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Matching at one loop for the four-quark operators in NRQCD
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The matching coefficients for the four-quark operators in NRQGIRQED) are calculated at one loop
using dimensional regularization for ultraviolet and infrared divergences. The matching for the electromagnetic
current follows easily from our results. Both the unequal and equal mass cases are considered. The role played
by the Coulomb infrared singularities is explained in de{@0556-282(98)03621-2

PACS numbds): 12.38.Bx, 12.20.Ds, 14.40.Gx

I. INTRODUCTION kinds correspond exactly t@) and (i) in HQET, where we
include in (ii) terms containing a bilinear in the antiquark
Effective field theorieSEFT9 have become increasingly fields as well. The third kindiii) corresponds to operators
popular in describing processes where several scales are iilinear in both heavy quark and heavy antiquark fiefdsir
volved. In particular, two EFTs, namely heavy quark effec-fermion terms.
tive theory (HQET) and non-relativistic QCD(NRQCD) A crucial step in building an EFT for heavy quarks is
have been used for systems with heavy quarks. These EFB§-called matching. In the process of matching we enforce
take advantage of the fact that the masses of the heavfpe effective theory to reproduce suitable S-matrix elements
quarks(charm and bottopnare much larger than the remain- of the full theory. In this way we fix the parameté/ilson
ing dynamical scales in the problem. coefficient$ of the effective theory. Through the matching
HQET was designed to study systems with one heavyprocess the high energy contributions are encoded in Wilson
quark[1-3] and has become a standard tool during the las€oefficients multiplying the operators in the Lagrangfand
years. Apart from the mass of the heavy quam) (the re-  in the currentsof the effective theory. The determination of
maining dynamical scales in heavy-light systems reduce to 80me of these Wilson coefficients of the NRQCD Lagrang-
single oneAgcp. The HQET Lagrangian can be organized ian is the main topic of this paper. N
in a power series of the inverse pole mass of the heavy The question arises whether the Wilson coefficients of the
quark. Each term in this series consists of a gauge invaria€rms (i) and (i) in HQET and NRQCD are the same. We
operator. Only two kinds of terms turn out to be importantshall support below the claim if6] that this is indeed the
for heavy-light systemg(i) terms containing light degrees of case. Therefore, since the mass of the heavy quarksyis
freedom(gluons and light quarkonly (which are irrelevant ~ definition) much larger tham\qcp, the matching may be
in most of the phenomenological applicatipasd (i) terms  done order by order in i and «.
containing a bilinear in the heavy quark fields. The size of The matching for NRQCD has been known at the tree
each term is easily estimated by assigning the stajgp to level for a long time. This can be obtained by enforcing the
whatever is not a heavy mass in the Lagrangian. tree level of S-matrix elements to be equal to those of QCD
NRQCD was designed to study systems with a heavyQED) as mentioned above. For terms bilinear in the quark
quark and a heavy antiquafi,5] and, although it is older (antiquark fields, this is equivalent to performing a Foldy-
than HQET, it has not received much attention until recenth)Wouthuysen transformation in the QCD Lagrangian. Al-
[6—13. In fact when NRQCD was proposed a lot of relevantthough for HQET matching at the tree level for the bilinear
work on heavy quarkonium already existed in the literatureterms can be carried out exactly as abpi@l, in most of the
[14,15 but it had not been organized in an EFT description.works it has been done somewhat differently: either by im-
In a heavy-quark—heavy-antiquark system, apart from th@osing the off-shell Green functions be equal to those of
heavy quark masses, there are at least two dynamic&CD [2] (see alsd17]) or by integrating out the “antipar-
scales: Namely, the typical relative momentum in theticle” degrees of freedonil8]. The Lagrangian obtained in
bound state and the typical binding enerdgy. Because of this way is in fact different from the NRQCD Lagrangian.
the existence of these two scales, the power counting rulddowever, both Lagrangians are related by local field redefi-
are different from the HQET case and the size of each ternfitions or by using the equations of moti8]. Results for
in the NRQCD Lagrangian is not unique. Neverthelessthe matching at one loop have also been known in HQET for
counting rules have been given to estimate the leading sizgéome time[3]. Nevertheless, attempts to perform matching
of each term(see[5]). Independently of the relative size of beyond the tree level in NRQCD have not begun until re-
each term, the NRQCD Lagrangian also consists of a powegently. The main obstacle was that in NRQCD, unlike in
series of the inverse pole mass of the heavy quark. Herd]QET, the kinetic term was thought to be a necessary ingre-
though, there are important terms of three kinds: the two firsélient in the quark propagator for a matching calculation:
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If a hard cutoff is usedg<<m), it can easily be seen that the mion operators are relevant only when two of the fermions
matching can be performed just like in HQET sink® are light. For heavy quarkonium systems instead all four
>k?/m in the ultraviolet. However, if dimensional regular- quark fields are heavy. In fact it is in these S-matrix elements
ization is used, the high energy modds>(m) are not ex- where we can see the peculiar IR behavior of heavy-heavy
plicitly suppressed and they give non-vanishing contribu-systems, which eventually gives rise to the Coulomb pole
tions. This can be seen because the behavior of the NRQCand hence to the standard non-relativistic weak coupling
propagator changes at energies larger than the mass. In spiieund states.

