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Motivated by the issue of whether it is possible to construct phenomenologically viable models where the
electroweak symmetry breaking is triggered by new physics at a scaleL@4pv, wherev is the order parameter
of the transition (v;250 GeV! andL is the scale of new physics, we have studied the phase diagram of the
U(2)3U(2) model. This is the relevant low energy effective theory for a class of models which will be
discussed below. We find that the phase transition in these models is first order in most of parameter space. The
order parameter cannot be made much smaller than the cutoff and, consequently, a large hierarchy does not
appear sustainable. In the relatively small region in the space of parameters where the phase transition is very
weakly first order or second order the model effectively reduces to the O~8! theory for which the triviality
considerations should apply.@S0556-2821~97!06423-0#

PACS number~s!: 11.30.Qc, 12.38.Lg, 12.60.Rc, 64.60.My

I. INTRODUCTION

In the minimal version of the standard model of elec-
troweak interactions the same mechanism~a one-doublet
complex scalar field! gives masses simultaneously to theW
andZ gauge bosons and to the fermionic matter fields~other
than the neutrino!. This remains so in many extensions of the
minimal standard model, such as those consisting of more
scalar doublet fields or even fields in other representations of
SU(2)L .

On the contrary, the mechanism that gives masses to the
W andZ bosons and to the matter fields remains somewhat
distinct in models of dynamical symmetry breaking~such as
technicolor theories@1#!. In these models, there are interac-
tions that become strong, typically at the scale 4pv (v
5250 GeV!, breaking the global SU(2)L3SU(2)R symme-
try to its diagonal subgroup SU(2)V and producing Gold-
stone bosons which eventually become the longitudinal de-
grees of freedom of theW6 and Z. Yet to transmit this
symmetry breaking to the ordinary matter fields one usually
requires additional interactions, characterized by a different
scaleM . Generally, it is assumed thatM@4pv. It seems
then natural to ask whether it is necessary to have these two
very different scales and whether it would not have been
possible to arrange things in such a way that the SU(2)L
3SU(2)R→SU(2) symmetry breaking takes place at a scale
L, where 4pv!L. Although the scale where the symmetry
breaking takes place,L, and the scale characterizing the new
physics,M , need not be exactly the same, we shall assume
that L.M and refer only toL hereafter.

Two phenomenologically viable paradigms of the above
possibility are the strong-coupling extended technicolor
~ETC! models@2# and the top-condensate~TopC! models@3#,
in which the underlying dynamics is, typically, a spontane-

ously broken gauge theory, characterized by a scaleL, with
L@1 TeV. At sufficiently low energies, the dynamics can be
modeled by four-fermion interactions~of either technifer-
mion doublets in ETC models or the quarks of the third
family in TopC models! which are attractive in the scalar
channel. Then, it appears possible that, by tuning the corre-
sponding coupling sufficiently close, but above a critical
value, chiral symmetry breaking occurs, but the condensate
itself is of the order of the weak scalev, much smaller than
its natural valueO(L). It has been pointed out in Ref.@4#
that a necessary condition for this to happen is that the low-
energy effective theory, which retains the light degrees of
freedom below the scaleL, where chiral symmetry breaking
occurs, possesses itself a second-order phase transition. It is
only then that there can consistently be a hierarchy between
the order parameterv and the scaleL.

If the strongly interacting fermions at scaleL are elec-
troweak doublets, then the chiral symmetry is U(2)L
3U(2)R and the relevant Lagrangian at that scale consists in
a bunch of four-fermion interactions. The precise form of
these four-fermion interactions will not concern us here. It
has been argued, using analytical methods@5# as well as
lattice simulations@6,7#, that four-fermion models are, at low
energies, equivalent to an effective theory consisting in a
scalar-fermion model with the appropriate symmetry, which
in our case it will be U(2)L3U(2)R .

Using an effective theory description also frees us from
having to appeal to any particular model. Thus, the analysis
may remain valid beyond the models we have just used to
motivate the problem. In this effective theory we need to
retain only the particles that remain light after chiral symme-
try breaking. Thus, it must necessarily contain the Goldstone
bosons emerging from the breaking of the global U(2)L
3U(2)R symmetry. There may also be some light~compared
to the scaleL) scalars. If present, the U(2)L3U(2)R sym-
metry can be linearly realized. If not, the symmetry should
be realized nonlinearly. Of course the presence or not of such
additional scalars depends only on the underlying additional
sector~or, equivalently, on the four-fermion interactions it
leads to!. However, the linear and nonlinear theories differ,
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for sufficiently large values of the scalar masses, by terms of
O„m2/16p2v(m)2

…. In the coming paragraphs we just argue
that v is generally large. Hence, at low energies these terms
are small and thus using a linear realization is really no re-
striction at all.

