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We study the existence of a stable ground state for the most general renormalizable single scalar
field theory in four dimensions within a variational approach. In its regularized version we find a
theory with an energy density which is not bound from below but with a metastable local minimum
such that when the cutoff is removed the theory is interacting, finite, and possesses a stable ground
state. In fact, we find that this theory is not stable unless it is symmetric. This generalizes

Stevenson’s recent results on even ¢* theory.

I. INTRODUCTION

Quantum field theory is essentially a theory of the vac-
uum. The knowledge of how the vacuum reacts to what-
ever external source we choose is enough for determining
all the Green’s functions of the theory. It may happen,
however, that for a given Lagrangian there does not exist
a ground state. The theory is unbounded, and thus mean-
ingless, even though perturbation theory may be perfectly
well behaved. Of course, perturbation theory makes use
of a different vacuum that exists by definition as it only
requires the existence of the free field theory. Surprising-
ly, after half a century of quantum field theory there is no
interacting theory known to exist, i.e., have a ground
state, in four dimensions. Even worse, our simplest field
theory, Ag* theory, is very likely trivial (for A >0): it
only exists if the renormalized coupling constant is zero.

To the best of our knowledge the first reference to trivi-
ality is due to Wilson.! The first rigorous proof was given
by Aizenman for even ¢* theory in more than four dimen-
sions. Frohlich has generalized this result to two-
component A|¢ |* theories and nonlinear ¢ models in
d >4 dimensions and has given (with his collaborators)
strong evidence for triviality in d =4 dimensions.> There
is also increasing numerical evidence for triviality of A¢*
theory in d =4 dimensions.* All this work assumes that
the bare coupling constant is positive, so that the func-
tional integrals that define the quantum theory are con-
vergent.

Very recently, Stevenson, using variational methods,
has offered a new view of this problem.’ Imagine a
theory that is not bound from below in its regularized ver-
sion but that has a metastable state whose lifetime goes to
infinity when the cutoff is removed. In other words, the
barrier that separates the metastable state from the un-
bounded well becomes infinitely wide when the cutoff is
removed. He calls this kind of quantum field theory “pre-
carious.” For this kind of theory the regularized version is
somewhat misleading: it is neither bound from below nor
does it have a stable ground state. “A precarious theory is
one which is unstable for any finite ultraviolet cutoff but
which becomes stable when the cutoff is removed.”>

Variational methods are ideally suited for investigating
the ground-state energy for all values of the parameters.
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They were introduced into quantum field theory by
Schiff® who, in fact, found that the renormalized coupling
constant of A¢* theory had to go to zero as the cutoff was
removed, if one demanded a stable ground state. Howev-
er, Schiff concluded at that time that the trial wave func-
tionals were not good enough. Barnes and Ghandour’ ex-
tended the method to fermions and introduced an unam-
biguous renormalization procedure into the variational
method borrowed from the effective-potential technique.?
The trial wave functionals they used were of Gaussian
type (for scalar fields), and they observed that Gaussians
select the same class of diagrams as the leading-order dia-
grams in the 1/N expansion in an O(N) A | ¢ | * theory. A
combination of both techniques has been used by Bardeen
and Moshe’ in their very complete study of the O(N)
A|¢ |* model.

Stevenson, with the use of this very same Gaussian
variational approach, finds that an interacting renormal-
ized A¢* theory requires a negative, but vanishingly small,
bare coupling constant.’> Although the classical potential
is unbounded from below this theory turns out to have a
stable, albeit precarious, ground state.

In three dimensions nontrivial theories are known to ex-
ist, e.g., ¢6 theory."!® In four dimensions, A¢* theory
seems to be, when it exists, either trivial or if nontrivial
then precarious. The aim of this work is to study the
most general, renormalizable, single scalar field theory in
four dimensions within the variational Gaussian ap-
proach. It is an extension of Stevenson’s work® which in-
cludes in the Lagrangian odd terms in the fields. Our re-
sults are a generalization of his and show the same quali-
tative features. The theory is, when interacting, precari-
ous.