of this, one would like to use dimensional regularization be- This IR behavior should appear in both the full and the

cause it keeps all the symmetries of QCD and, moreover, theffective theories. If we expand about the residual momen-
calculations are technically simpler. Several authors have adum the matrix elements of the dimensionally regulated

dressed this problerf7] and recently an appealing solution QCD, we may expect an IR singularity reflecting the Cou-

has been proposdé]. There, it is claimed that the matching lomb pole. However, this singularity corresponds to an odd
in NRQCD using dimensional regularization should be perspower-like IR divergence and hence it is put to zero in di-

formed just like in HQET: namely, the kinetic term must be mensional regularization. This is not a problem. Indeed,

treated as a perturbation. Let us make some remarks whidince the effective theory has the same IR behavior, it also
support this approach. The key point is that in order to carrthas an IR divergence reflecting the Coulomb pole which is
out the matching it is not so important to know the powerconsistently put to zero by dimensional regularization. The
counting of each term in the effective theory as to know thaimportant thing when doing the matching is to take into ac-

the dynamical scales of the effective theory are much lowecount all the non-analytical behavior in the heavy quark

than the mass. The power counting tells us the relative immasses which cannot be obtained in the effective theory.
portance between different operators but this does nodProceeding in this way we are certainly taking into account
change the value of the matching coefficients. That is, wall the non-analytical behavior in the masses coming from

only need high momenta (QCD logarithmg. The remaining non-
analytical behavior is encoded in the effective theory. This
m=>[p|,E,Aqcp (1.2 includes the Coulomb pole as well as other IR singularities
that eventually give rise to potential terms.
no matter what the relation betwefg}, E andA gcp is. The In order to make the IR behavior of NRQCD explicit, we

