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The part proportional to the Euler-Poincaré characteristic of the contribution of spin-2 fields to
the gravitational trace anomaly is computed. It is seen to be of the same sign as all the lower-spin
contributions, making anomaly cancellation impossible. Subtleties related to Weyl invariance,
gauge independence, ghosts, and counting of degrees of freedom are pointed out.

I. INTRODUCTION

Cancellation of anomalies has played an important role
in theoretical particle physics. In this paper we finish a
study concerning the cancellation of the gravitational
trace anomaly in four dimensions, by computing the con-
tribution which the anomaly gets from spin-2 particles.
In fact, only one of the two pieces of the anomaly is com-
puted, as it suffices to prove that no cancellation from the
contributions from spin O, %, 1, %, and 2 is possible, as all
contributions have the same sign. We indicate how the
other piece can be computed, not an easy task, but ex-
haustion and the fact that the results obtained killed our
original motivation have prevented us from actually do-
ing it. The result obtained might seem to contradict re-
sults known from supergravity. This is however not the
case. In supergravity the Lagrangian for spin-3 and
spin-2 particles is not Weyl (local dilation) invariant.
Thus the vacuum expectation value of the trace of the re-
normalized energy-momentum tensor receives not only
the anomalous contribution but also one due to the expli-
cit breaking of Weyl invariance at the classical level. In
supergravity it is this total trace which plays the impor-
tant role, it is the one which appears in a supermultiplet
together with the divergences of the axial-vector current
and supercurrent. Here our point of view will be
different. We consider the anomaly cancellation issue in
a setting unconstrained by supergravity. Weyl invariance
will be our primary symmetry and in order to be sure
that the trace computed is the genuine anomaly we will
start from a Weyl-invariant Lagrangian.

We therefore consider a massless spin-2 field ¢*¥ of the
same dimension as lower-spin fields coupled to an arbi-
trary classical gravitational field g#¥ and otherwise free.
Nothing is assumed about the physical content of this
field, in particular about its relation to quantum gravity.
Thus ¢*¥ has mass dimension while g*" is dimensionless.
Its Lagrangian will be Weyl invariant. Being quadratic in
¢*¥ the one-loop result coincides with the exact effective
action, which is obtained by integrating out the spin-2
field. It is a functional of the classical gravitational field
and its derivatives. This effective action contains UV
divergences which require regularization. We will follow
Brown and Cassidy! and Duff? in using dimensional regu-
larization, which has several advantages as we will recall
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later. The regularized effective action has then a pole in
n —4, n being the dimension of space-time. This pole has
to be subtracted out with a counterterm. If the Lagrang-
ian of the theory is Weyl invariant, then the residue of
the counterterm is Weyl invariant too. Defining the
counterterm AW (n) according to

Ween= lim [W (n)+AW (n)] (1.1)

means that it is of the form

1 1
AW (n)= d"x (—g)"[aF (x)+BG (x)],
i — / ' BG (x)]
(1.2)
where g = detg,,, and
FERWPURWPU—zRWR“ngZ , W
— vpo __ v 2 '
G=R,, ,,R"""—4R  R'+R",
where R ,,,, is the Riemann tensor, R ,, =R’ ,,, the Ric-

ci tensor, and R =R* u the scalar curvature. F is in four
dimensions the Weyl tensor squared, C***?C,,,,, and G
leads, by the Gauss-Bonnet theorem, to the Euler-
Poincaré characteristic. By using the well-known formu-
las

2 v_0 nor 1172
o172 5gm [ ax1—g1"?F
=—(n—4)(F—%0R),
(1.4)
2 v_ 0 Nl o 1/2¢3 — — (4 —
[—g]”zgu ngfdx[ gl'?G=—(n—4)G ,
one obtains the trace anomaly from
2 S(AW (n))
(T, )= w , (1.5)
I3 [_g]1/2g Sg/.w I
which gives
1
(T’r‘enu)=——l—6?[a(F~%DR)+/3G] . (1.6)

Notice the strong restriction to the a priori general form
( T’ n )= _#[Q(F _%DR)'*‘BG +yOR +8R2]
T
(1.7)
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as (1.6) implies y =6=0.

The values of a and S for spin 0, 4, and 1 are known
and have been checked several times. Birrell and Davies?
give most references concerning these spins. The values
for spin 2 have been computed recently (they were known
for supergravity, which of course does not lead to
¥ =06=0 and for which a and 3 depend on the gauge pa-
rameter®’). Putting all the results together one has, for
physical massless fields (Majorana for fermions),

s a B

1 — 1
0 ™ 7%
L 1 — a1
2 40 720
1 1 — 3L

10 180
3 -5 — I
2 40 720

For spin 1 and 2 there is a further local invariance: gauge
invariance. It allows one to reduce their 4 and 8 degrees
of freedom, respectively, to the 2 physical ones which
correspond to massless particles. This is done with one
and two Faddeev-Popov ghosts, respectively, plus a
Nielsen-Kallosh ghost for the spin-Z field. In Ref. 1 it
was proven that using covariant gauges and dimensional
regularization the effective action is gauge independent.
The calculation in Ref. 6 is performed within the same
assumptions. Thus the results for ¢ and 8 shown in the
table are gauge independent.

