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Motivated by the issue of whether it is possible to construct phenomenologically viable models where the
electroweak symmetry breaking is triggered by new physics at a Acalémv, wherev is the order parameter
of the transition { ~250 Ge\j and A is the scale of new physics, we have studied the phase diagram of the
U(2)XxU(2) model. This is the relevant low energy effective theory for a class of models which will be
discussed below. We find that the phase transition in these models is first order in most of parameter space. The
order parameter cannot be made much smaller than the cutoff and, consequently, a large hierarchy does not
appear sustainable. In the relatively small region in the space of parameters where the phase transition is very
weakly first order or second order the model effectively reduces to tB¢ tBeory for which the triviality
considerations should apply50556-282197)06423-Q

PACS numbsgps): 11.30.Qc, 12.38.Lg, 12.60.Rc, 64.60.My

[. INTRODUCTION ously broken gauge theory, characterized by a saaleith
A>1 TeV. At sufficiently low energies, the dynamics can be
In the minimal version of the standard model of elec-modeled by four-fermion interaction®f either technifer-
troweak interactions the same mechaniga one-doublet mion doublets in ETC models or the quarks of the third
complex scalar fieldgives masses simultaneously to the  family in TopC model$ which are attractive in the scalar
andZ gauge bosons and to the fermionic matter fightser ~ channel. Then, it appears possible that, by tuning the corre-
than the neutrinp This remains so in many extensions of the SPonding coupling sufficiently close, but above a critical
minimal standard model, such as those consisting of mor§@/Ue, chiral symmetry breaking occurs, but the condensate

scalar doublet fields or even fields in other representations dfs€lf is of the order of the weak scale much smaller than
SU(2), . its natural valueO(A). It has been pointed out in Re#4]

htgat a necessary condition for this to happen is that the low-
nergy effective theory, which retains the light degrees of
reedom below the scal&, where chiral symmetry breaking
occurs, possesses itself a second-order phase transition. It is
only then that there can consistently be a hierarchy between
the order parameter and the scale\.

On the contrary, the mechanism that gives masses to t
W andZ bosons and to the matter fields remains somewh
distinct in models of dynamical symmetry breakifsyich as
technicolor theorie$l1]). In these models, there are interac-
tions that become strong, typically at the scalev4 (v

=250 GeV, breaking the global SU(2)<K SU(2)z symme- If the strongly interacting fermions at scale are elec-
try to its diagonal subgroup SU(g)and producing Gold- rqweak doublets, then the chiral symmetry is U(2)
stone bosons which eventually become the longitudinal dex (2) and the relevant Lagrangian at that scale consists in
grees of freedom of th&V~ and Z. Yet to transmit this 3 punch of four-fermion interactions. The precise form of
symmetry breaking to the ordinary matter fields one usuallythese four-fermion interactions will not concern us here. It
requires additional interactions, characterized by a differenhas been argued, using analytical methggsas well as
scaleM. Generally, it is assumed th#d>47v. It seems |attice simulation$6,7], that four-fermion models are, at low
then natural to ask whether it is necessary to have these twanergies, equivalent to an effective theory consisting in a
very different scales and whether it would not have beerscalar-fermion model with the appropriate symmetry, which
possible to arrange things in such a way that the SU(2)in our case it will be U(2)xXU(2)g.
X SU(2)r— SU(2) symmetry breaking takes place at a scale Using an effective theory description also frees us from
A, where 4rv < A. Although the scale where the symmetry having to appeal to any particular model. Thus, the analysis
breaking takes placeé,, and the scale characterizing the newmay remain valid beyond the models we have just used to
physics,M, need not be exactly the same, we shall assumenotivate the problem. In this effective theory we need to
that A=M and refer only toA hereafter. retain only the particles that remain light after chiral symme-
Two phenomenologically viable paradigms of the abovetry breaking. Thus, it must necessarily contain the Goldstone
possibility are the strong-coupling extended technicolobosons emerging from the breaking of the global Y(2)
(ETC) modelg 2] and the top-condensaf€opC) models 3], X U(2)g symmetry. There may also be some ligthmpared
in which the underlying dynamics is, typically, a spontane-to the scale\) scalars. If present, the U(2X U(2)g sym-
metry can be linearly realized. If not, the symmetry should
be realized nonlinearly. Of course the presence or not of such

*Electronic address: espriu@greta.ecm.ub.es additional scalars depends only on the underlying additional
"Electronic address: vk@tholos.ecm.ub.es sector(or, equivalently, on the four-fermion interactions it
*Electronic address: alex@greta.ecm.ub.es leads t9. However, the linear and nonlinear theories differ,
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for sufficiently large values of the scalar masses, by terms ofnodel couplings and semiquantitative estimates of the corre-
O(u?/167%v(w)?). In the coming paragraphs we just argue lation length. Where meaningful we compare our results to
thatv is generally large. Hence, at low energies these termtghose obtained via the effective potential. We have found
are small and thus using a linear realization is really no rethat a large hierarchy is untenable in most of parameter
striction at all. spacew is typically several orders of magnitude too large.
We shall thus assume that the low-energy theory is a gen- To get the above results we have performed high-statistics
eral linearo model with UN),_ XU(N)g (which we later runs using a hybrid algorithrtwith and without Fourier ac-
takeN=2) symmetry, whose effective action, for genedal  celeration which, to our knowledge, had not been used be-
is given by fore for this type of systems. We have also written a tradi-
tional Metropolis Monte Carlo code for comparison.