We shall thus assume that the low-energy theory is a gen-
eral linears model with U(N)L3U(N)R ~which we later
takeN52) symmetry, whose effective action, for generalN,
is given by

S~f!5E d4x@ 1
2 Tr~]mf†]mf!1 1

2 m2Tr~f†f!

1l1~Trf†f!21l2Tr~f†f!2#, ~1!

wheref(x) is a complexN3N matrix, the order parameter
of the high-energy phase transition. The action~1! is invari-
ant under the global symmetry transformationf→LfR†,
whereL,R are U(N) matrices. The electroweak interactions
are obtained by gauging an SU(2)3U(1) subgroup of this
global symmetry, which after the U(N)L3U(N)R symmetry
breaking gives masses to theW6 and Z. In some models
additional fermions remain in the spectrum belowL. We
have not considered them and thus our results do not apply to
such models~see, however,@8#!.

This model, as will be discussed in detail below, pos-
sesses forl2Þ0 a first-order phase transition whose strength
varies in the (l1 ,l2) space. As one adjustsm2 past a critical
value (m250 in mean field theory!, the vacuum expectation
value v jumps discontinuously from zero in the unbroken
phase to some finite nonzero value in the broken phase. If the
couplings (l1 ,l2), which are obtained by matching with the
underlying strong dynamics at the cutoffL, belong to a re-
gion where the phase transition is weakly first order, then the
vacuum expectation value~VEV! v can be small,v/L!1,
and the U(2)L3U(2)R model can still be a valid description
of the low-energy dynamics. If, on the other hand, the cou-
plings (l1 ,l2) belong to a region where the transition is
strongly first order, such a hierarchy is not possible and mod-
els leading to such (l1 ,l2) values should be excluded.

It is our purpose in this paper to investigate in detail the
phase structure of the above model and to conclude whether
large chiral hierarchies are sustainable in this context. A
number of authors have previously considered this possibil-
ity. In @4# such a model was considered as a possible param-
etrization of the low-energy physics of top-condensate mod-
els or strongly coupled extended technicolor models. The
authors concluded that, within the framework of a perturba-
tive one-loop analysis, a large hierarchy is unlikely unlessl2
is close to zero. Later, in@9#, it was pointed out that a leading
order 1/Nc analysis combined with two-loopb functions can
change the conclusions and that consistent large hierarchies
were not disallowed. Unfortunately, all these analysis rely on
perturbation theory which is unreliable at strong coupling.
To settle the issue we have performed Monte Carlo simula-
tions in terms of the lattice-regularized version of the action
~1! above. A preliminary investigation along these lines was
undertaken in Ref.@10#.

We confirm the first-order character of the transition for
l2Þ0. We have obtained a detailed picture of the behavior
of the order parameter for nonperturbative values of thes

model couplings and semiquantitative estimates of the corre-
lation length. Where meaningful we compare our results to
those obtained via the effective potential. We have found
that a large hierarchy is untenable in most of parameter
space.v is typically several orders of magnitude too large.

To get the above results we have performed high-statistics
runs using a hybrid algorithm~with and without Fourier ac-
celeration! which, to our knowledge, had not been used be-
fore for this type of systems. We have also written a tradi-
tional Metropolis Monte Carlo code for comparison.
Therefore we believe that our results are also of some inter-
est to the lattice expert.

II. U „2…L3U„2…R MODEL

In the caseN52 the action~1! depends on eight degrees
of freedom and the fieldf can be conveniently parametrized
by

f5 (
a50

3

~sa1 ipa!
ta

A2
, ~2!

whereta are the Pauli matrices fora51,2,3, and the identity
matrix for a50. The action~1! is invariant under the rigid
symmetryf→LfR†, whereL,RPU(2). If we setl250,
then the symmetry is enhanced to O(8)@O(2N2) for general
N#.

The pattern of symmetry breaking depends on the sign of
the couplingl2. If l2.0, the VEV can be rotated tôs0&
5v, and the breaking occurs according to

U~2!L3U~2!R→U~2!V , ~3!

with v252m2/(4l112l2). Thepa are then the Goldstone
bosons while the masses for the other states are

ms0

2 54~2l11l2!v2, ms i

2 54l2v2, i 51,2,3. ~4!

If l2,0, the symmetry breaks along thet01t3 direction,

U~2!L3U~2!R→U~1!3, ~5!

with v252m2/2(l11l2), and the masses are

ms0

2 5mp0

2 522l2v2, ms3

2 54~l11l2!v2. ~6!

In this case, though, the mean field solution is not a real
minimum but a saddle point.