II. THE SEARCH FOR THE GROUND STATE

The Hamiltonian density of the most general, renormal-
izable, single scalar field theory is

H=502++ | V| +agd+smp’d*+gpd’+Ags*, (1)

where mp? can be negative. The variational computation
of the ground-state energy density within the Gaussian

approximation is straightforward. One writes
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0 (Q)=(K24 Q)12

[ag(k),ah(k)]=(27)20,(Q)8(k—k') ,
3)
ag(k) | OQ>=0 ’

(0q[0g)=1,

and Q is as yet an undetermined function of the constant
background field ¢,. Then an upper bound to the
ground-state energy density will be given by the minimum
of

7660, U))=(0q | 7| 0a) | a=ais, » )

when ¢, is varied in the whole parameter space Q(d),
having been fixed in advance by minimization. The nota-
tion in Eq. (4) reminds us of the fact that the energy den-
sity computed in this way is nothing but the Gaussian ef-
fective potential.!! Of course Eq. (4) has UV divergences.
These are of two kinds. One group is absorbed by renor-
malization of all the coefficients of the potential of Eq.
(1). The residual UV divergences correspond to the zero-
point energy, which we just subtract.

The computation of Eq. (4) leads (in the notation of
Ref. 5) to

(0g | 7| 0g) =1,(Q*)+ 3 (mp*—QN)o(Q%) +apdo
+5mp*b’ +gpdo’ +Apdo’
+3gpdolo(Q*) +6Ado*1o(Q?)

regularize the theory with a symmetric cutoff A. The
domain of validity of the regularized theory is

0<02,¢0% << A2 . @)

We will renormalize the theory at ¢,=0. The station-
ary condition
07 g

W(o,no)=%1_1(902)[002—%2—121310(902)]=o
0

(8)
leads to either

Qo2 —mp?—120515(QH) =0, Q*>0 9
or if Eq. (9) does not have solutions,
Q(0)=0y=0. (10)

We consider the first case, Eq. (9). We define and find
our renormalized parameters to be

L I PR AT N (11
ddo |py=0
2
m?= d y2 =02 —3g306% I _1(Q%)
déo” |g,=0
+ Q¥ PI_{(Q¢?)
X[146AgI_1(QD)], (12)
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6
(Q )= L (13)

146A51_(Qe2)

This value is obtained by minimization of m2, which is
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+3ApI%(Q%), (5) equivalent to fixing Q(¢y) around ¢o=0 by minimizing
where 7 (¢, Q). Substitution of Eq. (13) into Eq. (12) leads to
2 2
dk 2 ) gl _1(Qo")
2y_ 2002)1" . m=Qy—9——-—. (14)
(09 f 2m)R20(0Q?) [0 Q5] © ° 14651 _1(Q0?)
Notice that I,(Q2) is divergent for n > —1. We will The renormalized cubic coupling constant is given by
J
_1adr —g 32 2 2y_ 3 20 2y, 9 212 2
g= 3 =gp 3 B(‘Q'O )I—I(Q'O ) 4gBQO 1_1(90 )+ ggB(Q() )1_2(00 )
3t déo’ |gy=0
+ 5 Q¥ QT _ (D[ 146451 _ (21— (6% T _,(Q)[ 14951 _1(QeN], (15)
and the renormalized quartic one is
d4V 3 2n 2 9 2 2 9 2 2n 2
A= ddo’ |4 0=AB_77“BQO T_1(Qo" )+ 7 A Qo) _2(Qo°) + 585(Q0™ )Qo" "I _5(Q4%)
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+ 56 [490>"(D6¥ ) +3(Q> "I _ (D[ 1+ 6ApT _1(267)]— 15 (26¥ Q0> "T _»(QH)[14+9A5T _ (2]

+ 1 (¥ VI _3(QD)[ 1+ 8AgT _(Q2) ]+ S Agl % Q)] , (16)
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where
8431 _,(Qo2)(Qp )?
14+ 6AgT _1(Q6%)

(Q2")=3Ap , 17

which is again obtained by minimization of A or
equivalently by minimization of 7"z (¢, Q) around ¢,=0.
In all the above, stability requires that

14651 _;(Q%)>0. (18)

The following recurrence formula has been repeatedly
used:

dI,(Q?)
dQ?