The aim of this work is to compute a and f3 for spin 2:
our motivation is the possibility of anomaly cancellation
in the context of Weyl invariance and the study of possi-
ble particle contents which follow from it. The spin-2
value for a has opposite sign than the values for the other
spins. Thus anomaly cancellation is possible. This is not
so for B, which has the same sign for all the spin values.
%We therefore concentrate first on 3; if it comes to be neg-
ative again no anomaly cancellation is possible. This is,
unfortunately, what we find.

Let us recall shortly results from previous computa-
tions: ’t Hooft and Veltman’ were the first ones to com-
pute some of the coefficients of (1.7) for the Einstein-
Hilbert Lagrangian. The others were computed by
Critchley® and Fradkin and Tseytlin.” The results read
J
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(a+ﬁ)-rv:% ’

BTV=1—QB ’

=1
aTV—? .

Christensen and Duff® calculated the same coefficients us-
ing index theorems. Their result is

(a+B)ep=2,

BCD=0 1)

106 (1.9)
Ycp ™ 135 >
Scp=135 -

Neither result satisfies the constraints implied by (1.6).
This is because all these authors start from Lagrangians
which are, either straightforwardly or in a more subtle
way, not Weyl invariant. Then the singular part of the
effective action is not of the form (1.1), as Weyl invari-
ance is explicitly broken already at the classical level. It
is also known that then 3, y, and 8 are gauge dependent,
though not a+ [compare (1.8) with (1.9)]. These results
thus do not correspond to the genuine gravitational trace
anomaly of a massless spin-2 field, the one corresponding
to a Weyl-invariant theory, which is what we want to
compute here.

II. THE SPIN-2 WEYL-INVARIANT
LAGRANGIAN

Consider a symmetric tensor field ¢** of dimension M
(we are not considering a higher-derivative theory, as
would correspond to dim¢**=MP°. Weyl invariance is
the local symmetry

8 (X)—>Q%(x)g,,(x) ,
Bu(X)—> QX (x) |
S (x)—>Q 73 (x)p*(x) .

The most general Weyl-invariant quadratic Lagrangian in
presence of classical gravity is

(2.1)

L =3{apudP" = 4bua #bp “P+ LR $ogb P — 2R G0, + 167 5, 6 .~ 2R (6% )*+ R, 6"8% ]

tei[67 o8 o M AR (87 )1+, CH P g

where ¢ and ¢, are arbitrary constants and the Weyl ten-
sor is given by

cHveB=pR ;waﬁ_'.%(gyBR av_|.gvaRﬂB_g#aRBv_gVBR#a)

+ LR (gh°g*P—ghtPg¥e) . (2.3)
The term proportional to c¢; is nothing but the Weyl-
invariant Lagrangian for the scalar field ¢7 , as expected
from the fact that ¢*” has a spin-O component, its trace.
In order to get rid of this spin-0 component, and yet
work with unconstrained fields, let us write in (2.2)

(2.2)

$=(g" o8 p— 8" 8up W . 2.4

This ensures ¢# ,=0 by working at the same time with
the unconstrained field ¥**. One obtains

L =3 {4apu ™"~ 140 s “PH LR Yo
—2R ‘uvlp,ualpv *+ %d’a 0;#1/}&# ja %dja a;,ul/)p,) o
— &R (Y% P+ R, ¥ Y% ]

+ Ca C'uvaﬁlpy.ad}vﬁ . 2.5)
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It is obvious from (2.4) that (2.5) has a further local in-

variance under the transformation
PPyt sgP (2.6)

where s(x) is an arbitrary (local) scale. But there are

more local invariances. Indeed, in flat space (R ,,,3=0)
(2.5) is invariant under the gauge transformation
YByB AR 2.7)

A(x) being an arbitrary scalar function. We will perform
later an expansion around flat space and thus (2.7) will
imply that a gauge fixing is necessary: no flat-space prop-
agator exists otherwise. But if we want our results for «
and S not to depend on the gauge fixing the gauge sym-
metry (2.7) has to be exact, also in curved space-time.
There is no problem to have it hold up to order R and
R.,. Indeed, with ¢, =1 one finds that under

PP yy®P+ AP — LR OBA (2.8)
the variation of L as given by (2.5) is
3L =y9"S A 2.9
with
Suy= TR anpR bt 7R, a— 4R, TIRR,,
+1g,,(—10OR —1R?+R zRP) . (2.10)

One can now expand (2.8) further nonlocally in order to
cancel (2.9) but this will not be relevant to the anomaly
computation, as S, is such that'S* =0, so that being al-
ready quadratic in R it cannot contribute to the anomaly.