Although these are tree-level relations, they are preserved
by quantum corrections in terms of renormalized parameters
appropriately defined. In the physically interesting region
and barring any unexpected nontrivial fixed point, four-
dimensional scalar theories such as in Eq.~1! are believed to
be infrared free and have Landau poles in the ultraviolet.
Therefore, if we wish to have large masses for all these sca-
lar resonances, we must set at leastl2(L)@1. ~Recall that
the bare coupling and the renormalized coupling at the cutoff
scale are the same thing.! Let us keep in mind, though, that
even after giving these scalars a large mass, some nondecou-
pling effects remain, as pertain to a spontaneously broken
theory.
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The electroweak interactions are included by identifying
SU(2)L with SU(2)W and thet3 component of SU(2)R with
hypercharge. The symmetry of the model is expected to
break according to U(2)L3U(2)R→U(2)V , producing four
Goldstone bosons, with the vacuum expectation value related
to the weak scale viaMW5gv/2. Then three Goldstone
bosons become the longitudinal components of theW6 and
Z bosons, while the fourth one is expected to get a mass from
the anomalous breaking of the axial U~1!. Physical fermions
that do not ‘‘feel’’ the strong interactions and, hence, do not
participate in the symmetry breaking should remain light due
to their small Yukawa couplingsy and will be ignored
henceforth. Similarly, we have neglected the effects of gauge
couplings since they are small at scaleL. We have also
ignored the possible presence of custodially noninvariant in-
teractions.

As discussed, a nonperturbative method, such as lattice
techniques, is called for to determine the possibility of mak-
ing v of the order of the weak scale. After introducing the
lattice regulator, one expects thatL/v;jb, with b the ap-
propriate critical exponent, and so a hierarchy will only be
possible if the correlation lengthj is big or, what is the
same, the transition is second order or weakly first-order.

High-energy physicists have not devoted to first-order
phase transitions nearly as much interest as in the case of
continuous ones since there is no natural way to define a
continuum limit, i.e., to shrink the lattice spacing to zero,
because the correlation length never becomes infinite. How-
ever, this is not a problem from the point of view of an
effective field theory because our continuum theory has most
definitely an ultraviolet cutoffL, above which it is no longer
valid. The lattice cutoff can then be identified with this con-
tinuum ultraviolet cutoff, i.e.,a52pL21. The relation be-
tween the lattice and the continuum cutoff can be unambigu-
ously established, but since we will not work it out here, all
we can say is that the relation between the lattice cutoff and
the physical scaleL can be defined up to terms ofO(L22)
only. The physical parameter controlling the size of the cor-
rections is naturally the correlation length of the system. If
the correlation length is relatively large~in lattice units!, cor-
rections will be small, nonuniversal cutoff effects control-
lable, and the results meaningful. It turns out that in most of
the interesting regions of parameter space, the transition is of
first order, but with relatively large correlation lengths. We
can thus have some confidence in our conclusions.

III. COLEMAN-WEINBERG MECHANISM

In this section, we analyze the phase transition within
~renormalized! perturbation theory. Although this applies
strictly only at weak coupling, that will provide a qualitative
feeling about the transition. Moreover, it will be suggestive
of the regions in coupling constant space where we should
perform Monte Carlo simulations and provide a qualitative
understanding of our results.

The model described by Eq.~1! is very similar to the
Ginzburg-Landau phenomenological model of continuous
transitions. However, theoretical considerations@11# and nu-
merical work show that, wheneverl2Þ0, by tuning the pa-
rameterm2 (m2,0) the system undergoes a first-order tran-
sition, which particle physicists know as the Coleman-

Weinberg mechanism@12#. Because of quantum fluctuations,
the system develops a vacuum expectation value at a finite
value of the correlation lengthj.

The Coleman-Weinberg mechanism has been given a nice
geometrical interpretation in a massless theory, due to Yam-
agishi @13#, in terms of theb functions and its associated
fixed points. The general solution of the renormalization
group equation~in a dimensionless regulator, such as dimen-
sional regularization! for the effective potentialV(w),

S m
]

]m
1b1

]

]l1
1b2

]

]l2
1gw

]

]w DV~w!50, ~7!

wherew5(Trf†f)1/2, whenl2.0, is given by

V~w!5S l1~ t !1
l2~ t !

2 Dw4expS 4E
0

t

dt
g~ t !

12g~ t ! D , ~8!

wheret5 ln(w/m). Then, the condition for the existence of a
local extremum away from the origin̂w&5vÞ0 leads to

4@2l1~ t !1l2~ t !#12b11b250, ~9!

whereb i5m]l i /]m, i 51,2, are theb functions, with initial
conditionsl1(0)5l1 , l2(0)5l2. Equation~9! is referred
to as the ‘‘stability line.’’

The corresponding renormalization group~RG! equation
for l2,0 is given by

V~w!5@l1~ t !1l2~ t !#w4expS 4E
0

t

dt
g~ t !

12g~ t ! D , ~10!

and the stability line is described by

4@l1~ t !1l2~ t !#1b11b250. ~11!

If there exists a certain value oft where the condition~9! or
~11! is satisfied, in a region whereV9.0 andV,0 at the
minimum ~see for the corresponding equations in terms of
the appropriateb functions in Ref.@10#!, then ^w&5vÞ0
and the transition is of first order.

