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Interaction-enhanced flow of a polariton superfluid current in a ring
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We study the quantum hydrodynamical features of exciton polaritons flowing circularly in a ring-shaped
geometry. We consider a resonant-excitation scheme in which the spinor polariton fluid is set into motion in both
components by spin-to-orbital angular momentum conversion. We show that this scheme allows us to control the
winding number of the fluid and to create two circulating states differing by two units of the angular momentum.
We then consider the effect of a disorder potential, which is always present in realistic nanostructures. We discuss

how a smooth disorder can be efficiently screened by the polariton-polariton interactions, yielding a signature of
polariton superfluidity. This effect is reminiscent of supercurrent in a superconducting loop.
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I. INTRODUCTION

Superfluidity is a striking feature of quantum fluids. It is
characterized by an irrotational particle flow, which is fric-
tionless below a certain critical velocity. Superflow is a typical
manifestation of a superfluid: When the latter is trapped in a
ring and set into circular motion, it will exhibit (i) an integer
angular momentum in units of /i and (ii) a vanishing decay of
the current. This phenomenon has been observed a long time
ago in a superconducting loop below the critical current [1],
with superfluid helium [2] and more recently in ultracold atom
condensates [3].

Exciton polaritons, in spite of their nonequilibrium char-
acter, have also been found to display many features of
superfluidity, like frictionless flow [4], quantized vortices
[5-7], and Bogoliubov-like dispersion [8]. A specific feature
of polaritons is the fact that the superfluid can be excited
resonantly both in terms of phase and amplitude. As a result,
nontrivial flow patterns with finite angular momentum have
been imprinted and studied [9]. Moreover, polaritons benefit
from a spin-orbit coupling allowing for spin-to-orbital angular
momentum conversion [10].

Ring-shaped confining geometries are very favorable for
studying superfluidity: The periodic boundary conditions im-
posed by the ring allow for the study of supercurrent flows
and verify quantized circulation, characterizing the irrota-
tional velocity field of the superfluid. In this work, we ex-
amine theoretically the polaritonic superfluid current in a
ring trap. Polaritonic microcavities etched into complicated
shapes, such as rings, can be experimentally realized nowa-
days with a high degree of accuracy using state-of-the-art
semiconductor nanotechnology [11-13]. In order to excite the
circular motion of the polariton fluid, we rely on the specific
spin-to-orbital angular momentum conversion mechanism. As
a result, the angular momentum achieved by the polariton
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fluid is not directly imprinted by the excitation laser phase
pattern.

Semiconductor nanostructures are often characterized by
some degree of unavoidable spatial disorder. These features
have to be carefully taken into account in the study of polari-
ton flows: In the presence of disorder, Bose fluids are sub-
ject to localization, i.e., Anderson localization for vanishing
interaction [14] or many-body localization in the strongly in-
teracting case [15,16]. These localization mechanisms hinder
the quantum fluid flow. However, repulsive interactions also
screen the disorder experienced by the fluid, which on the
contrary, helps restoring the flow, such that the net effect of
interactions in the presence of disorder is in general not easy to
determine. Note that such a screening effect has been reported
already in a disordered polariton condensate [17] and in
ultracold atoms in harmonic traps [18] (see, e.g., Ref. [19] for
a comprehensive review). The effect of disorder on persistent
currents has been the object of intense studies for fermionic
systems, for negligible interactions (see, e.g., Ref. [20],
and references therein), as well as including interaction
effects [21].

In this work, we examine the case of a bosonic quantum
fluid in driven-dissipative conditions confined within a ring-
shaped trap of finite thickness, and we investigate the competi-
tion between this angular momentum generation mechanism,
and the backscattering due to disorder within the ring. We
show that while the buildup of a net polariton flow (i.e.,
angular momentum) by spin-to-orbital angular momentum
conversion is prevented at large disorder amplitude and weak
polariton-polariton interaction, it is restored by increasing the
interactions.

