mass, using several value
the learning and testing phases. During the learning phas
general network~GN! is fed with a set of events which con-

TABLE I. Signal and background cross sections after the acce
tance cuts.

mt ~GeV! 150 168 174 189 200 Backg

s ~pb! 0.63 0.39 0.31 0.21 0.16 0.89
1233 © 1996 The American Physical Society
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1234 54BRIEF REPORTS
tains a signal sample, composed by three subsamples co
sponding tomt5150, 174, and 200 GeV, and a backgroun
sample in a 1:1 proportion. In so doing, the NN output los
its direct Bayesian interpretation when applied over da
whose signal/background proportion is not 1:1. Neverth
less, the NN is still useful for classification@8#. This way of
proceeding has been shown to optimize the learning proc
and allows us to use the network in a wide interval for th
masses of the signal@10#.

A set ofN515 initial variables was considered. Some o
them are chosen specifically to pin down thea priori main
characteristics of the top signal, while others are not spec
to the signal. For each reconstructed event we compu
~1! S, the sphericity;~2! A, the aplanarity;~3! mWj j

, the

invariant mass of the hadronically decayingW; ~4! pt
Wl , the

transverse momentum of the leptonically decayingW; ~5!
ET , the total transverse energy;~6! pt

l , the charged lepton
transverse momentum;~7! h l , the charged lepton pseudora
pidity; ~8–11! pt

i , i51,4, the transverse momenta of the je
in decreasing order, and~12–15! h i , i51,4, the jet pseudo-
rapidities in decreasing order. The missing transverse m
mentum has been assigned to the undetectable neutrino
its longitudinal momentum inferred along the lines suggest
in Ref. @11#.

In the testing phase, the GN with topology 1531531 is
fed with new background and top events. The latter can
chosen with masses either corresponding to the values u
for learning or to new valuesmt5167 or 189 GeV. This
differs from previous works@12,4# where the same mass val
ues were used in both learning and testing steps. Figur
shows the reconstructed top mass obtained for five top s
nals and the background, corresponding to an integrated
minosity L5100 pb21. A good top reconstruction is
achieved for all masses considered but there is a substa
background contribution. To further appreciate the GN
usefulness, five specialized NN’s~SN! were trained with a
top mass specific to each one of them and a generic ba
ground common to all NN’s. Again, a 1:1 signal to back
ground ratio was used for learning. The GN and SN avera
errors, shown in Table II, are similar for all masses cons
ered. This indicates that the GN performs fairly well for
wide range of top mass values and, in particular, for tho

FIG. 1. Reconstructed top mass distribution for several top s
nals and the background forL5100 pb21.
rre-
d
s
ta
e-

ss
e

f

fic
te:

s

o-
and
d

be
sed

1
ig-
lu-

tial
’s

ck-
-
ge
-

se

never used in the learning phase. Nevertheless, it is clear tha
the window for the top mass should be reduced if the mass is
more precisely known.

As a complementary check to the present analysis, we
have passed the first top candidates—published by CDF
@13#—through our initial 1531531 network in order to see
whether they are compatible with our simulated signal and/or
background. Although our NN was trained with the simula-
tion of the D0 detector, such a check is still valid, since CDF
quotes the parton level momenta assigned to their top candi
dates. One can therefore process those events through our D
detector simulation, reconstruct the variables used in our
analysis, and obtain the individual output for the published
CDF top quark candidates. The results are shown in Table
III. It can be seen that most of them give values close to 1,
showing that they are more compatible with our signal simu-
lation than our simulated background.

The selection of the most relevant variables for a given
process is one of the major problems in experimental analy-
ses. Too many variables may introduce noise and make th
event selection task very difficult. On the other hand, too
much sensitivity may be lost when too few variables are
used. In general, a large number of variables,N, can be
considered and measured for an event. AllN variables carry
some information on signal versus background differences
but it is obvious that some subset of them will be more
valuable than other subsets for the separation task. Therefor
the selection of a subset with the ‘‘best’’ variablesn
(n,N), carrying the largest discrimination power between
signal and background samples, even if lower classification
efficiencies may follow, is of interest.