The expressions for theb functions can be found at the
one-loop level in@14,4,10# and are plotted as solid lines in
Fig. 1. The stability line is indicated as a dotted line. Then,
starting from some value (l1 ,l2) at the scaleL and follow-
ing its RG trajectory, one flows in the infrared either towards
the stability line or towards the infrared fixed point at the
origin ~if l250). If the RG trajectory crosses the stability
line, then the transition must necessarily be of first order at
that particular value of (l1 ,l2) we started with. Were it of
second order, the correlation length would be divergent and
it cannot possibly become finite again after a finite number
of renormalization group blockings. Forul2u small the cou-
plings flow towards the regionl1 ,l2!1, and even if they
cross the stability, they do so after very many decades of
running; the phase transition in this case is weakly first order,
the more so asul2u→0.

The correspondingb functions at the two-loop level can
be found in Refs.@15,9#, whose solutions are plotted~for
zero Yukawa coupling! in Fig. 1 with dashed lines. One finds
out that the stability is improved by the two-loop corrections
@9#. For a bare theory withl2,0 or one that is close to the
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stability line the flow is again to the left towards the stability
line; however, the flow is slower than at one loop. Further-
more, there exists a region withl1 ,l2.0 where the flow is
reversed and it appears that it never crosses the stability line.
However, this only hints upon the breakdown of perturbation
theory and a nonperturbative analysis is called for.

Although strictly valid only with a dimensionless regula-
tor and hence definitively linked to perturbation theory, the
conclusions of the above analysis are expected to remain
approximately valid in the lattice regularization where all
sorts of irrelevant operators appear in the effective potential.
As long as the correlation length is large enough, the con-
tinuum physics can be used as a guide. Checking to what
extend these arguments are valid is one of the motivations of
the present work.

It is also essential that no other fixed point unreachable in
perturbation theory exist. Should one be present, the RG tra-
jectories would be distorted and there could be regions where
the transition is second order. We found no evidence of such
a fixed point. Even with only the Gaussian fixed point it
would still be conceivable that there might exist a region of
nonzero measure whose RG trajectories end in the Gaussian
fixed point at the origin. For these values the transition
would be of second order. For small values of (l1 ,l2) an
effective potential calculation shows that this happens only if
l250, and so assuming that the RG trajectories follow a
potential flow this possibility appears to be ruled out too.

The above picture suggests that, if the couplings of a
given bare theory are located in the region limited by the
stability line and the straight lines 2l1(L)1l2(L)50 for
l2.0 andl1(L)1l2(L)50 for l2,0 ~so that the poten-
tial is positive definite at largef), then one should observe a

first-order transition whenm2 crosses the critical surface. On
the other hand, if the renormalized couplings are located to
the right of the stability line, first-order transitions should
also be observed near the stability line, decreasing in
strength as we separate from it and also with decreasingl2
as the correlation length increases when we approach the
l250 line.

It should be emphasized here that the situation here is
different from the triviality analysis in the O(N) model~i.e.,
l250 axis! @17#. The phase transition there is of second
order and all points belong to the attraction of the Gaussian
fixed point, where the continuum limit is just a free theory.
However, for given quartic couplings, one can always define
a consistent effective field theory, with an arbitrarily large
hierarchyL/v, at the expense though of having an upper
bound on the masses of the scalar particle. If the mass is of
the order of the cutoff, lattice artifacts creep in and we can-
not really consider the model as as a field theory one. The
situation is, on the other hand, different for the U(2)L
3U(2)R model, since the Gaussian fixed point is infrared
unstable: Unlessl250, the renormalization group flows do
not belong to its attractive domain and, in the absence of
another fixed point, become runaway trajectories. In this
case, there is no proper continuum limit and strictly speaking
no field theory at all. However, if the transition is sufficiently
weakly first order, one can speak of an approximate con-
tinuum limit, with lattice artifacts being still relatively small.
In contrast to thel250 case though, the correlation length is
not tunable~by m2) but is rather determined by the quartic
couplings (l1 ,l2). Moreover, a large hierarchy,L/v is in
general not tenable.

IV. PHASE TRANSITION ON THE LATTICE

In Table I we show all the points in the coupling constant
space for which Monte Carlo data was collected. In the simu-
lations we used two different programs checked against each
other: one based on a simple one-hit Metropolis algorithm
and the other based on the hybrid algorithm~with or without
Fourier acceleration!. The second algorithm was always su-
perior. Details concerning the codes and how they perform
can be found in the Appendix. Following Ref.@10#, we have

FIG. 1. Perturbative RG trajectories for the U(2)3U(2) model
starting from bare couplings„l1(L),l2(L)… along the linel152
or l252. The solid lines~dashed lines! correspond to one-loop
~two-loop! trajectories while the stability line is indicated as a dot-
ted line. Indicatively, the dots along a trajectory represent the evo-
lution of the couplings after running by a factor ofe down to the
infrared. Notice that while for bare couplings withl2,0 or close to
the stability line the flow is to the left towards the stability line,
there is a region withl1 ,l2.0 where the flow is reversed and it
appears that it never crosses the stability line.