above becomes clear if one thinks of matching as a procéave proposed elsewhelie0] a further EFT, which we have
dure to integrate out high energy degrees of freedom in théalled potential NRQCOPNRQCD. PNRQCD is obtained
manner of Wilson: the effective Lagrangian that we obtainfrom NRQCD by integrating out gluon energies and mo-
after integrating out energies and momenta until a scaléenta and quark energies of the orgethe typical relative
w,m>u>|p|,E,Aqcp does not depend on the relative momentum. PNRQCD is local in time but non-local in space,
weight of the lower scales. hence allowing for potential terms, and contains gluons of
In addition, in Ref.[6] dimensional regularization was €nergies and momenta of the or@rthe typical bound state
used to regulate both the ultraviol@V) and the infrared energy. Whenp is much larger tham\ ocp the matching
(IR) divergences in the full and the effective thept@]. The  between NRQCD and PNRQCD can be carried out perturba-
latter arise when the S-matrix elements are expanded abotively. Then the Coulomb potential and the remaining poten-
the residual momentum. In fact, it is not so important totial terms arising in standard S-matrix calculatigsse[22]
know the way the UV divergences of the full theory areand references thergishow up. If in additionE> A gcp,
regulated since the comparison is done between S-matria€ non-perturbative contributions can be encoded in local
elements which are UV finité&fter renormalization Never-  gluon condensates which emerge in the multipole expansion
theless, it is essential to regulate in the same way the IRf the ultrasoft gluong22,23. However, in naturep is
divergences in both the full and effective theories in order fodarger thanAqcp only for a few heavy quarkonia states,
them to cancel out. This will always happen since by connamely Y(1s), J/¥, By and their pseudoscalar partners.
struction both theories have the same IR behavior. It is alséor higher states the potential must be calculated or param-
important, from a practical point of view, to regulate the UV etrized non-perturbatively, presumably along the lines of
divergences of the effective theory using dimensional reguRefs.[24, 25. Nevertheless, even in this situation the match-
larization. In this way, the calculation in the effective theorying from QCD to NRQCD can be carried out perturbatively
becomes trivial since there is no dimensionful parameter irsince we are only integrating out energies and momenta of
any integral. In Ref[6], the matching was performed at one the order ofm,, or m; which are much larger than gcp .
loop until O(1/m?) for operators bilinear in the quark fields.  Although we have been talking about QCD and NRQCD,
It is the aim of this paper to perform the matching at onethe results for QED and NRQED follow trivially from our
loop until O(1/m?) for four-quark operators and hence to calculations.
complete the matching at one lo@y(1/m?). Let us finally mention some of the possible applications
We are thus faced with the computation of S-matrix ele-of this work. The unequal mass case may be important for
ments of four heavy quarks in QCD and HQET. The com-the B, system(this system has been studied in REZ6])
putation of these matrix elements in HQET is unusual, alwhich is expected to be seen in the future. This case is also
though some related calculations already exists in thémportant in QED for the muonium or hydrogen-like atoms.
literature[20,21]. Indeed, for heavy-light systems four fer- For the equal mass case, our results fix the scale otxrthe
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running constant for annihilation contributions to the four dS, 3dS, N2-1 NZ—

quark interaction. This is important since in QCD, at the dSS:_W_W_WdC 3W—dﬁv,
scales of bottomonium and charmonium, strongly de- ¢ ¢ ¢

pends on the scale. Moreover, since there are many scales in 4 c N2 1 NE

the game f,p,E), it is nota priori clear which one should d. = SS Sv c

2 2+ ——dC,
be used in order to fix the value afs in the perturbative T 2Ng 2Ng  4N2 4Ng
[22,27] and non-perturbative potentidlg4,25. In fact, de-

pending on where the contribution comes from, this value d = —d°—3d° + dys  3dy,
may be different. Recently, the spectrumYofls) andJ/ vs ss 2N 2N’
has been obtained from perturbative QCDCHima2) [27].

The next improvement, name@(mai’), receives contribu- dog  dS,

duv == dgs+ dgv+

tions from the matching of four quark operators, and hence 23

our calculation becomes relevant. It should also be taken into
account in parametrizations of the non-perturbative heavy Of course, one can always use a redundant bases with the
quark potential along the lines of Ref24, 25|. eight operator$2.1) and(2.2). The Lagrangiari2.2) is more

The paper is organized as follows. In Sec. Il we define ouiconvenient, as far as the matching calculation is concerned,
four quark operators and their Wilson coefficients. In Sec. lllwhen one is dealing with annihilation processes in the equal
we calculate the Wilson coefficients for the unequal massnass case. Nevertheless, Eg.1) is a better option when
case. In Sec. IV we calculate the Wilson coefficients forone addresses a bound state calculation. We shall use Eqg.
equal mass case. In Sec. V we discuss a few relevant issuéxa 1) for the unequal mass case and the redundant basis for
in our calculation. The last section is devoted to the concluthe equal mass one in order to ease comparison with the
sions. A few technical points concerning the Coulomb sin-actual calculations.