In the process of reducing the number of variables, it is
convenient to control the efficiency loss in the classification
task. We suggest that NN’s can be used for both the variable
selection and the evaluation of the efficiency loss. For the
former, there are several methods suggested in the literature

g-

TABLE II. Average error per event. The asterisks indicate the
top mass values used in the general network training.

General net Specialized net

mt ~GeV! ~GN! ~SN!

150* 0.12 0.10
167 0.12 0.10
174* 0.11 0.10
189 0.11 0.09
200* 0.10 0.07

TABLE III. NN output for published CDF events.

Event number/Run Net output

44414/40758 0.98
47223/43096 0.82
266423/43351 0.66
139604/45610 0.90
54765/45705 0.92
123158/45879 0.76
31838/45880 0.58
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some of which have been considered in the present anal
The latter will naturally be estimated in terms of the err
function. When reducing the number of variables, it is co
venient to eliminate only a few variables in one step rath
than making multivariable rejection at once. This introduc
a mild dependence of the chosen variables on the numbe
rejection steps, but turns out to be more efficient. The f
lowing approach was adopted:

Step 1: AnN3N31 network is trained with the initial
N515 variables and its final error is computed,EN[E0 .

Step 2: A particular variable selection method is applie
rejecting n ~keepingN2n) variables.~It is convenient to
choose small values forn.)

Step 3: A new (N2n)3(N2n)31 network is trained
with the N2n variables kept and its final error compute
EN2n . If the quantityE0 /EN2n is larger than, for instance
75%, step 2 is repeated~replacingN by N2n) to further
reduce the set of relevant variables. The algorithm stop
E0 /EN2n,0.75. This cut is arbitrary and the number of s
lected variables depends on it.

We have considered three methods involving weights
the selection of the variables carried at step 2. For ev
input neuronk, the following quantities—in terms of its con
nections with the hidden layer units,wkl—have been consid-
ered: the sum of the weights@8#, the variances@14#, and the
saliencies@15#, defined, respectively, as

method 1:Wk5(
l51

Nh

uwklu,

method 2: Var~k!5
1

Nh
(
l51

Nh

wkl
2

2S 1

Nh
(
l51

Nh

wklD 2,
method 3: Sal~k!5

1

2(l51

Nh ]2E

]vkl
2 vkl

2 .

~1!

The surviving sets of relevant variables with error i
crease up to 25%: 3,5,8,10,11 for methods 1 and 3,
3,8,10,11,12,15 for method 2. The associated output e
turns out to be 0.145 and 0.178, respectively. At this sta
the set with the lowest associated output error, which co
sponds to methods 1 and 3, can be safely chosen. The
evant variables are the mass of the hadronically decay
W, the total transverse energyET , and the jets transvers
momentapt

1 , pt
3 , and pt

4 . The quadratic error associate
with this set of five variables, obtained through systema
reduction, can be compared, for instance, with the one
tained for the intuitive variables used in Ref.@4#: S, A,
mWj j

, pt
Wl , ET . The former is 18% lower than the latte

showing the usefulness of the methodical reduction.
We have trained an NN with the five relevant variables

study the enhancement of the signal/background ratio a
function of the NN output cut. For a specific cut, only even
with a network output higher than the specified cut are
lected. Since the signal is peaked around 1 and the b
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ground around 0, it is clear that increasing the cut makes
signal/background ratio larger. A typical quantity that is use
to reveal the existence of a signal is the statistical signi
cance, defined asSs5Ns /ANb, whereNs (Nb) is the number
of signal ~background! events passing some NN output cu
It is assumed thatNb can be estimated with negligible error
but Ns should be obtained from the actual number of ob
served events,No , asNs5No2Nb . If both quantitiesNb
andNs are large enough (.5), Ss can be interpreted as the
number of standard deviations that the background has
fluctuate to obtain the observed number of events. In suc
case, the number of signal events is also given
Ns5No2Nb6ANo.