The paper is organized as follows. In Sec. II we introduce
the model that describes the polarization-dependent polariton
field, including the transversal electric-transversal magnetic
(TE-TM) splitting which is present in realistic polaritonic
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microstructures. Section III describes the mechanism of spin-
to-orbital angular momentum conversion using numerical
simulations of the coupled driven-dissipative Gross-Pitaevskii
equations for the ring-trapped condensate. In Sec. IV, the in-
terplay between interactions and disorder is analyzed, and the
suppression of supercurrents is estimated. Finally, in Sec. V
we summarize our results and discuss perspectives.

II. THE MODEL

Polaritons are bosonic quasiparticles of mixed exciton-
photon nature that exist in semiconductor microcavities in
the strong coupling regime [22]. In this work, we consider
the lower polariton state, the dispersion of which is well
described by a two-coupled harmonic oscillator model as
Epo = L (hwe(k) + Ex) — 1/ (hw.(k) — Ex)* +4Q2, where
Q is the exciton-photon Rabi splitting, Ex is the exciton
energy, and fiw.(k) ~ E. + h*k?/2m.g is the bare cavity
photon dispersion characterized by an effective mass mg that
typically amounts to 107 in free electron mass units, and E,
which is the photonic zero-point kinetic energy.

In the following, we include the cavity photon polarization
degree of freedom in our description in terms of a pseudospin
by means of the components of the Stokes vector. Our discus-
sion will involve two polarization basis: the circular polariza-
tion basis |£) relevant to polariton-polariton interactions and
the horizontal-vertical linear polarization basis |4), |v) which
is important in order to account for the TE-TM splitting of the
cavity mode. The two basis are related by a rotation according
to the usual transformation |£) = (|h) £ i|v))/+/2.

Indeed, owing to the Fresnel relation, TE and TM polarized
light experience a slightly different optical path within the
cavity, which gives rise to a slightly different effective mass
mtg, mty for both polarization states. Figure 1(a) shows the
TE-TM splitting [23] versus wave vector k, with the following
parameters: mrg = 1.94 x 10™me, mry = 2.06 x 10 m,
E. =2750 meV, E; = 2820 meV, and 2 = 30 meV. These
parameters have been chosen as to match ZnSe-based micro-
cavities with which we plan to implement an experimental
realization of this proposal.

In the simulations that we will present in the following
sections, the radial momenta are discretized due to the con-
finement within the ring. The TE and TM modes, having
a different effective mass, are thus split. We maximize the
effect of the TE-TM splitting by applying a radial momentum
k, =5.2 um~! to the pump beam.

We now define (7, 1) as the polariton field with a po-
larization state . The corresponding dynamics is determined
by two coupled driven-dissipative Gross-Pitaevskii equations
[24]. In the circular polarization basis it reads:

ih%wa(ﬂ 1) = [TSk) + V) — iliye|¥aF, 1)
+ TR )W (F, 1) + (Sual Va P 1)
+ 2l Vs (P, O (7 1) + P ERY G, 1),
(1)

where T(fgc (l_é ) is the kinetic tensor in the circular polarization
basis, V(7 ) is an external potential, which includes the ring
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FIG. 1. Panel (a): TE-TM splitting as a function of the wave
vector. The dashed line points the value of the wave vector of the
pump chosen in the simulations, i.e., k, = 5.2 pum~!. Panel (b):
ring-trap potential used in Sec. III. Panels (c) and (d): intensity and
phase of the pump, respectively, for a winding number of the pump
equal to 1.

confinement and an optional disorder potential, and guo (gag)
is the intercomponent (intracomponent) interaction strength.
The subindices «, 8 = +, —; @ # B describe the different
polarization components of the polariton field. The driven-
dissipative features are explicitly included by means of the
loss rate y, = 1/1, describing polaritons leaking throughout
the microcavity mirrors, where t, = 2 ps is the polariton
lifetime and a coherent pump term EMN(F ¢) that injects
polaritons resonantly.

For the kinetic tensor, we use [24]

SN2
circ (7, he A e ]—:21 kV)
T (k)— (_kx —ik}.)z

where hw = (hawtv + hotg)/2 is the average energy between
the TE and the TM cavity modes, and A = i(wm — wtE)/2

is the TE-TM splitting. Notice that the off-diagonal terms
effectively play the role of a spin-orbit coupling.