TABLE I. Estimates of the jump in the order parameterv2 and
correlation length estimated byj.L* /2, whereL* is the smallest
lattice where coexistence was found, or from the effective potential.

(l1 ,l2) v2 j

~0.5, -0.45! 0.83 7
~-0.22, 0.5! 2.10 3
~-3.97, 8! 10–20 , 2
~-14.97, 30! 20–40 , 2
~0, 0.5! 0.5 40
~0, 8! 0.11 6
~0, 16! 0.09 6
~0, 30! 0.15 6
~8, 8! 0.11 6
~8, 16! 0.16 6
~8, 30! 0.16 6
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used as an order parameter the expectation value of the
U(N)3U(N) invariant operator

O5Trf̄†f̄, ~12!

which corresponds to the susceptibility, where

f̄ i j 5
1

L4(x
f i j ~x!. ~13!

The expectation value of the above operator is then propor-
tional to v2 in the broken phase and zero in the unbroken
phase, modulo finite size corrections. We also measured the
expectation value ofO85Tr(f†f) as an alternative order
parameter.̂O8& is the analogue of̂f2& in a one-component
scalar theory and has different~but nonzero! value in the
broken and unbroken phases.

We have used lattices of sizes ranging fromL54 to L
514. The exact procedure we have used depended somewhat
on the region of (l1 ,l2) in which the simulations were per-
formed. In general, to obtain information about the order of
the transition at each given (l1 ,l2), we have searched for
hysteresis effects in the measurement of the order parameter:
We performed thermal cycles in the relevant parameterm2

across the critical region where the field configuration from
the last run was used as input for the next run. Strong hys-
teresis loops are an indication of a strong first-order transi-
tion. On smaller lattices, we have also looked at the histo-
gram distribution of Trff†, where a double-peak structure
across the critical region is an indication for two coexistent
minima. This procedure helps us identify the critical point of
equivalent minima, as well as the range ofm2 where meta-
stability is observable. Tunneling, of course, becomes rare on
larger lattices, which we have used to look for coexistence.
The measurements we provide in Table I for the order pa-
rameterv2 always refer to the largest lattice used.

Near a first-order transition the effective potential devel-
ops two minima. One of the minima, say,^w&50, is the
lowest, and as we increase the relevant parameter (2m2) the
nontrivial minimum becomes dominant, and the system ac-
quires a VEV^w&5vÞ0, and eventually the minimum at
the origin disappears. This does not imply that as soon as one
of minima becomes dominant the system jumps to it; near
the transition there is a potential barrier between them whose
height determines the strength of the transition and the tun-
neling rate. The relation

V9~v !;1/j2 ~14!

tells us that the weaker the transition, the less steep the ef-
fective potential will be, and the more difficult it will be to
observe metastable states. Of course, if the correlation length
near the transition is bigger than, or of the order of, the
lattice size itself, one should not expect to see metastable
states because the system is not able to see the distinction
between the two existing minima. In our simulations we
have used this property to get rough estimates of the corre-
lation length. Also, if the transition is weakly first order, it
might happen that one of the minima disappears very soon
after the transition has taken place, and the actual range of
values ofm2 where metastable states are detectable is very

narrow. A good deal of fine-tuning form2 is then called for.
All these features can be visualized by comparing Fig. 2,
corresponding to a relatively strong transition (l1 ,l2) very
close to the stability line, and Fig. 3, in which the transition
is weaker.

The order parameter of the transition,v, is the quantity
that, when expressed in physical units, gives, after gauging
the model, a mass to theW6 andZ bosons, according to the
relation

MW5
1

2
gv. ~15!

However, for this relation to be true the residues of all par-
ticles have to be properly normalized. This is not necessarily
so on the lattice and we are forced to distinguish between

FIG. 2. The effective potential for different values ofm2 at
(20.22,0.5). The effective potential is arbitrarily normalized so that
V(0)50. The four lines correspond tom2520.88~ordered phase!,
m2520.90 ~broken phase is metastable!, m2520.94 ~symmetric
phase is metastable!, andm2521.12 ~disordered phase!.

FIG. 3. The effective potential for different values ofm2 at
(0,0.5). We have shifted the origin for the differentm2 values in
order to be able to visualize it. The values of the mass arem25
22.37 ~ordered phase!, m2522.42, andm2522.45. The impor-
tant point to note is how weak the barrier that separates two minima
is.
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vphys, the physical value, andv latt , the value we obtain from
our simulations. The relation between the two is

vphys5v latt /AZG, ~16!

where ZG is the Goldstone wave-function renormalization
defined by the unit residue condition. The value ofZG has
been estimated in@16# and found to be always close to 1.
Although these results were derived atl250, we expect that
the wave-function renormalizationZG stays close to but
smaller than 1 and thus taking it into account can only in-
crease the value ofvphys.