2N, 2N,

gularity are relegated to an appendix. In the QED case we have
d,
Il. SETTING THE MATCHING OLNRQED™ = mym %011//1)(2)(2 l/flmlfl)(ztf)(z,
1
The piece of the NRQCD Lagrangian containing four 2.9
quark operators a(1/m?) reads c c
. OLNRQED™ T mm, Wixaxdn+ mm, YloxaxioP; .
6LNroCD™ m,m, ¢1¢1X2X2+—¢1U¢1X2"X2 (2.5
d. Now, the relation between the two bases is
tTa a
e m,m, YT XS TX 2 4o ds 3dS
s o2 2
tra
—— T 0'1!/1X2T oX2, (2.1 &€ o
dvz—?"r?. (2.6

where ¢ is the Pauli spinor field that annihilates a heavy
guark andy is the Pauli spinor field that creates a heavyThe phenomenological relevance of the octet terms in Eq.
anti-quark. The subindices 1,2 denote the possibility of(2.2) (d5, anddS,) may require some elaboration. Although

working with different particlegdifferent massgs We will  the main component of the quark-antiquark pair in quarko-
omit these indices when the particle-antiparticle case isiium is assumed to be in a singlet state, the octet state can be
treated. reached through the emissi¢or absorptioh of an ultrasoft
There is another possibility of writing down these termsgluon. Once the octet state is reached, the octet terms above
by using Fiertz transformations. It reads give a correction to its evolutio®(ag)(p~mv), which
may become measurable in some dec@ee for instance
< ¢ [13] for recent higher order NRQCD calculatiorFurther-
55NRQCD_m ~ > ax b+ ——yl oxaxioy more, in current hadron colliders the quark-antiquark pairs
ma are mainly produced in the octet stdf?]. Hence the color
° octet operators are expected to play a role in its dynamical
+ l//ITa)(zXzTal/fl evolution to a singlet state.
mym; We shall expand the dimensionally regulated matrix ele-
c ments about zero residual momentum. Since there are no
+ YT oy xsT2ay, . (2.2)  derivative terms in Eqs2.1) and(2.2), the zeroth order in
mym; the expansion will be enough. Namely we only have to cal-
culate the matrix element for the four quarks at rest. This
The relation between the two bases is means that the amputated legs in a diagram only have to be
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multiplied either byp . (projector on the particle subspace
or p_ (projector on the antiparticle subspacand the kine-
matic factor ym/E relating relativistic and non-relativistic
normalizations can be put to 1. We shall use modified mini-
mal subtraction MS) scheme for both UV and IR diver-
gences and work with the Feynman gauge. The matching
coefficients should be gauge independent, but they depend
on the subtraction scheme. It is worth emphasizing that we F|G. 1. Relevant diagrams for the matching of the four-fermion
do not work in the on-shell renormalization scheme for thepperators at orde®(1/m?) and one loop for the unequal mass case.
wave function(of course our masses always correspond tdrhe incoming and outcoming particles are on-shell and exactly at
the pole mass but just MS. In this schemdalso in the rest

minimal subtraction(MS) or similar] the matching can be
carried out straightforwardly. If the on-shell scheme is used
for the full or effective theory, one must identify the UV
divergences which correspond to a wave function renormal-
ization and subtract them accordinglyot just minimally.
This is obviously more tedious than usiigS throughout.

Ill. UNEQUAL MASS CASE

In this case annihilation diagrams are forbidden and we
are only left with the two QCD diagrams of Fig. 1. In these

The little price to be paid for this simplicity is that our fields diagrams the Coulomb singularity can be identified and the

are not properly normalized. This must be taken into accoun?bo(;/e\;\r;wenﬁoneg_m_ec(?am_?r_n t;]y Vxh'Ch |;_d|s|a ppﬁ ars L#‘CO"'
by including the propefZ factors when calculating on-shell ered. We show this in detail in the Appendix. In short, things

matrix elements: go as follows. In order to perform some integrals we have to
move to dimensions high enough in order to regulate the IR

Qco_ as (3 m? ag)? Coulomb singularity. When coming back to four dimensions
z —1+Cf? Z'” 7_1 +Oll—] ) we can trace back the IR Coulomb singularity as a pole in
higher dimensions, which does not appear in four dimensions
since dimensional regularization loses power-like diver-
Ng—l gences. The point is that we have not provided a suitable
ZNRQCD=1, CfZZ—NC- (2.7 dimensionful parameteithe relative momentujnand hence

dimensional regularization has no way to reproduce the Cou-
Notice finally that at the order we are working at the Wilsonlomb pole. This fact was pointed out some time ago in Ref.
coefficients in Egs(2.1) and (2.2) are invariant under the [21].

local field redefinitions discussed [6].