We will also use the following expressions:’

=(n—3),_(Q?). (19)

I(QY)—I;(m?)= 5 (Q*—m")Iy(m?)

— QP —m?I_{(m*)+AQ%,m?),

2

AQLm?)= 12;771 2().41n————-92 —2mX Q% —m?)
m

1

A |’

—3(92—m2)2]+0
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Iy(QY) —Iy(m?)= — 3 (Q2—mI _(m*)+T(Q4L,m?) ,

2
r(Q%m?*)= 1611T2 Qzln%—02+m2 +0 % (20)
dA(Q*m?)
=2—">2—>0,
dQ?
[ (@)=T_m)=— L1 ® o] L
-1 -1 87 m? A2
__ZdI‘(Qz,mz)
ao*
I (0h——L | 4’ 2l4+o L
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We now subtract an UV-divergent constant that contains
the zero-point energy by considering

€(do, o)) =70, 2pg)) — 77(0,80) , 21)
which using Eq. (20) gives

(o, o)) = (2 — QM _ (D) +AQ%, Q) — 5 (22— QHIT(Q2, QP
+3A5[ 02— (2 — QNI _ (02 +T(Q2, Q1]
+3gpdol — 5 (Q2— QI _ (1) +T(Q%, Q) +ado+ 5 Qo’de’ +8pd0° —2Apd0" , (22)

where Q is Q(¢g), the function of ¢, that minimizes the
energy density. Of course this expression can also be writ-
ten as

€(Q0, Qo)) =ado+ 5m > +8¢o> +Ado* +f (o) ,  (23)

where f(¢,) is a function whose first four derivatives at
¢o=0 are zero. Notice that for fixed ¢, and large ,
€(do, Q) gives, keeping dominant and subdominant terms,

€(¢o, Q) =~ T _ QD[ 1+6A5T _1(Q%)]
arge
L omn @ ard], e
641 Q42

which from Eq. (18) can easily be seen to be positive.
Thus Q(¢y) is either given by

Q=0 (25)
or by a solution of
6A5[260° — (Q2— QI _1(Q}) + 2T (2 2,001+ 6gzdo
=02-Q,. (26

One can easily check that Eqgs. (13) and (17) can be ob-
tained by differentiating Eq. (26) as expected.

III. A STABLE PRECARIOUS THEORY

We now consider all possible values of Az compatible
with Eq. (18). The smallest value is

i
C
hp=- 61_,1(002) * 1_12(1902) +o LRtQOZ) ' ’
C,>0. @7
The finiteness of g implies from Egs. (13) and (15) that
gp=— 2 10|} : 8
I_1(Q) I_,%Q¢%)

Notice that Eqgs. (27) and (28) imply that (g, 2(dhg))
given by Eq. (22) is finite when A— : the theory is
correctly renormalized. Equations (13) and (17) give re-
normalized mass and coupling constants that are func-
tions of g, Cy, and C,:

mzzncz_%i_iz ,
&= 2CCZ1 + 1927:2902 % 3’ 29)
2
——76;C1 64+4 mc:cl
+(C17*+ ) ECZCT 4].

The theory is interacting. Equation (26) now reads
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#o>+T(Q 2,001 —3C,00+3C(R2—QH)=0. (30)

Obviously, this equation does not have solutions if ¢ is
beyond some critical value (recall I' >0 and C; >0). Then
necessarily the (=0 solution will be operative. Equation
(22) now reads for this value of Q

1

3
_C ——
“TUT 282

€(¢p,0)= Q' +@a+5C00¢,, (31

which is only bounded from below if
a+3C,0:2=0. (32)

Even then the theory is only precarious, because there is

a contribution to Eq. (31) that for finite A is dominant for

large ¢¢:

4
€(¢,0) ~ g0 33)

¢ large - 61_1(Q02)

leading to instability. Thus, in some regions of the pa-
rameter space of Qg C;, and C, one has a ground state
separated from the unbounded well by a barrier that be-
comes of infinite width when A— .