. @

III. SPIN-TO-ORBITAL ANGULAR
MOMENTUM CONVERSION

One of the most striking effects that arise from the TE-TM
splitting is the possibility to generate vortices by effective
spin-orbit coupling, which leads to a spin-to-orbital angular
momentum (SOAM) conversion. It means that we can excite
a polaritonic field of a given polarization components with
zero-angular momentum and obtain a vortex with winding
number two in the cross-polarized component. This effect
was theoretically predicted in Ref. [25] and experimentally
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confirmed in Ref. [10] in a homogeneous two-dimensional
semiconductor. We present an alternative derivation of this
effect in Appendix. In this section, we analyze this effect in a
ring-shaped trap for polaritons. In this case, the vortex appears
as a quantized azimuthal current flow along the ring, which
is reminiscent of a persistent current of a superfluid within a
loop.

Spin-to-orbital angular momentum conversion
in ring-shaped traps

We use the following potential to describe the ring-shaped
trap in the driven-dissipative Gross-Pitaevskii equation (1):

sinh(w/&) ) 3)
cosh(w/&) + cosh((r — Ry)/&) )’

V(r)= V0<1 -

where r is the two-dimensional radial coordinate. This
potential corresponds to a ring with mean radius Ry = 6 um,
width w = 1 um, and depth V) =1 eV. The profile of the
edges of the trap is described by the parameter &, which we
fix to be w/10. The potential is represented in Fig. 1(b).

The pump geometry is illustrated in panels (c) and (d) of
Fig. 1 for the intensity and the phase, respectively: It consists
of a ring-shaped amplitude with a radial phase dependence
kpr, plus an azimuthal phase dependence g6 that imprints
a certain angular momentum with winding number g. The
expression of the pump then reads:

EfM(r0) = Ege™ 2t efhirel? @)
where Ey = 10 meV/um is the amplitude of the pump. We
choose a o™ polarized pump, whose intensity distribution
matches the shape of the ring. In addition, it can imprint
orbital angular momentum to polaritons, in the same way as
in Ref. [7], where the authors used this property to generate
a vortex. This type of pump profile could be experimentally
realized, e.g., by using a spatial light modulator, or by phase
plates, used to convert a standard laser mode into a vortex
mode.

We have numerically solved the two-dimensional driven-
dissipative Gross-Pitaevskii equation (1) to obtain the steady
state of the system. In Fig. 2 we plot the phase profile of the
polariton field of the o (top row) and the o~ (bottom row)
component inside the ring (i.e., for |[r — Ry| < w, where the
density does not vanish). The figure shows clearly quantiza-
tion of circulation, i.e., one of the main features of superfluid
flow, as can be readily obtained by the estimation of the
winding number ¢ from the relation

jﬁﬁs -dl =2 qh/m, 5)

where the superfluid velocity is related to the condensate
phase ¢(¥ ) by Uy = V@ (7 )/m. Figure 2 shows in particular
the case where the winding number of the angular momentum
carried by the pump is ¢ = —1 in the left column, g = 0 in the
middle column, and ¢ = 1 in the right column. As expected,
in the stationary state, the component copolarized with the
pump exhibits a superfluid current with a phase winding

q=0

FIG. 2. Top view of the phase profile of the ¥ (top row) and
the 0~ (middle row) components, in the steady state for different
values of the winding number imprinted by the pump. In the left
panels, ¢ = —1, in the middle panels, ¢ = 0, and in the right panels,
g = 1. The winding number of the supercurrent nucleated in the
o~ component is two units larger than that of the pump. Bottom
row: sections of the phase profile of the o™ (red filled circles) and
o~ (black open circles) components as a function of the angle 6
along the ring, at r = Ry, for the same choice of pump winding
number.

number matching the pump. Interestingly, we find that the
cross-polarized component exhibits a superfluid current with
winding number ¢ + 2, i.e., a two-units increase with respect
to the winding number of the pump. This is consistent with
what is expected for a homogeneous system (see Appendix).
It is also interesting to notice a large radial component of
the phase gradient in each ring, resulting from the spin-orbit
coupling between the two spin components. Correspondingly,
we find a modulation in the radial density profile of each com-
ponent, which is due to the coupling between the transverse
modes.