o ; _— ; Therefore we believe that our results are also of some inter-
S(¢)=f d*[3Tr(d,¢'d,¢)+:mTr(¢" ¢) est to the lattice expert.
+N1(Trep" )2+ N, Tr( " $)?], (1) II. U (2), % U(2)x MODEL

where ¢(x) is a complexNx N matrix, the order parameter !N the caseN=2 the action(1) depends on eight degrees
of the high-energy phase transition. The actighis invari- of freedom and the field can be conveniently parametrized

ant under the global symmetry transformatign-L ¢R", by

whereL,R are UN) matrices. The electroweak interactions 3 s
are obtained by gauging an SU{2Y(1) subgroup of this 2 oo+ i) 7 @
global symmetry, which after the B X U(N)g symmetry ao \/E

breaking gives masses to thg* and Z. In some models

additional fermions remain in the spectrum beldw We  wherer® are the Pauli matrices far=1,2,3, and the identity

have not considered them and thus our results do not apply i@atrix for a=0. The action(1) is invariant under the rigid

such modelgsee, however8]). symmetry ¢—L #R', whereL,Re U(2). If we set\,=0,
This model, as will be discussed in detail below, POS-then the symmetry is enhanced to O{Q(2NZ) for genera|

sesses fok,# 0 a first-order phase transition whose strengthN]].

varies in the §1,\,) space. As one adjusts” past a critical The pattern of symmetry breaking depends on the sign of

value (m?=0 in mean field theory the vacuum expectation the coupling\,. If X\,>0, the VEV can be rotated too)
value v jumps discontinuously from zero in the unbroken =y, and the breaking occurs according to
phase to some finite nonzero value in the broken phase. If the

couplings ¢1,\5), which are obtained by matching with the U(2) X U(2)g—U(2)y, 3
underlying strong dynamics at the cutoff, belong to a re-
gion where the phase transition is weakly first order, then thavith v?= —m?/(4\;+2\,). The 7 are then the Goldstone

vacuum expectation valug/EV) v can be smallp/A<1, bosons while the masses for the other states are

and the U(2) X U(2)g model can still be a valid description ) 5 5 ,

of the low-energy dynamics. If, on the other hand, the cou- Mg, =4(2h1+ho)v%, Mg =4np®, i=123. (4
plings (\,1,\,) belong to a region where the transition is

strongly first order, such a hierarchy is not possible and modH \,<0, the symmetry breaks along th€+ 7° direction,
els leading to suchX;,\,) values should be excluded.

It is our purpose in this paper to investigate in detail the U(2) X U(2)g—U(1)3, ©)
phase structure of the above model and to conclude whether
large chiral hierarchies are sustainable in this context. Avith v?=—m?2(\;+\;), and the masses are
number of authors have previously considered this possibil- ) ) 5 5 5
ity. In [4] such a model was considered as a possible param- MG, =Mz = =205 mg =4\ +A)v"  (6)

etrization of the low-energy physics of top-condensate mod-
els or strongly coupled extended technicolor models. Thén this case, though, the mean field solution is not a real
authors concluded that, within the framework of a perturbaminimum but a saddle point.
tive one-loop analysis, a large hierarchy is unlikely unbess Although these are tree-level relations, they are preserved
is close to zero. Later, ifB], it was pointed out that a leading by quantum corrections in terms of renormalized parameters
order 1N, analysis combined with two-loog functions can  appropriately defined. In the physically interesting region
change the conclusions and that consistent large hierarchiesnd barring any unexpected nontrivial fixed point, four-
were not disallowed. Unfortunately, all these analysis rely ordimensional scalar theories such as in 8&g.are believed to
perturbation theory which is unreliable at strong coupling.be infrared free and have Landau poles in the ultraviolet.
To settle the issue we have performed Monte Carlo simulaTherefore, if we wish to have large masses for all these sca-
tions in terms of the lattice-regularized version of the actionlar resonances, we must set at lerg{A)>1. (Recall that
(1) above. A preliminary investigation along these lines wasthe bare coupling and the renormalized coupling at the cutoff
undertaken in Ref10]. scale are the same thingd.et us keep in mind, though, that
We confirm the first-order character of the transition foreven after giving these scalars a large mass, some nondecou-
\»#0. We have obtained a detailed picture of the behaviopling effects remain, as pertain to a spontaneously broken
of the order parameter for nonperturbative values of ¢he theory.
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The electroweak interactions are included by identifyingWeinberg mechanisiii2]. Because of quantum fluctuations,
SU(2), with SU(2),, and ther; component of SU(29 with  the system develops a vacuum expectation value at a finite
hypercharge. The symmetry of the model is expected twalue of the correlation lengté.
break according to U(2)X U(2)g— U(2)y, producing four The Coleman-Weinberg mechanism has been given a nice
Goldstone bosons, with the vacuum expectation value relategeometrical interpretation in a massless theory, due to Yam-
to the weak scale viaMy=gv/2. Then three Goldstone agishi[13], in terms of theB functions and its associated
bosons become the longitudinal components ofWe and  fixed points. The general solution of the renormalization
Z bosons, while the fourth one is expected to get a mass frorgroup equatiortin a dimensionless regulator, such as dimen-
the anomalous breaking of the axia(l)l Physical fermions sional regularizationfor the effective potentiaV/( ¢),
that do not “feel” the strong interactions and, hence, do not
participate in the symmetry breaking should remain light due
to their small Yukawa couplingy and will be ignored
henceforth. Similarly, we have neglected the effects of gauge
couplings since they are small at scale We have also Wheree=(Tré'¢) whenx,>0, is given by
ignored the possible presence of custodially noninvariant in-
teractions. V(QD):()\ (t)+ )\Z(t))cp4exp<4ftdt y(D) ) ®)