2

We obtain the following matching coefficients:

2

CA ag > 1 ml 1
dSS:_Cf(7_Cf) m mf In 7+§ —m§ In 7+§ , (3.1
dg,=C (CA C ) % | m 3.2
= — — > MiMyIN —, .
sw=Cil 5 f i_mg 1My mg (3.2
2Cial [ L[ mj S mi o1 Caa? o[ m3  mi o1
d,s= m mj |ﬂ7+§ —m; |ﬂ7+§ +m3 mj In7+§ —mj In7+§
2 2
m; m; 10
+ Hin—+=|-milIn -+ = .
o, {ml< In 713 m2( In 23] (3.3
2Ca? m3 Caa? o[ m3 o[ m3 m3
Uv—mmlmzln m—g‘f' m mi| In 74‘3 —m3| In 74’3 —3m;m,in m—g ) (3.9
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whereC,=N¢.
In the case of QED our results reduce to

2 2 2

a m; 1 m; 1
de=— ——— {m?|In —+=|—m2lIn >+ = {,
s mf—mg( 7?3 217 2 7 3

(3.9

gy n ™ 3.6
= m;m,in —. .
g M

W + perm.
©

FIG. 2. Relevant diagrams to the matching for
the four-fermion operators at ordéx(1/m?) and
one loop that only appear for the equal mass case.
The incoming and outcoming particles are on-
shell and exactly at rest.

result agrees with ours except for a finite piece, which may
be due to a different renormalization scheme for the four
fermion operators in the effective theory. This contribution is
relevant for the full calculation of the positronium energy
levels at orde©®(mea®). Work in this direction is under way
[28].

IV. EQUAL MASS CASE

For equal particles annihilation processes are allowed and

The spin dependent piece, which is subtraction point inthey should be taken into accouig. 2). From Fig. 2a) we
dependent, agrees with the result obtained by Caswell ar@Ptain the well-known resufts]

Lepage in Ref[4]. The scalar piece is new.

Since we will need the equal mass results in the next

section, let us display them here. For QCD they read

Ca S, m? 2
dssz —C; 7_Cf ag In 7— § ) (3n
Ca
dSU=cf(7—cf)a§, (3.9
o m? 2y 5 [ m? 11
dvs_ —ZCfaS In — § + ZCAaS In >+ 1—5 ,
(3.9
Cpa? m?
d,,=2Ca’+ ’; ®lin 7—1) (3.10
For QED we have
[ m? 2
dg=—a“ In 7—§ , (3.11)
d,=a? (3.12

dﬁbza: —Tas. 4.7

This is the lower ordeftree level contribution. Let us con-
sider first the one loop contributions arising from the gluon
self-energy. Each heavy quark lofipig. 2(b)] gives a con-
tribution

ag 2

o m
dg’UZb:(— ’7Ta5)TR - E + ﬁln 7) , (4.2)

where Tg=1/2 for QCD andTg=1 for QED. The QED
result had been already obtained in R¢&9]. Light quarks
(n¢) and gluons give a contributidrFig. 2(c)]

ag\ [Ca 5I —4m’—ie 31
TE 3T e

Tk —4m’—ie 5
— ?nf In T_ § . (43)

dS%=(— mag)

The quark self-energy diagrarBig. 2(d)] do contribute
to the matching a©(1/m?) in the MS scheme, even though

Recently, the scalar piece for the equal mass case in QEmey do not in the on-shell scheme. The matching coefficient
was calculated in Ref8] using a cutoff regularization. This reads
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oo Cias (3 m? . as(_[1 m?
dv‘v :4(—77'6(5)7? Zln;g—l . (44) dvvz(—’ﬂa's) 1+? TR §nf In;z—+2ln2

. i 5 8 1 m?
Let us next consider the vertex correctididgs. 2e) and ———im|—=+3sIh—
2(f)]. Figure Ze) is quite interesting. A singularity associated 3 9 3 v
with the Coulomb pole should appear, but again it does not 11 m? 109
show up when doing the computation in dimensional regu- +Cpl —xIn—=+ —) +Cf[—4]} .
larization for quarks at rest. This is totally analogous to what 127 v 36
happened with the diagrams in Fig. 1 in the previous section. (4.13

No signal of infinity imaginary anomalous dimension ap-
pears eithef20]. We refer the reader to Rdi21] for a de-  Recall that we have to add to the annihilation contributions
tailed explanation on what is going on. We obtain above the contribution&3.7)—(3.10.