V. WEAK COUPLING

In the weak-coupling region (l1 ,l2,1), lattice perturba-
tion theory does apply and can be used to compare with the
numerical data. At the tree level~equivalent to assuming the
mean field approximation! the transition is always of second
order. The symmetry-breaking pattern and the tree-level re-
lations have been described in Sec. II. Radiative corrections
change this behavior. The bare one-loop effective potential
was computed in@10#. If l2.0, the result is

V~w!5
1

2
m2w21S l11

l2

2 Dw4

1
1

2L4(p
lnF p̄21m̄2112w2S l11

l2

2 D G
1

3

2L4(p
lnF p̄21m̄214w2S l11

3l2

2 D G
1

4

2L4(p
lnF p̄21m̄214w2S l11

l2

2 D G , ~17!

where p̄25(m222cos(pm) is the lattice propagator. The
quantity m̄2[m22mc

2 , wheremc
2 is the value at whichV9

vanishes at the origin, resums some two-loop corrections into
the mass@19#. On the other hand, ifl2,0, one obtains

V~w!5
1

4
m2w21~l11l2!

w4

4

1
1

2L4(p
ln@ p̄21m̄216w2~l11l2!#

1
2

2L4(p
ln~ p̄21m̄212l1w2!

1
5

2L4(p
ln@ p̄21m̄212w2~l11l2!#. ~18!

The effective potential for the (l1 ,l2) values (20.22,0.5)
and~0,0.5!, where perturbation theory should still be valid, is
shown in Figs. 2 and 3. As is manifest from these figures
there are two coexisting minima; hence, the transition is of
first order, albeit more weakly so as we move away from the
stability line, in accordance with the above discussion of

the Coleman-Weinberg phenomenon. Quantum corrections
have transformed the second-order phase transition of mean
field theory to a first-order one.

We now look at the numerical results in the weak-
coupling regime and compare them to the one-loop potential
results. The predictions from Eq.~17! hold, on average, at
the 10–30 % level for the values of (l1 ,l2) we have ana-
lyzed in the weak-coupling region, and should be more ac-
curate away from the phase transition region. It is natural to
expect that deviations are indeed larger near the phase tran-
sition surface, at least when the transition is weakly first
order ~as exemplified, e.g., by Fig. 3!, since the precise lo-
cation of the minimum of the potential is in this case un-
stable against small corrections in its shape originating from
two-loop corrections and beyond.

In Fig. 4 we plot the results at (l1520.22, l250.5)
where the correlation length was estimated to bej;3 from
the effective potential. The smallest lattice size where meta-
stability was observed was forL56. The transition is a rela-
tively strong first-order one. Comparing the evolution ofv as
a function ofm2 against the effective potential prediction we
see that the agreement is good. Following our general argu-
ment we expect the transition at~0,0.5! to be weaker since
we are away from the stability line. The one-loop effective
potential calculation givesj;40, and so it is unlikely that
we can see metastability, even on our larger lattices. Also,
we expect the effective potential calculation to become less
reliable. Figure 5 shows our data for the order parameter
compared to the one-loop effective potential on a lattice of
the same size. The agreement is certainly worse than before.
The effective potential still predicts a first-order transition~at
m2522.39), albeit a weak one. The jump in the order pa-
rameterv is approximately 0.71.

We have also analyzed the (l150.5, l2520.45) point
where the symmetry-breaking pattern is that of Eq.~5!. The
effective potential calculation suggests a first-order transition
at m2520.84, where the correlation length isj;7 and the
jump of the VEV is v50.91. Our numerical data agreed

FIG. 4. The expectation value of order parameter^O& as a func-
tion of m2 at (l1 ,l2)5(20.22,0.5). The solid line is the one-loop
prediction; circles correspond to aL54 lattice, squares toL56
lattice, triangles toL510, and diamonds toL512.
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again within 30% for the order parameter to these predic-
tions, although no hysteresis effects were observed even on
the 144 lattice. Although points on thel2,0 region do not
seem to correspond to the phenomenological model of strong
extended technicolor or top condensation, based on the
simple Nambu–Jona Lasinio model~in the largeNc color
approximation!, this need not be the case in general@6#.

VI. STRONG COUPLING

The strong-coupling region must be studied numerically.
The strategy we employed was the following. We studied the
smaller lattices,L54,6,8, using the hybrid algorithm usu-
ally, accumulating about 105 configurations. We searched for
two minima in the histograms corresponding to the expecta-
tion value of the operator Tr(ff†). We then moved to big-
ger latticesL512,14 to look for coexistence. Generally, co-
existence was found on larger lattices for values ofm2

slightly more negative than on smaller lattices, due to finite
size corrections. Along the process of increasing the lattice
size we eventually begin to see metastability at some size
L* . We estimate then the correlation length to bej;L* /2.
Crude as this procedure may seem, it is physically meaning-
ful and it agrees, where comparison is possible, with the
effective potential.