The spin-to-orbital angular momentum conversion can be
also seen in the bottom row of Fig. 2, where we show the phase
¢(r = Ry, 0) of the ot polarized field (red filled circles)
and of the o~ (black open circles) one in the steady state.
The winding number of the pump is ¢ = —1 (left panel),
g = 0 (middle panel), and ¢ = 1 (right panel). We see that
the phase of the component winds by 2w, 4w, and 6,
respectively, i.e., in the 0~ component, the winding number
is ¢ = 1,2, and 3 as expected from the middle row panels in
Fig. 2.
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IV. POLARITON CURRENT: COMPETITION
BETWEEN DISORDER AND INTERACTIONS

In the previous section, we have shown that when we excite
the o polariton component into a mode carrying no angular
momentum in a smooth ring-shaped trap, the o~ component
acquires a superfluid current with winding number 2. In this
section we account for the fact that in realistic experiments,
a (gaussian-distributed) disorder potential experienced by po-
laritons is present within the ring,

Vais(F) = Re[ F ' [27%1.Ug exp(igy) exp ( — K12 /4)1(F)] .
(6)

where U is the strength of the disorder, /. is the correlation
length, which gives the order of magnitude of the distance be-
tween maxima and minima of the disorder potential, and ¢y, is
a random matrix with phases uniformly distributed between 0
and 2. We analyze the interplay of the disorder strength and
interactions on the polariton current along the ring. Changes
in the correlation length, which we fix to be [, = 1.5 um in
this work, may lead to a localization-delocalization transition,
as recently shown in 2D [26] and 3D [27]. However, we
are interested in the study of the dependence of the mobility
edge as a function of interactions, and the study in terms of
correlation length is beyond the scope of the paper.

In the simulations, we have chosen the typical situation in
which the polariton-polariton interaction is ten times larger
in the copolarized case than in the cross-polarized one, and
of opposite sign, i.e., wetake g =g, =g = —10g,_,in
agreement with theoretical and experimental studies [28-31].
We use the pump to excite the o™ component with a pump
beam with g = 0 orbital angular momentum. To monitor the
superfluid current induced in the o~ component, we compute
the expectation value of the angular momentum operator
around the z axis £, = (L.), normalized to its maximum
value.

In the top panel of Fig. 3, we show the angular momentum
computed from the average of ten simulations performed with
different realizations of the disorder potential, as a function
of the interaction strength g and disorder strength Uy. We can
see from the figure that there is a (red) region in which the
disorder can be simply neglected, since it does not affect the
polariton field, the current is preserved and the system remains
superfluid. However, as the disorder strength increases above
a given critical value (yellow region), the polariton supercur-
rent diminishes. Moreover, larger interactions require larger
values of the disorder strength in order to observe the decrease
of such a current. The reason of this effect is the fact that
the disorder is efficiently screened by the interactions. On
the contrary, the polariton current is suppressed as disorder
overcomes interaction. We have also checked that, for our
choice of copolarized interaction parameters, the magnitude
of angular momentum is only weakly affected by the cross-
polarized interaction strength, and similar results to those
shown in Fig. 3 are found for the choice g = g+ = g__ =
10 8+—.

For each point of the top panel, we have computed the
standard deviation o of the different values of £, obtained
for each realization of the disorder. The result is represented
in the middle panel of Fig. 3. We see that when a current

U, (meV)

U, (meV)

0 0.3 0.6 0.9
g (meV pm’)
0.01F T T /
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S 0.001E
s B
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FIG. 3. Top panel: magnitude of the angular momentum L,
(normalized to its maximum value) as a function of the interaction
g and the disorder strength U,. The value represented in the color
map is the result of the average of ten dynamical simulations of the
driven-dissipative Gross-Pitaevskii equation. Middle panel: standard
deviation of £, in the numerical calculations. The bottom panel
represents the density profile of the o~ component (in arbitrary
units) along the ring at r = R, for different values of the interaction
constant g and disorder strength Uy: g =0 meVum? and Uy =
5 meV (dot-dashed green line), g = 0.6 meVum? and Uy = 5 meV
(solid red line), and g = 0.6 meVum? and Uy = 8 meV (dashed blue
line).

exists, £, does not fluctuate much from one realization to
the next. Whereas in the regime where the disorder and the
interactions compete equally, £, is highly dependent on the
details of V(7 ), and the standard deviation increases.