For QED we have

3ag m? 4

dS®=2(—7ay) &—C —|In—=+2]|. (4.5 dé=a?(2—2In2+im) (4.19
v 12 T oam\ 723 s ’ '
: 44 1 m?
For QED, Fig. Ze) has been already computfgl9]. d°=(—ma)| 1+ a2l —+ZIn m—zﬂ
The diagrams of Fig. @) do not appear in QED. They 77 9 3 v
lead to (4.15
3a.) C V. DISCUSSION
diff=2(—ms>(——s = . _ _
4w ) 2 Let us first address the important question of how the
2 matching calculation helps to fix the scale @f. In the
m- 8 16 4 : ; . .
X|In—-=In2——+ —iw). (4.6) previous section we did not pay any attention to the flavor
9 9 9 dependence ok. For simplicity let us focus on the case of

a single heavy flavor. Suppose that in QCD we ha&ue
Finally we consider the contributions from the diagrams offlavors. Then in NRQCD we hawe = N;— 1 relativistic fla-
Fig. 2g). These diagrams also exist in QED and their con-ors. Consequently, th#S running coupling constant in
tributions in this theory have already been calculated in REfNRQCD is expected to run according mf_l flavors.
[8]. We obtain, from the diagrams of Fig(d, However, this is not obvious from the matching calculation.
Notice that thexg's in the NRQCD Lagrangiatboth explicit
) and in the Wilson coefficientsare those inherited from QCD
(2=21In2+im), (4.7 and hence one may be tempted to make them run Njth
flavors. In order to clarify this issue consider first the pure
gluonic part of the NRQCD Lagrangid6]:

C
dggo= ag(:f(?A —Cy

2
@ 3
de= > ( - —CA+4Cf)(2—2 In 2+im),

2|72 1 d
4.9 L=~ 7d:G,GM + G}, DX
C m> 1 ds
dsP=a2 2 [ In—7+ 2 (2-2In2+im) +-209fa8cG},GhaGla (5.1)
14
4.9
where

anddS? is zero. For QED we reproduce the result§8o).
Summanzmg all the contributions from annihilation dia- d,=1— s Trln m2/12,
grams we obtain ™

c 2 Ca . d =&T
ds=alCi| 5 ~C|(2-2n2+im), (410 2= 5o TR"
c _ 13«
ds, =0, (4.11 d3=ﬁ R (5.2
2
c_ %[ 3 _ , Notice that the kinetic term does not have the standard nor-
dos= 3 ( 5 CataCi[(2=2In 24im), malization anymore. This can be recovered by a simple re-

(4.12  definition of the gluon field. Since the remaining gluon fields
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in the NRQCD Lagrangian are multiplied by, this is two steps must give exactly the same result to any fixed
equivalent to making the change order in perturbation theory. Then, we expect our results to
be useful for theB, meson in QCD and for the muonium and

Qs 2 2 e hydrogen-like atoms in QED. Recall that the Wilson coeffi-
1- ﬁTR In m</v

9—9 cients in Egs(5.2) trivially change into
-1
Sag— as( 1- ﬁTRln m2/v2) (5.3 d,—d;=1— ﬁTR(m m2/v?+In m3/ v?)
3 37 1 7 )

in all the g’s which multiply the gluon fields. At one loop d, d, d,
this is nothing but changing the running coupling constant of m W+ m2 (5.6
N; flavors for the running coupling constantigf— 1 flavors 1 2
which is a desired result. However, there are additional de- d d d
pendences o, in the NRQCD Lagrangiafwhich are not —z—>—‘z+ —2
multiplying gluon field$ in the Wilson coefficients. Notice, m m; m;

. f Ni—1 .
hgwever, thét the difference betweezf and %s 'S Now rescaling the gluon field to its usual normalization
higher order ineg and hence we can safely substltmgﬁf by  (d,=1) is equivalent to