All points close to the stability line exhibited marked hys-
teresis loops and hence show strong first-order phase transi-
tions. As an example we can take the point~214.97,30!
where the corresponding hysteresis loop is shown in Fig. 6.
The transition becomes stronger the upper we move along
the stability line. Notice that, sincej.1, the cutoff effects
are big and the connection to continuum physics question-
able. Similar conclusions apply to the point (l1 ,l2)5
(23.97,8).

Points close to thel150 axis present always first-order
transitions. Typically, runs onL54 lattices do not show any
hysteresis effects. However, we found a clear sign of the
existence of two minima inL512,14 lattices. In Fig. 7 we
display the clear signal of two minima for the point~0,8!,
and, similarly, Fig. 8 shows the two minima signal for~0,30!.

There is evidence that the transition is stronger in the second
case as the two signal minima can be seen in aL510 lattice.
The transition gets indeed stronger with increasingl2.

For those points deep in thel1.0, l2.0 region that we
analyzed, we were able to observe coexistence of phases, but
only in lattices ofL514. The transition is always clearly first
order, but characterized by correlation lengths much larger
than those obtained close to the stability line~this is, of
course, as it should be, given the form of the RG trajecto-
ries!. In Fig. 9 a plot is shown for the point~8,8!, where the
system eventually tunnels to the right minima. The symmet-
ric phase is in that case a relatively short-lived metastable
state. In Fig. 10 we plot the Monte Carlo time evolution of
the operator Trff†, starting with ordered-disordered initial
conditions for the point~8,16!.

For points close to thel250 axis, it is very difficult to
differentiate a weak first-order from a second-order transi-
tion. More detailed methods with very high statistics would
be needed@18# complemented with finite size scaling.

FIG. 5. The expectation value of order parameter^O& as a func-
tion of m2 at (l1 ,l2)5(0,0.5). The solid line is the one-loop pre-
diction, circles correspond toL54, and squares toL58. FIG. 6. Plot of the hysteresis loop near the classical stability line

at (214.97,30). The results correspond to aL54 lattice with 105

configurations after thermalization.

FIG. 7. Time history of two runs starting with ordered and dis-
ordered conditions, respectively, atm25224.7 in aL512 lattice,
clearly displaying the two minima signal. The point in parameter
space is~0,8!.
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We have summarized the knowledge we have gained
about the value of the order parameter at the transition and
the corresponding correlation length in Table I. From these
results we see that in most of parameter space~in the region
where the symmetry breaks the way we are interested in for
phenomenological reasons! the vacuum expectation valuev
@at scaleL, v(L)# jumps to a value which is typically only
one order of magnitude smaller than the cutoff. The physi-
cally relevant VEVv(v) @which, after gauging, gives a mass
to the W6 and Z bosons, and notv(L)#, according to the
perturbative RG flows, should be even bigger.

VII. CONCLUSIONS

In this paper we report an extensive Monte Carlo simula-
tion of the U(2)3U(2) model. We have found no evidence
of the existence of any fixed point other than the Gaussian
one at the origin of the (l1 ,l2) plane.

We have investigated many points in this plane using a
variety of numerical and analytical techniques. We have
been mostly interested in getting a semiquantitative picture
of the symmetry-breaking transition over the different re-
gions of the phase diagram in order to identify regions of

second- or weakly first-order transitions. There is no evi-
dence of any genuine second-order transition, except ifl2
50.

For most of the (l1 ,l2) values in the strongly coupled
region, the jump in the order parameter parameterv is ap-
proximately equal to 0.3–0.4 in lattice units. If we assume
that the renormalization constantZG is close to 1, we can
exclude the possibility of a large hierarchy in that region. We
were aiming at values ofv in the range 1023, that is, two
orders of magnitude smaller than the generic result.

We found just one region satisfying the requirement that
the phase transition is weak enough. This isl2→0, the limit
where the model approaches the O(N) linear s model. For
small values ofl1, the tuning inl2 must be extraordinarily
accurate, probably at the 1023 precision level or more. This
is evidenced by the effective potential calculations. For
larger values ofl1 this is somewhat relaxed, as the jump in
the order parameter seems to increase more slowly as we
depart from thel250 line for a fixed value ofl1. Phenom-
enologically viable models must then lead to values for the
effective couplings which, at the cutoff scale, satisfy the
above requirements.

All our data conform perfectly with the standard picture
of first-order phase transitions with runaway trajectories de-
duced from the Coleman-Weinberg analysis. We have some
evidence that the running is in some cases very fast.
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FIG. 8. Same as in Fig. 7 form25276.5 at point (0,30). The
lattice size isL512.