As discussed, a nonperturbative method, such as lattice ! 2 o 1-v1t))’
technigues, is called for to determine the possibility of mak-
ing v of the order of the weak scale. After introducing the Wheret=In(¢/u). Then, the condition for the existence of a
lattice regulator, one expects thafv~ ¢#, with 8 the ap- local extremum away from the origify) =v #0 leads to
propriate critical exponent, and so a hierarchy will only be
possible if the correlation lengtl is big or, what is the 42N (O +N(O]+281+ 6,0, ©
same, the transition is second order or weakly first-order. _ ‘ .- ; .

High-energy physicists have not devoted to first—orderghféﬁﬁ'nsfi%')/jﬁ’lI, xlz(ZO)aithgﬁgggﬁ?gs) ivswtrzfg:fcli
phase transitions nearly as much interest as in the case

i . th . wral to defi as the “stability line.”
continuous ones since there 1S no natural way 1o define a g corresponding renormalization gro(lRG) equation
continuum limit, i.e., to shrink the lattice spacing to zero,

. C S or A\,<<0 is given b
because the correlation length never becomes infinite. How-" "2 9 y

ever, this is not a problem from the point of view of an t
effective field theory because our continuum theory has most V() =[)\1(t)+)\2(t)]<p4exp( 4f dt
definitely an ultraviolet cutoff\, above which it is no longer 0
valid. The lattice cutoff can then be identified with this con-
tinuum ultraviolet cutoff, i.e.a=27A 1. The relation be-
tween the lattice and the continuum cutoff can be unambigu- AN (1) + N o(t) ]+ B+ B,=0. (12)
ously established, but since we will not work it out here, all
we can say is that the relation between the lattice cutoff andf there exists a certain value tfwhere the conditiorf9) or
the physical scalé can be defined up to terms 6f(A ~2) (11) is satisfied, in a region wheré”>0 andV<O0 at the
only. The physical parameter controlling the size of the cor-minimum (see for the corresponding equations in terms of
rections is naturally the correlation length of the system. Ifthe appropriates functions in Ref.[10]), then(¢)=v#0
the correlation length is relatively largm lattice unitg, cor-  and the transition is of first order.
rections will be small, nonuniversal cutoff effects control-  The expressions for thg functions can be found at the
lable, and the results meaningful. It turns out that in most obne-loop level in[14,4,10 and are plotted as solid lines in
the interesting regions of parameter space, the transition is ¢fig. 1. The stability line is indicated as a dotted line. Then,
first order, but with relatively large correlation lengths. We starting from some valuex ,\,) at the scale\ and follow-
can thus have some confidence in our conclusions. ing its RG trajectory, one flows in the infrared either towards
the stability line or towards the infrared fixed point at the
origin (if N\,=0). If the RG trajectory crosses the stability
line, then the transition must necessarily be of first order at
In this section, we analyze the phase transition withinthat particular value ofX;,\,) we started with. Were it of
(renormalizedl perturbation theory. Although this applies second order, the correlation length would be divergent and
strictly only at weak coupling, that will provide a qualitative it cannot possibly become finite again after a finite number
feeling about the transition. Moreover, it will be suggestiveof renormalization group blockings. Féx,| small the cou-
of the regions in coupling constant space where we shoulglings flow towards the regioih;,A,<1, and even if they
perform Monte Carlo simulations and provide a qualitativecross the stability, they do so after very many decades of
understanding of our results. running; the phase transition in this case is weakly first order,
The model described by Edl) is very similar to the the more so af\,|—0.
Ginzburg-Landau phenomenological model of continuous The correspondingd functions at the two-loop level can
transitions. However, theoretical consideratiph$] and nu-  be found in Refs[15,9], whose solutions are plottedor
merical work show that, whenevar,# 0, by tuning the pa- zero Yukawa couplingin Fig. 1 with dashed lines. One finds
rameterm? (m?<0) the system undergoes a first-order tran-out that the stability is improved by the two-loop corrections
sition, which particle physicists know as the Coleman-[9]. For a bare theory with ,<<O or one that is close to the