Equation (32) is, in fact, hiding a very interesting result.
This condition in terms of the renormalized parameters
implies that the original bare potential must be symmetric
for the theory to be stable. One can see this by asking
under which conditions is the original potential of Eq. (1)
symmetric about some ¢,. In terms of the bare parame-
ters this condition is

mp’gp L1 g8’
4\g 8 Ag?
With the use of Egs. (11), (27), and (28) and dropping

terms of O(1/I_,), this becomes Eq. (32). Thus the re-

quirement of stability on the most general asymmetric ¢*
theory reduces the theory to its symmetric version.!?

IV. OTHER POSSIBILITIES?

0. (34)

ap—

Consider now a theory with
C,

1
= o
61 _1(Q2) +

I_,%Q4%)

Ap , Ci>—1. (35

An interacting theory requires in this case
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The finiteness of the renormalized mass demands that Q2
grows with A as 7_,(Q¢2). One can easily see that this
implies A=0, but gs£0. Equation (26) now reads

6Crho=(1+C)(Q2—Qp2) , (38)

which implies the energy density as given in Eq. (22) is
not finite when A— . The theory is not correctly renor-
malized.

Consider finally
1
Ag=C;+0 |——— |, C;>0. (39)
B 1+ 7.2 1>
Finiteness of the renormalized coupling constants
demands
gg=C,+0 | —1 (40)
B 2 I 1(902) .
Then
3G
2 — Q 2_ 2 T4
m 0 2 (’w1 )
g§= —2C2 ’ (41)
)\,= ——2C1 >
and Eq. (26) reads
Ci[26*— (Q*— QN _1(20*)]+ C20=0, 42)

which always has a solution. Substituting into Eq. (22)
one finds

€(do)=ado+ 5 m%pe’+gdo’+Ado* , (43)

which is certainly finite when A— «, but unbound from
below.

We return briefly to the case when Eq. (10) is valid.
Stability requires that

mp2+12A515(0) <0 . (44)

It is easy to convince oneself that also all the derivatives
of Q2 at ¢,=0 are zero. This gives

a=ag+3ggly(0),

1
gz=C2+0 100 ] . (36) m2=mp*+12A51,(0) ,
45)
Then Eq. (14) implies 8=8B >
2 2 C,? 2 A=Ap .
m*=Q4"—9 I_,(Q¢*)+finite t . 37
0 1+C, 11£207) +imite terms 37 The subtracted energy density is
1 ) 1 4A* 1 4A?
€($0, o)) = ———Q*++2m?2—-Q?) | — Q? |ln—=-—1 3Ap |t ——— Q2 |1 —1
$or 2o 12872 ‘ 62 | @ ks b =T Q2
1 2y, 4A2 12,2 3 4 '
+3gpdo | — 1677'20 IHF_I +ago+3m ¢o"+8pdo” —2Apdo - (46)
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Now Q(¢y) is given either by

Q=0 47
or by a solution of
1 = 4A° =
6Ag [2¢*———=Q? [In——1| | +6 =0%—m?.
B | 260 P Py ] 83 %o

(48)
In the first case one finds from Eq. (46)
€(0,0)=ado+3m>po’ +8¢o’+Ado* , (49)

which requires A>0. However, for large ¢, when solu-
tions to Eq. (48) exist, one has

6(¢07§) ~ ‘—2}\'¢04 B
large ¢,

which is unbounded.

V. CONCLUSION

We have studied the existence of a stable ground state
in the most general, renormalizable, single scalar field
theory within the variational Gaussian approximation.
Our results generalize Stevenson’s’ for even ¢* theory.
Indeed in certain regions of parameter space an interact-
ing finite theory exists and is stable once the cutoff is sent
to infinity.

Perhaps the most startling result of our analysis is that
the only viable ¢* theory is one that is symmetric.
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