The simulations show also that in the noninteracting
regime, density hot spots build up as a result of Anderson
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localization, and the current along the ring is thus substantially
reduced. An example of this regime is shown in the bottom
panel of Fig. 3 where the density profile atr = Ry is shown for
g =0 and Uy = 5 meV (dot-dashed green line) Then, upon
increasing the interactions to g = 0.6 meVum?, the flow is
almost restored and the polariton density becomes much more
homogeneous within the ring (solid red line). This flow can
be suppressed again by increasing the disorder amplitude to
Up = 8 meV. In this case, the polariton density exhibits other
hot spots (dashed blue line).

V. CONCLUSIONS

In conclusion, in this work we have demonstrated the gen-
eration of superfluid currents with arbitrary winding number
in a two-component polariton condensate by the mechanism
of spin-to-orbital angular momentum conversion. This allows
us to generate with a single pump two supercurrent states,
differing by two units of winding number. Furthermore, we
have studied the effect of a possible disorder on the currents.
We have identified two main regimes at weak interactions, one
where the polariton condensate is superfluid and screens the
effect of disorder, and another where localization effects over-
come superfluidity and strongly reduce the amplitude of the
supercurrents. The latter regime is expected to occur for very
large values of disorder strength or weak interactions. This
allows us to conclude that one can expect robust superfluid
current states under typical experimental conditions.

It is worth mentioning that large interactions may also
lead to localization, as already found in one-dimensional
bosonic and fermionic fluids [32]. This effect, however,
occurs for much stronger values of interactions, where
the mean-field approximation is not expected to hold. An
interesting outlook would thus be to explore the inter-
play of superfluidity and interactions for bosons in driven-
dissipative conditions by going beyond the mean-field ap-
proximation. We would also like to see whether this con-
figuration can be favorably exploited to manipulate the two-
current condensate and study the dynamics of two-component
superfluids.
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APPENDIX: SOAM CONVERSION IN HOMOGENEOUS
TWO-DIMENSIONAL POLARITON GAS

In this appendix we provide an alternative derivation of
the SOAM conversion developed in Ref. [25] for the case
of noninteracting polaritons in a homogeneous trap. We also
suppose that the lifetime of the polaritons of both polarization

components is equal. This is a realistic assumption, since
the lifetime does not strongly depend on the polarization
of the polariton condensate. Under this condition, we
can write the coupled driven-dissipative Gross-Pitaevskii
equations (1) in k space:
a - - > -

ihg\ll(k, t)=|[T(k)—ihyl]¥(k,t)+iEk,t), (Al)
where \1/(12, t) and E(lz, t) are spinors that contain the po-
lariton field of each polarization component of the polariton

condensate, and the pump in each component, respectively.
The kinetic tensor (2) can be written as:

A(lz )g—i 2¢
wk) )’

- k
rd=n( 2%,

where ky =k cos¢ and k, =k sin¢, and we have de-
fined 2w(k ) = wrm(k ) + wre(k) and 2A(k) = oru(k) —
a)TE(k) We can write T(k) —ihyl in its diagonal form
as M D(k YM~', where D(k) is the diagonal matrix whose
elements are the eigenvalues of T(k)—ihyl: h(a)(k):i:
A(k ) —iy), and M is the change of basis matrix.