FIG. 9. Same as in Fig. 7 form25263.9 at point~8,8!. Size is
L512. At some point the system jumps to the broken phase.

FIG. 10. Evidence for coexistence at the point~8,16! and m2

5282.5 in aL512 lattice. The operator we plot here is not the
square of the order parameter as previously, but ratherO8
5Tr(ff†).
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APPENDIX: ALGORITHMS

We have left for this appendix all the technical details of
the numerical simulations. We have mostly employed the
hybrid algorithm since it allows for a better control of the
autocorrelation times and the rejection percentage.

We consider the generalized Hamiltonian

H̄~f,p!5H~f!1
(p2

2
, ~A1!

whereH is the hamiltonian of the physical problem at hand
@in our caseH is just the Euclidean action of the U(2)
3U(2) model#, and p some fake momenta conjugate to
each variablef. We specify some initial values for the mo-
mentap according to a Gaussian distribution, and then nu-
merically integrate the Hamilton equations for the (f,p)
dynamical system. Any algorithm can be used provided that
is time reversal and preserves the area of phase space@20#. A
convenient way of satisfying both requirements is to use the
leapfrog algorithm

f~ t1dt !5f~ t !1dtAp~ t !1
~dt !2

2
AATF~ t !,

p~ t1dt !5p~ t !1
dt

2
AT@F~ t !1F~ t1dt !#, ~A2!

whereF52]H/]f, andA is some~arbitrary! t-independent
matrix. In the above expressions we use a vector notation for
f, p, andF, the vector index running over all lattices sites.
After a number of leapfrog steps, the resulting configuration
is subject to a standard Metropolis test. It can be either ac-
cepted or rejected, and in the latter case we start anew. Using
just one leapfrog step the hybrid algorithm would be strictly
equivalent to the Langevin one~the fake conjugate momenta
playing the role of the Gaussian Langevin noise!, except that
here we must pass the Metropolis test, which makes the al-
gorithm exact. In general it will be convenient to use several
leapfrog steps before attempting the Metropolis test.

We have tried two different choices for the matrixA: The
identity A5I @standard hybrid algorithm~SH!#, and

An,m5
1

Ld(p
exp2 ip~n2m!«~p!, ~A3!

where«(p)5( p̄21m2)21 is the free lattice propagator. The
latter corresponds to the Fourier-accelerated hybrid algo-
rithm ~FA! @20#, and it allows for an update of all modes

with similar efficiency. This, combined with the decorrela-
tion induced by the numerical integration, makes for a very
robust algorithm as far as beating critical slowing down
goes. However, because of the need of performing fast Fou-
rier transforms in four dimensions, the FA is intrinsically
much slower than the SH. The gains in beating critical slow-
ing down are only apparent for large correlation length.
However, at (l1 ,l2)5(20.22,0,5) in a 84 lattice, the auto-
correlation time atm2520.895~transition point! is about 4
times bigger for the SH than for FA, making the FA useful
but not really necessary. This is perhaps not too surprising
since the correlation length is in much of the parameter space
relatively small, even close to the transition.

Two parameters have to be adjusted in the hybrid algo-
rithm, namely, the number of leapfrog steps and the step size
dt. They are the equivalent to the fudge parameter one uses
in a standard Metropolis algorithm to adjust the acceptance
rate. If we use a relatively large step sizedt, successive
configurations soon become more uncorrelated. However, a
large step will decrease the acceptance rate, and so a com-
promise must be reached. We have done extensive tests in
the simple casel150, l250, which can of course be solved
analytically. The best situation seems to be to takedt such
that the acceptance rate is about 90%. On lattices ranging
from 84 to 124 this corresponds to takingdt;0.2 ~depending
somehow on the values of (l1 ,l2). The other freedom con-
cerns the number of leapfrogs before the rejection Monte
Carlo is performed. The larger the number of leapfrogs, the
smaller the autocorrelation time, but the required computer
time increases too and, at some point, nothing is gained by
decorrelating even less our observables~providing the rejec-
tion rate remains low!. In our case, the optimal choice for the
84 and 124 lattices were between 5 and 7 leapfrog steps.

After taking all these precautions, the hybrid algorithm
works remarkably well. As a check we have verified that we
are able to reproduce the results for the free theory with very
high accuracy. On aL58 system, withm251, it is not
difficult to get after;106 Monte Carlo steps four or five
significant figures.

The algorithm seems to work efficiently for all the
(l1 ,l2) values we have tested. For comparison we have
written a conventional Metropolis Monte Carlo code. Not
surprisingly, the improvement brought about by the hybrid
algorithm depends substantially on the correlation length.
When the phase transition is clearly first order, Metropolis
and hybrid algorithms fare similarly~the latter being about
twice as fast!. The hybrid algorithm gets better when the
correlation length grows.
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