N¢—1

a ' ~inall Wilson coefficients except in E¢4.13. Indeed, .
fche Wilson coefﬂgent in Eqi4.13 is linear inag and hence Qg ag 1— s Tr(In mi/v2+ln m%/vz) (5.7
it may be sensitive to whether thig corresponds tiN; or 3m

N;—1 flavors. Since thisy, is inherited from QCD, it cor-
responds td\; flavors. However, the dependence enters in
such a way that

in the coupling constants multiplying the gluon fields, and
hence theserg run with N;—2 flavors. Notice also that the

following ~ equality holds: ay(v=mm;)=ay" *(v

N a?‘(v) 1 m> 1 m? =\mymy).
af(v)] 1+ Tr gnfln —+zIn— For QED an analogous discussion implies that @ql5
v 3 v . . . . .
is given in terms of the QED running coupling constant. This
11 m? expression in terms of the low energy(a~1/137) reads
+Cpl — =N — || {=al(m)=al(m)
127 v s s . a 44
=(— +—|——= .
(5.4 d,=(—ma)|l 71-( 9) (5.8
and hence the scale af is naturally fixed tan. The Wilson If we add Egs.(3.11) and (3.12 to Egs.(4.14 and (5.8
coefficientd?, in Eq. (4.13 should better be written as respectively, we obtain the results presentefilidi.
Imaginary parts appear in the Wilson coefficients at sev-
c as 1 5 eral instances. In order to obtain them from our expressions
dyp=[—mas(m]{1+ — TRz 2 In 2— 377 beware that we have located the cut at the negative real axes

of the m? complex plain. These imaginary parts have to do
with inelastic cross sections which cannot be obtained within
* Cf[_4]] ) (59 the non-relativistic theory alone. They are also related to the
decay width of heavy quarkonium states into light hadrons
Therefore, we have seen that thgin the NQRCD Lagrang- and had been calculated befofsee [5] and references
ian correspond to running coupling constants at two differentherein. Our results agree with the previous calculations.
scales. Thexs multiplying the gluon fields must be under- A word of caution is required when dealing with the Pauli
stood at some scale, v<m and run according tdN;—1  matrices inD dimensions. The Pauli matrices arising in
relativistic flavors, whereas the; in the Wilson coefficients NRQCD have in fact very different origins, as we comment
must be understood at the scate next. For the non-annihilation diagrams the Pauli matrices
Let us next comment on the case of two different heavyoriginate from
flavors. If one takes the Wilson renormalization group point

8

9 +Ca

36

of view strictly, matching QCD withN; flavors to NRQCD my @ Sl P GO | Ay S
with N;—2 relativistic flavors makes sense only i, P+0'p@p-0yp-=i=gloLollelo ol
~m,. If, say,m;>m,, one should better do the matching in —(D-2)o*® ok, 5.9

two steps. First one should match QCD to NRQCD with
Ni—1 relativistic flavors  (NRQCR,-1) . and r?ext While the first equality can be understood as a definition, for
NRQCDy, -1 to NRQCDy, -,. Nevertheless, if there is no the second one we have used the following prescriptions
dynamical scale betweem; andm, and we are not inter- (with the proper limit wherD—4):

ested in any renormalization group improvement of the Wil- o B o ,
son coefficients, carrying out the matching in one step or in [0, 0l]=2ielka", €Kk =(D-2)6. (5.10

114011-7
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The finite part ofd,, depends on these prescriptions. For thenext improvement, namel(m«?), in the NRQCD frame-
annihilation diagrams the Pauli matrices originate ftom work requires knowledge of the matching coefficient of the
" e x four quark operators at one loop calculated here. In the
P+Y"P-OP-YuP+= 70" Q0" (51D framework of NRQED, these are also necessary to obtain the

- . . . 5
When carrying out calculations in dimensionally regulatedpoﬁ_'gomum b|n|d|ng energy @(rﬂ‘é ).CD h wal
NRQCD the same prescriptions have to be used and it mag " € tyneqfathgass case Fm NRQ ED 'rtnay gve (leven ;Ja
be eventually important to keep in mind the different origins ppiications to ¢ meson. For NRQED it may be relevan

of the variouss*® o and 1z 1. For NRQED there are no for precision calculationginvolving recoil correctionks in

ambiguities at this order since the spin dependent terms afguonium and hydrogen-like atoms. In particular it WO‘;'d be
finite relevant for the spectrum of a hydrogen atomCH{ima>)