(9+ a+ (9+ ﬁv =0 7
L Blm BZE i (¢)=0, (7

(1)
1—y(1)

) ., (10

and the stability line is described by

Ill. COLEMAN-WEINBERG MECHANISM
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3.0 ‘ T ‘ P TABLE I. Estimates of the jump in the order parametérand
o5 | correlation length estimated k§=L*/2, whereL* is the smallest
' / o lattice where coexistence was found, or from the effective potential.
(M1.N2) v? 14
(0.5, -0.45 0.83 7
(-0.22, 0.5 2.10 3
gy 1 (-3.97, 9 10-20 <2
(-14.97, 30 20-40 <2
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1 ©, 16 0.09 6
p LN (0, 30 0.15 6
1. PN R ) 0.11 6
ool / L (8,16 0.16 6
20 -15 -1.0 -05 00 05 10 15 20 25 3.0 (8, 30 0.16 6
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1

FIG. 1. Perturbative RG trajectories for the URY(2) model . . 2 ..
starting from bare couplingé ;(A),\,(A)) along the linex ;=2 first-order transition whem< crosses the critical surface. On

or \,=2. The solid lines(dashed lines correspond to one-loop the other hand, if the renormalized couplings are located to

(two-loop) trajectories while the stability line is indicated as a dot- the right of the stability line, f'fSt'O_f,der 'tranSItlons Showd_
ted line. Indicatively, the dots along a trajectory represent the evo@lSO be observed near the stability line, decreasing in
lution of the couplings after running by a factor efdown to the  Strength as we separate from it and also with decreasjng
infrared. Notice that while for bare couplings wxh<0 or closeto ~ as the correlation length increases when we approach the
the stability line the flow is to the left towards the stability line, A,=0 line.
there is a region with\;,\,>0 where the flow is reversed and it It should be emphasized here that the situation here is
appears that it never crosses the stability line. different from the triviality analysis in the ®{) model(i.e.,
N»,=0 axi9 [17]. The phase transition there is of second

stability line the flow is again to the left towards the stability Qrder an_d all points belong_ to the attraction of the Gaussian
fixed point, where the continuum limit is just a free theory.

line; however, the flow is slower than at one loop. Further- ; ) s i | defi
more, there exists a region withy ,\,>0 where the flow is OWeVer, for given quartic couplings, one can always define

reversed and it appears that it never crosses the stability Iian. consistent effective field theory, with an arbitrarily large

However, this only hints upon the breakdown of perturbationl€rarchy A/v, at the expense though of having an upper
theory and a nonperturbative analysis is called for. ound on the masses of the scalar particle. If the mass is of

Although strictly valid only with a dimensionless regula- the order of the cutoff, lattice artifacts creep in and we can-

tor and hence definitively linked to perturbation theory, theNt réally consider the model as as a field theory one. The
conclusions of the above analysis are expected to remaffjiuation is, on the other hand, different for the U(2)
approximately valid in the lattice regularization where all <Y(2)r model, since the Gaussian fixed point is infrared
sorts of irrelevant operators appear in the effective potentiatnStable: Unlesa ;=0, the renormalization group flows do
As long as the correlation length is large enough, the conhot belon_g to its attractive domain and, in the _absence _of
tinuum physics can be used as a guide. Checking to whahother flxe_d point, becom_e runaway trajectories. In t_hls
extend these arguments are valid is one of the motivations ¢t2S€, there is no proper continuum limit and strictly speaking
the present work. no field t_heory at all. However, if the transition is sgfﬁmently
It is also essential that no other fixed point unreachable ijveakly first order, one can speak of an approximate con-
perturbation theory exist. Should one be present, the RG trdinuum limit, with lattice artifacts being still relat|_vely small:
jectories would be distorted and there could be regions wherl contrast to the‘22: 0 case though, the correlation length is
the transition is second order. We found no evidence of sucROt tunable(by m?) but is rather determined by the quartic
a fixed point. Even with only the Gaussian fixed point it €0UPlings {1,A;). Moreover, a large hierarchy/v is in
would still be conceivable that there might exist a region ofgeneral not tenable.
nonzero measure whose RG trajectories end in the Gaussian
fixed point at the origin. For these values the transition
would be of second order. For small values af (\,) an
effective potential calculation shows that this happens only if In Table | we show all the points in the coupling constant
A,=0, and so assuming that the RG trajectories follow aspace for which Monte Carlo data was collected. In the simu-
potential flow this possibility appears to be ruled out too. lations we used two different programs checked against each
The above picture suggests that, if the couplings of ather: one based on a simple one-hit Metropolis algorithm
given bare theory are located in the region limited by theand the other based on the hybrid algorithmith or without
stability line and the straight linesh2(A)+A,(A)=0 for  Fourier acceleration The second algorithm was always su-
No>0 andh(A)+X,(A)=0 for \,<O (so that the poten- perior. Details concerning the codes and how they perform
tial is positive definite at largeb), then one should observe a can be found in the Appendix. Following R¢10], we have