Figure 2 shows theSs for mt5 168, 174, and 189 GeV
andL5100 pb21. Conservative limits of validity are shown
in the figure. The vertical line at network outputs.0.8 indi-
cates the maximum network output cut such thatNb>5. In a
similar way, the symbols on the curves indicate the max
mum output cut such that more than five signal events s
survive. NN output cuts between 0.6 and 0.8 increase t
ratio signal/background with a minimal loss on the sign
and a significant loss on the background. Figure 3 shows

FIG. 2. The statistical significance as a function of the cut on t
NN output. The symbols on the curves and the vertical line indica
the maximum network output cuts such that more than five sign
and five background events survive, respectively.

FIG. 3. Reconstructed top mass distribution for several top ma
signals and the background, for events with outputs larger th
0.7 andL5100 pb21.
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1236 54BRIEF REPORTS
reconstructed top mass with only those events with the
output larger than 0.7. As can be observed the signals do
nate clearly over the background.

At this point, one can wonder about the benefits of us
a reduced number of variables in the analysis. The m
reason is to avoid possible noise when a large numbe
variables is used. In fact, the allowed increase of 25% for
average error translates into decreases for the signal
ciency and statistical significance. We have found that
efficiency ~statistical significance! diminishes from 0.75
(6.8) to 0.58 (6.0) when reducing from the initial 15 to th
final 5 variables, for an NN output cut of 0.7, value chos
because it maximizes the statistical significance. These
be considered dramatic losses. However, our initial num
of variables,N515, was moderate and we could optimi
the NN learning avoiding local minima. In general, this c
be done for small sets of variables, but it is very difficult f
large ones, thus being possible that NN’s trained with sm
subsets of relevant variables reach better efficiencies an
statistical significances than NN’s trained with larger va
able sets.

We consider now some sources of systematic errors c
ing from eventual disagreements between MC and real d
In standard analyses, where single cuts are applied on s
variables, the effects of systematic errors should be stu
only in the region around the cuts in an easy and well und
stood way. In the case of an NN the only possibility to stu
the systematic error in the classification is to propagate
‘‘estimated’’ systematic errors on the input variables to t
output. Two basic effects can be considered: shifts betw
data and MC and different resolutions for the used variab
We have studied the effect of 2% shifts and 2% change
resolution on the clusters energy. With these new ener
NN
mi-

ing
ain
r of
the
effi-
the

e
en
can
ber
e
an
or
all
d/or
ri-

om-
ata.
ngle
ied
er-
dy
the
he
een
les.
of

gies

the five selected variables were reconstructed to obtain
‘‘new’’ test data to evaluate systematic effects. Notice tha
the 2% variation of the reconstructed cluster energies ha
been chosen for illustration purposes. This procedure aut
matically includes the correlations of the NN input variables
~There are studies in the literature where this is not the cas
@16#.! The results depend on the NN output cut. In the region
of interest, we have found that the uncertainty due to system
atic errors is comparable with the uncertainty coming from
an error onmt of 611 GeV.

The application of neural networks to discriminate signa
from background in high energy physics has been studie
using the top-quark search at Fermilab as an example. Th
analysis is valid for a large range of top mass values. Speci
attention was paid to the selection of the most relevant var
ables. Several methods—in terms of the weights connectin
the input and the hidden neurons—were considered. We co
clude that methods 1 and 3, making use of the sum of th
weights~in absolute value! and the weight saliencies, respec-
tively, give similar results and are more suited for the vari-
able selection than method 2, using the weight variance
The performance of the reduced NN was studied in terms o
the statistical significance. When comparing it with the initial
NN, we found a small decrease for the statistical signifi
cance, and moderate loss of the signal efficiency. Finally, th
effect of propagating systematic errors arising from energ
shifts and changes in resolution have been studied. This a
tomatically accounts for the correct correlations among th
inputs.
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