At this point, we can rewrite the spinor field and the
pump as W(k,t) = MCD(k t) and E(k t) = MG(k 1). Since
M is the matrix that diagonalizes the kinetic tensor, this
transformation allows us to decouple the previous system of
linear equations:

(A2)

9 - .- -
ihg@(k, t) = D(k)P(k,t)+iG(k,1). (A3)
The solution of the homogenous part is
©py(k, 1) = Do(k) exp(—i DK /B),  (Ad)

where d>0(i ) is an initial condition for the polariton field, and
the solution of the inhomogeneous part is:

Gk, 2N

Skl A A5
hdy(k, t) (A3)

®,(k,t) = Oy(k, t)/

with ®(k, 1) = @y (k, 1) + (K, t). The solution for W(k, 1)
is then:

Wk, t) = My k,t)+ Mk, t)
= M®o(k ) exp(—i D(k )t/h)
+ M exp(—i D(k )t /1)@y (k )

x/ Dok )" exp(i Dk )Y /R)ME(k, t)dt' .
0

(A6)

Due to the presence of the dissipative terms, which remain
in the diagonal part of D(k) one can see that the first
term vanishes at long times. The second term of the sum
simplifies as:

Wk, 1) = / M exp(—i D(k)(t — t')/R)M~"E(k, t)dt'
0

= f Ulk,t —t")exp(—yt)E(k, t')dt’ (A7)
0
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where U (l;, t) = e~'T®)" i5 the time evolution operator corresponding to the kinetic tensor, which can be shown to be:

cos(A(lz)t) R i exp(—i2¢) sin(A(lz ) t)) (AS)

P i)
Utk 1) =e (iexp(iqu)sin(A(k)f) cos(A(k)1)

When the system is pumping only one of the components of the ot-0~ basis, the spinor corresponding to the pump will be
Ek,t) = f(k,t)(1, O)T. With_the aim of demonstrating the spin-to-orbital angular momentum effect, we will restrict the
pump to the following shape: f(k,t) = fod(k — k,)3(t). The polariton field in k can be calculated as:

Wk, 1)\ _ e B cos(A (K )r)
(w_(l'é,z))_foe"p((“"(k) vk k")(iexp(izqs)sin(A(/}')r))' (A9)

The corresponding polariton field in the real space is the inverse Fourier transform.

W (F, 1)) _ » m o B - = cos(A(K )t)
(\IJ_(F,t)> = foexp( zyt)/o dd)/o kdk 8(k — k,)exp(iw(k )t)exp(ik r)<iexp(i2¢)sin(A(lz)t)>

cos(A(ky)t) )

2
= fokpexp((iw(k,) — y)t)/o de exp(ik,r cos(6 — ¢))<i exp(i26) sin(A(k, )1) (A10)

where we have used that k - 7 = kr cos(0 — ¢), being 0 and ¢ the orientation angles of 7 and k, respectively. In order to solve
the two integrals (one for each component), the following property of Bessel functions will be useful:

1 m
VAE E/ exp(i(nt 4+ ¢ sint))dr . (A11)
The final solution is then:
v (F ) . Jolkp r)cos(Alkp)t)
(J(?, t)) = 27 fo kp exp((iw(k,) — ¥t )<_ij2(k,, ryexp(i20) silf(A(kp)t)> ' (A12)

We can see from the previous equation that when we pump one of the components, the polariton field of the other component
acquires a phase pattern with a winding number 2, which is a doubly-quantized vortex. This phenomenon has been already
theoretically predicted in Ref. [25], and experimentally observed in Ref. [10], in the case of nontrapped polariton condensates.

It is worth commenting on the case where instead of pumping at a given modulus of & for all the possible angles in momentum
space ¢, the orientation of k is also fixed. In this case, a term 5(¢ — @), where ¢y is the orientation direction of the pump wave
vector, should be added to the pump. Then, the integral on ¢ when doing the inverse Fourier transform becomes trivial, and the
solution is:

cos(A(k,)t) ) . (A13)

W (F . .
(wfg;’: ;;) = 27-[]‘0 k[’ exp((lw(kp) - V)t) exp(lkp r COS(Q - ¢0))(_l exp(z2¢0) SiIl(A(kp)t)

The previous solution does not content any vortex profile, hence, in order to nucleate a vortex, it is crucial not to fix the wave
vector orientation and excite all the possible angles in momentum space. As an example, if we pump with the pump wave vector
oriented along the x direction, the phase pattern of the minority component will be the one of a plane wave traveling in the x

direction.
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