IV. PHASE TRANSITION ON THE LATTICE
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used as an order parameter the expectation value of the
U(N) X U(N) invariant operator
(A,=-022,1,=0.5)

O=Tr¢' ¢, (12)

which corresponds to the susceptibility, where ~ /

V() o1+ :
— 1
¢ij:F§ &ij(X). 13 , 7 /

/ /
_ /)

/
/ /
_— -

/
/
/]
/'/ //
/)
/
/
//

The expectation value of the above operator is then propor- _
tional to v? in the broken phase and zero in the unbroken , T
phase, modulo finite size corrections. We also measured the
expectation value oD’ =Tr(¢'¢) as an alternative order 0.1
parameter(O’) is the analogue of#?) in a one-component
scalar theory and has differefibut nonzerp value in the
broken and unbroken phases. FIG. 2. The effective potential for different values of at

We have used lattices of sizes ranging frarns4 to L (—0.22,0.5). The effective potential is arbitrarily normalized so that
=14. The exact procedure we have used depended somewh#i0)=0. The four lines correspond to?= — 0.88(ordered phase
on the region of X;,\,) in which the simulations were per- m?=—0.90 (broken phase is metastaplen’= —0.94 (symmetric
formed. In general, to obtain information about the order ofphase is metastableandm?= —1.12 (disordered phage
the transition at each giver\(,\,), we have searched for
hysteresis effects in the measurement of the order parametérarrow. A good deal of fine-tuning fan? is then called for.
We performed thermal cycles in the relevant parametér  All these features can be visualized by comparing Fig. 2,
across the critical region where the field configuration fromcorresponding to a relatively strong transition, (A,) very
the last run was used as input for the next run. Strong hy5C|OSG to the stability line, and Fig. 3, in which the transition
teresis loops are an indication of a strong first-order transils weaker.
tion. On smaller lattices, we have also looked at the histo- The order parameter of the transitian, is the quantity
gram distribution of Tp¢', where a double-peak structure that, when expressed in physical units, gives, after gauging
across the critical region is an indication for two coexistentthe model, a mass to th&/~ andZ bosons, according to the
minima. This procedure helps us identify the critical point of relation
equivalent minima, as well as the rangerof where meta-
stability is observable. Tunneling, of course, becomes rare on M =Egv (15)
larger lattices, which we have used to look for coexistence. Wo2d

The measurements we provide in Table | for the order pa- . ) .
rameterv? always refer to the largest lattice used. However, for this relation to be true the residues of all par-

Near a first-order transition the effective potential devel-ticles have to be properly normalized. This is not necessarily
ops two minima. One of the minima, saf)=0, is the SO on the lattice and we are forced to distinguish between

lowest, and as we increase the relevant parameten?) the

/

0.0 1.0
¢

nontrivial minimum becomes dominant, and the system ac-
quires a VEV(¢)=v+#0, and eventually the minimum at 840 1
the origin disappears. This does not imply that as soon as one (% =00,4,=05)
of minima becomes dominant the system jumps to it; near
the transition there is a potential barrier between them whose 8.30 ¢ /
height determines the strength of the transition and the tun- //
neling rate. The relation V(p) / /
8.20
V" (v)~1/E? (14)
tells us that the weaker the transition, the less steep the ef- 810 |
fective potential will be, and the more difficult it will be to —
observe metastable states. Of course, if the correlation length ﬁ_////
near the transition is bigger than, or of the order of, the goo —————r "
lattice size itself, one should not expect to see metastable 0.0 05 1.0
states because the system is not able to see the distinction ¢

between the two existing minima. In our simulations we g, 3. The effective potential for different values of at

have used this property to get rough estimates of the corrgg o 5). we have shifted the origin for the differem? values in
lation length. Also, if the transition is weakly first order, it order to be able to visualize it. The values of the massnafe
might happen that one of the minima disappears very soon 2 37 (ordered phage m?= —2.42, andm?= — 2.45. The impor-
after the transition has taken place, and the actual range @nt point to note is how weak the barrier that separates two minima
values ofm? where metastable states are detectable is verig.
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vpnys: the physical value, angl,, the value we obtain from 10.0
our simulations. The relation between the two is
(A, =-022,1,=0.5)
Uphys= Vtatt! VZg» (16) 8.0 |
where Zs is the Goldstone wave-function renormalization
defined by the unit residue condition. The valueZgf has 6.0 -

been estimated ifl6] and found to be always close to 1. A
Although these results were derived\agt=0, we expect that C\?
the wave-function renormalizatioZ; stays close to but