Let us finally mention that the matching at one loop forWhere the electron has been SUb.St'.IUtEd byparticle.
the electromagnetic current at leading order im ldrises Our reSL.”tS are also relevant within the program of the I_ast
trivially from the calculation of the diagrams in Figs(b2 reference in[24], where several non-perturbative potential

: - - terms are obtained from lattice simulations. In this program
and Zc). Schematically, the full current is approximated b A ) .
4c) y P y the renormalization groufRG) improvement of the Wilson

1 coefficients of NRQCD is used to incorporate the lattice re-
—2), (5.12 sults. Until now only tree level matching was available,
m . L

which was used as the boundary condition for the one loop

wheres, encodes the one loop correction due to hard gluonsRG improvement. Our results provide the boundary condi-
Now, one only has to realize that the relevant computatiortion for a future two loop RG improvement of the Wilson
(the matching procedure follows analogously to the one fopogff|0|ents which should make the fit to lattice data more
the four-fermion operatoyss the one we performed for the reliable.

diagrams above but taking into account the different color

— 5 .
Jom=V y* ¥ —| 1+ 5‘ yla'y+0

factors. We obtain ACKNOWLEDGMENTS
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which agrees with the well-known res|lt5]. We consider
this procedure by far the simplest and most efficient method
to obtains, (one can also trivially obtain the result for QED, APPENDIX:  COULOMB SINGULARITY
6;=—4alm). No prqblem W!th the Coulomb pole appears  |n this appendix we show how the Coulomb singularity is
through the calculation. Notice also that no anomalous diyefiected in our calculation.
mension appears either. This could be traced back to the fact cynsider the following integrals:
that both QCD and HQET for one quark and one antiquark
(the effective theory to which we are matching to from a
practical point of view have symmetries which protect this b
current. For the effective theory this symmetry is U(29]. d’q 1 1 1
2m)P (g’+in)" g*+2md’+iyp g*°—2mC+iyp’
VI. CONCLUSIONS (A1)

Ih=

We have calculated the matching coefficients of the four,—1 andn=2 appear in the calculation of the diagrams in
2
quark operators of NRQCD at one loop adq1/m”). We  Fig 2(e) and Fig. 1 respectively. Upon integration owgt
have considered both the unequal and equal mass cases. g obtain IR singularities from the poles of the quark propa-
have shown explicitly how some matching coefficients in thegators and from the poles of the gluon propagators.

NRQCD Lagrangian conspire in such a way thatajlap- The poles of the quark propagators produce the Coulomb
pearing in them must be considered at the scal@hereas  gjngularity

the ag multiplying the gluon fields must be considered as

running with the number of remaining relativistic flavors 100 1

only. |%~f leQ(_2> Z_NAD7372n, (AZ)
The binding energies oY (1s) and J/« have been re- A qQ°/ gm

cently obtained from perturbative QCD@(mea?) [27]. The

whereA—0 is an IR cutoff. AtD=4 this integral has odd
power like singularities which are ignored by dimensional
INotice that k@ o in Egs. (5.9 and (5.1) act on different  regularization. However, we expect these singularities to
spaces even though we did not write this distinction between ther8how up as poles in an odd number of dimensions.
explicitly. Recall also that the Fiertz rearrangements of Sec. Il only The poles in the gluon propagators also give rise to IR
hold in four dimensions as well. singularities. These read

114011-8



MATCHING AT ONE LOOP FOR THE FOUR-QUAK . ..

1\n"1 1
|GNJ d°-1 ( ) ~AD-2-2n (a3
LR @ (A3)

For n=1 andn=2 we expect a pole iD=4 andD=6
respectively(an extra pole aD=4 cannot be ruled oua
priori for n=2 but it will not turn up.

PHYSICAL REVIEW D 58 114011

i (—1 n mz)fF(n—e)F(Ze—2n+1)
Hf) (G ['(2e+2-n)
(A4)

The explicit result forl , below fulfills the expectations WhereD=4+2e. Notice that thee=n singularities are of

above:

UV origin.
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