T ) 4.0
smaller than 1 and thus taking it into account can only in-
crease the value afjpys.
20t
V. WEAK COUPLING

In the weak-coupling regiom\(; ,\,<<1), lattice perturba- 0 , 290800
tion theory does apply and can be used to compare with the -1.4 -1.2 , 1.0 -0.8
numerical data. At the tree levé&quivalent to assuming the m

mean field approximatigrthe transition is always of second FIG. 4. The expectation value of order paramé@} as a func-

Of‘?'ef- The symmetry-brgakin_g pattern and Fh? tree-level_ 'Sion of m2 at (\;,\,)=(—0.22,0.5). The solid line is the one-loop
lations have been described in Sec. Il. Radiative correctiongyeiction; circles correspond to la=4 lattice, squares ta =6

change this behavior. The bare one-loop effective potentighgice, triangles td. = 10, and diamonds th=12.
was computed if10]. If A,>0, the result is
the Coleman-Weinberg phenomenon. Quantum corrections
4 have transformed the second-order phase transition of mean
field theory to a first-order one.

We now look at the numerical results in the weak-
coupling regime and compare them to the one-loop potential
results. The predictions from ELl7) hold, on average, at
the 10-30 % level for the values ok {,\,) we have ana-

3)\2” lyzed in the weak-coupling region, and should be more ac-

¢

1 N2
V(p)= §m2902+ ( Nt >

1 .
+—2, In| p?+m?+12¢?
2L4Ep _p ¢

curate away from the phase transition region. It is natural to
expect that deviations are indeed larger near the phase tran-

sition surface, at least when the transition is weakly first
}, (17) order (as exemplified, e.g., by Fig.)3since the precise lo-

cation of the minimum of the potential is in this case un-
o stable against small corrections in its shape originating from
where p2=2M2—2cos¢)M) is the lattice propagator. The two-loop corrections and beyond.

quantity m>=m?—m?2, wherem? is the value at which/” In Fig. 4 we plot the results at\g=—0.22, A,=0.5)
vanishes at the origin, resums some two-loop corrections int¢/here the correlation length was estimated togbe3 from
the masg19]. On the other hand, k,<0, one obtains the effective potential. The smallest lattice size where meta-
stability was observed was ftr=6. The transition is a rela-
b o* tively strong first-order one. Comparing the evolutiorvcds
Vie)= 2t ()\1“\2)? a function ofm? against the effective potential prediction we

see that the agreement is good. Following our general argu-

1 — — ) ment we expect the transition €2,0.5 to be weaker since
+ EE IN[p“+m+6¢“(A1+A3)] we are away from the stability line. The one-loop effective
P potential calculation giveg~40, and so it is unlikely that
2 we can see metastability, even on our larger lattices. Also,
- P2+ m? 2 t the effecti tential calculation to b |
+ > In(pZ+m?+2x,¢?) we expect the effective potential calculation to become less
2L reliable. Figure 5 shows our data for the order parameter

compared to the one-loop effective potential on a lattice of
the same size. The agreement is certainly worse than before.
The effective potential still predicts a first-order transitian
m?=—2.39), albeit a weak one. The jump in the order pa-
The effective potential for theN(,\,) values (-0.22,0.5) rameterv is approximately 0.71.

and(0,0.5, where perturbation theory should still be valid, is We have also analyzed tha {=0.5, \,=—0.45) point
shown in Figs. 2 and 3. As is manifest from these figureavhere the symmetry-breaking pattern is that of Ex). The
there are two coexisting minima; hence, the transition is okffective potential calculation suggests a first-order transition
first order, albeit more weakly so as we move away from theat m?>= —0.84, where the correlation length §3-7 and the
stability line, in accordance with the above discussion ofiump of the VEV isv=0.91. Our numerical data agreed

5 -
+—> In[p2+m2+2¢2%(A\;+Ny)]. (18
2L4"p
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FIG. 5. The expectation value of order paramét@} as a func- m’
tion of m? at (\;,\,)=(0,0.5). The solid line is the one-loop pre-
diction, circles correspond tb=4, and squares th=8. FIG. 6. Plot of the hysteresis loop near the classical stability line

at (—14.97,30). The results correspond th. &4 lattice with 18

again within 30% for the order parameter to these predic€onfigurations after thermalization.

tions, although no hysteresis effects were observed even Ofhere is evidence that the transition is stronger in the second
the 14 lattice. Although points on the,<0 region do not  case as the two signal minima can be seenlin-.0 lattice.
seem to correspond to the phenomenological model of stronghe transition gets indeed stronger with increasing

extended technicolor or top condensation, based on the For those points deep in the >0, A,>0 region that we
simple Nambu-Jona Lasinio modgh the largeN, color  analyzed, we were able to observe coexistence of phases, but
approximation, this need not be the case in gend#ll only in lattices ofL = 14. The transition is always clearly first
order, but characterized by correlation lengths much larger
than those obtained close to the stability liftais is, of
course, as it should be, given the form of the RG trajecto-
ries). In Fig. 9 a plot is shown for the poiri8,8), where the

The strong-coupling region must he st_udied nume.ricallysystem eventually tunnels to the right minima. The symmet-
The strategy we employed was the following. We studied thg;c hhase s in that case a relatively short-lived metastable

smaller latticesL =4,6,8, using the hybrid algorithm usu- g4te |n Fig. 10 we plot the Monte Carlo time evolution of
ally, agc.umu.latlng apout fO:onflguratlons._We searched for o operator T:¢", starting with ordered-disordered initial
two minima in the histograms corresponding to the expectazqngitions for the point8,16).

tion value of_the operator Tg¢'). We then moved to big- For points close to tha,=0 axis, it is very difficult to
ger lattices. = 12,14 to look for coexistence. General%co— differentiate a weak first-order from a second-order transi-
existence was found on larger lattices for values tion. More detailed methods with very high statistics would

slightly more negative than on smaller lattices, due to finite,q needed18] complemented with finite size scaling.
size corrections. Along the process of increasing the lattice

size we eventually begin to see metastability at some size

VI. STRONG COUPLING

L*. We estimate then the correlation length togelL*/2. (A, =00,1,=80)
Crude as this procedure may seem, it is physically meaning- s

ful and it agrees, where comparison is possible, with the m"=-24.70
effective potential. 0.20

All points close to the stability line exhibited marked hys-
teresis loops and hence show strong first-order phase transi- 3 %
tions. As an example we can take the po{rt14.97,30 v
where the corresponding hysteresis loop is shown in Fig. 6. M

The transition becomes stronger the upper we move along %10
the stability line. Notice that, sincé=1, the cutoff effects
are big and the connection to continuum physics question-
able. Similar conclusions apply to the poink,(A,)=
(—3.97,8). 0.00 ]
Points close to the ;=0 axis present always first-order 0.0 10000 2000.0 =~ 30000  4000.0  5000.0
transitions. Typically, runs oh =4 lattices do not show any MC time/10
hysteresis effects. However, we found a clear sign of the F|G. 7. Time history of two runs starting with ordered and dis-
existence of two minima i =12,14 lattices. In Fig. 7 we ordered conditions, respectively, mf=—24.7 in aL=12 lattice,
display the clear signal of two minima for the poi(@,8, clearly displaying the two minima signal. The point in parameter
and, similarly, Fig. 8 shows the two minima signal {6¢30. space i50,9).
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FIG. 8. Same as in Fig. 7 fan’=—76.5 at point (0,30). The FIG. 10. Evidence for coexistence at the poi@16 and m?
lattice size isL=12. =—82.5 in aL=12 lattice. The operator we plot here is not the
square of the order parameter as previously, but ratBér
We have summarized the knowledge we have gainedTr(¢o¢").
about the value of the order parameter at the transition and

the corresponding correlation length in Table I. From thesgecong. or weakly first-order transitions. There is no evi-
results we see that in most of parameter spiacéhe region  yonce of any genuine second-order transition, excep if
where the symmetry breaks the way we are interested in for.
phenomenological reasonthe vacuum expectation value F'or most of the X,)\,) values in the strongly coupled
[at scaleA, v(A)] jumps to a value which is typically only region, the jump in thé order parameter parametes ap-
one order of magnitude smaller than the cutoff. The physiy oy imately equal to 0.3-0.4 in lattice units. If we assume
cally relevant VEVv (v) [which, after gauging, gives a mass a4 the renormalization constait, is close to 1, we can

to the W™ and Z bosons, and not(A)], according to the oy 1y de the possibility of a large hierarchy in that region. We
perturbative RG flows, should be even bigger. were aiming at values of in the range 103, that is, two
orders of magnitude smaller than the generic result.
VII. CONCLUSIONS We found just one region satisfying the requirement that

In this paper we report an extensive Monte Carlo simula-the phase transition is weak enough. Thiajs-0, the limit

tion of the U(2)xU(2) model. We have found no evidence where the model approaghes_ theN)(linear o modell. Fo_r
; , ) . small values of\ 1, the tuning in\, must be extraordinarily
of the existence of any fixed point other than the Gaussian - ;
L accurate, probably at the 18 precision level or more. This

one at the origin of theN;,\,) plane.

We have investigated many points in this plane using is evidenced by the effective potential calculations. For

variety of numerical and analytical techniques. We havafarger values oh, this is somewhat relaxed, as the jump in

. . . . - NAVeie order parameter seems to increase more slowly as we
been mostly interested in getting a semiquantitative picture

of the symmetry-breaking transition over the different re_depart from the\, =0 line for a fixed value ok,. Phenom-

: : . . . : nologically viable models must then lead to values for the
gions of the phase diagram in order to identify regions Ofgffective couplings which, at the cutoff scale, satisfy the

above requirements.
All our data conform perfectly with the standard picture
(A, =8.0,1, =8.0) of first-order phase transitions with runaway trajectories de-
m=- 63.90 duced from the Coleman-Weinberg analysis. We have some
evidence that the running is in some cases very fast.

0.20
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APPENDIX: ALGORITHMS with similar efficiency. This, combined with the decorrela-
We have left for this appendix all the technical details oftion induced by the numerical integration, makes for a very

the numerical simulations. We have mostly employed therObUSt algorithm as far as beating critical sloyving down
hybrid algorithm since it allows for a better control of the goes. However, because of the need of performing fast Fou-

autocorrelation times and the rejection percentage. rier transforms in four dimensions, the FA is intrinsically

We consider the generalized Hamiltonian much slower than the SH. The gains in beating critical slow-
ing down are only apparent for large correlation length.
— S However, at §1,\,)=(—0.22,0,5) in a § lattice, the auto-
H(¢,m)=H(¢)+ o (A1) correlation time am?= —0.895(transition point is about 4

times bigger for the SH than for FA, making the FA useful
where is the hamiltonian of the physical problem at hand put not really necessary. This is perhaps not too surprising
[in our case™ is just the Euclidean action of the U(2) since the correlation length is in much of the parameter space
XU(2) model, and 7 some fake momenta conjugate to relatively small, even close to the transition.
each variablep. We specify some initial values for the mo-  Two parameters have to be adjusted in the hybrid algo-
mentar according to a Gaussian distribution, and then nuxithm, namely, the number of leapfrog steps and the step size
merically integrate the Hamilton equations for the, &)  st. They are the equivalent to the fudge parameter one uses
dynamical system. Any algorithm can be used provided thaf, 5 standard Metropolis algorithm to adjust the acceptance
is time reversal and preserves the area of phase $PE&A  (ate. If we use a relatively large step sige, successive
convenient way of satisfying both requirements is to use thegnfigurations soon become more uncorrelated. However, a

leapfrog algorithm large step will decrease the acceptance rate, and so a com-
(1) promise must be reached. We have done extensive tests in
H(t+ 8t)= (1) + StAm(t) + AATE(1), the simple case& =0, A,=0, which can of course be solved
2 analytically. The best situation seems to be to takesuch

st that the acceptance rate is about 90%. On lattices ranging
m(t+ o) = m(t)+ = AT[F() +E(t+a)], (A2) from 8% to 12* this corresponds to takingt~ 0.2 (depending
2 somehow on the values ok (,\,). The other freedom con-

_ ) i i cerns the number of leapfrogs before the rejection Monte
whereF = —d}t/d¢, andA is some(arbitrary t-independent  cayig is performed. The larger the number of leapfrogs, the

matrix. In the above expressions we use a vector notation fafajier the autocorrelation time, but the required computer
¢, 7, andF, the vector index running over z_ill Iattlces S|te_s. time increases too and, at some point, nothing is gained by
After a number of leapfrog steps, the resulting CO”f'gurat'o'Becorrelating even less our observalffeviding the rejec-

is subject to a standard Metropolis test. It can be either aGjqn rate remains lo In our case, the optimal choice for the
cepted or rejected, and in the latter case we start anew. Using 54 12 |attices were between 5 and 7 leapfrog steps.

just_one leapfrog step th_e hybrid algorithm_ would be strictly  after taking all these precautions, the hybrid algorithm
equivalent to the Langevin oriene fake conjugate momenta \yqrks remarkably well. As a check we have verified that we

playing the role of the Gaussian Langevin ngjsexcept that - ore aple to reproduce the results for the free theory with very
here we must pass the Metropolis test, which makes the aEigh accuracy. On 4 =8 system, withm?=1, it is not

gorithm exact. In general it WiI_I be convenient to use severaligicylt to get after~10° Monte Carlo steps four or five
leapfrog steps before attempting the Metropolis test. significant figures.
We have tried two different choices for the matAx The The algorithm seems to work efficiently for all the

identity A=1 [standard hybrid algorithnSH)], and (N1,\,) values we have tested. For comparison we have
1 written a conventional Metropolis Monte Carlo code. Not

An,m=—dE exp—ip(n—m)e(p), (A3) surpr_lsmgly, the improvement brought about by _the hybrid

L%p algorithm depends substantially on the correlation length.

o When the phase transition is clearly first order, Metropolis
wheree(p)=(p?+m?)~1is the free lattice propagator. The and hybrid algorithms fare similarlgthe latter being about
latter corresponds to the Fourier-accelerated hybrid algotwice as fast The hybrid algorithm gets better when the
rithm (FA) [20], and it allows for an update of all modes correlation length grows.
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