Thus (2.5) with ¢, =1 is the Weyl-invariant Lagrangian
with the largest possible local symmetry. For reasons
J

Hig,,=(O+1R)I

a
afuv
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which will become clear later on, we will choose a gauge
fixing suggested by the symmetries (2.6) and (2.8):

Lg=1ay"Np,, 9" 2.11)
with
aN“P=a[g(V,V,+V.,V,—R,,)
+(V‘1VB+VBV¢Z—R(1.B )g,uv]
+8op8uv(a0+a,R +asm?) (2.12)

where a and q;, i=1,2,3, are arbitrary gauge parameters.
Notice that a mass has been introduced. The ghost fields
corresponding to (2.12) will be considered later.

We will also need later an IR regulator, which we will
choose to be a further mass term which we add to (2.5)
and (2.11). Itis

m? m? N
L, = —T‘gbaﬂlﬁa‘ef——z—l/}aﬂfaﬁ”vw . (2.13)
Of course the anomaly will be m ? independent.
Putting everything together our Weyl-invariant gauge-
fixed IR-regularized Lagrangian for a spin-2 field is

LY == 39" H g, (m)yH” (2.14
with

Hipg,(m)=Hjp, +m’Mg,, , (2.15)
where

M gy =L apuy — @38 op8 puv (2.16)

and

auy — 5 8au V5Vt 8an VeV, +85. VoV +85, VoV, )+ (3 —a)[8ap(V,V, + V.V, )48, (V,V+ VeV, )]
—[(é‘—l—al )D+(%+a2)R]gaﬁg‘uv+(_;‘_'_a)(RaBg,uv+Rp,vgaﬁ)—_(Ray.Bv+RBp.av) .

(2.17)

The second-order differential operator is not of the Gilkey!° type; i.e., it has derivatives apart from the Laplacian term.

In flat space (2.15) reads
HP

o pmg,=m,,)=(0+m)(n* P 0% 0P ) —1(n* 3%, + 0% 8P, + 7 ,3%95+ 7P ,893,)
+(1—2a)(n%3,3,+7,,0°9%) —[(L +a,)O+a;m*In%y,, .

In momentum space the corresponding Green’s function 9% satisfies

{(=K*+m®) L P 0% 0P )+ 3(n® kPR + 0% KPR, + 1P kK, +1P kok,)

—($=2a) %k ke, + 0,k kP (L Fa kP —asm I, )9 O(k)= = 1% P AP )

It is easy to obtain 9 from (2.19). We will however not
give the general formulas but instead limit ourselves to
two particular gauges, which are characterized by first
not having poles at negative values of k? (tachyons) and
second by having the minimal number of poles (two).
They are (1) a =—1, a; =4, a; =1 (a,= — ) for which

G o Ok, V=3 " 0 ¥ =P, )P
+(ktk,m" +kPk,m” kK",
+kk, " ,)PQ (2.20)

(2.18)
(2.19)
[
where
p=—L  o=—»1 | (2.21)
k*—m? k*—3m?

and 2) a =%, a; =0, a3 =3 (a, =0) for which
guva(O)(k’2)
=L(n* ¥+ 0" " )P +127Q —19P)*y,,
kY ki Kkt KR,

—3(kFk ", +1""k k) 1PQ . (2.22)
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We will perform the anomaly computation in the two
gauges.

III. THE BASIC FORMULAS

We will present here the main formulas on which the
calculation is based (see Refs. 3 and 6). The effective ac-
tion W (neglecting ghosts and masses for the time being)
is given by

exp(iW)= fD¢“Bexp ['fd"x LZW(x)}
o (detH,) 172, (3.1

We are using here operator notation. The Green’s func-
tion

GH(x,p)=—i{ T[Y*(X)hop(») 1) (3.2)
satisfies the differential equation
HY, GE og(x,y) =—[—g(x)]71/28(x —p)IP7 15(x) .

(3.3)

Let us now introduce a Hilbert space with norm
(x,uvly,aB)=[—g(x)]728(x —p)I* ,5(x) . (3.4)
Then

G (x,y)={x,uv|G,ly,aB) (3.5)
and (3.3) reads

H,G,=—1 (3.6)
From (3.1) one readily obtains
W= —é—lndet( —-G,)= —-;—trln( —G,)

= —é' f d*x [—g )]V x,uv| In(—G,)|x,uv) .
(3.7

Recall furthermore

~G,=H;'=i [“dse ", (3.8)
which implies, up to a constant,

In(—G,)=—nH,= [~ i’sie""’”a . (3.9)
Thus the effective action is given by

W=—tur [T AT (3.10)

Let us now prove that W does not depend on the gauge
parameter a (nor on a;), following steps similar to the
ones performed in Refs. 1 and 6. Notice, using the in-
variance under (2.6) and (2.8) that

NH‘,=aNH1=aN2 G.11)
so that
NH:=anNH7=anNn+l . (312)
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We are assuming here that N contains all the higher-
order terms in the adiabatic expansion so that the gauge
symmetry is exact. Thus under an infinitesimal change of
a,

SW= __S_a tr f ? ds NeAiSH"

=——trf ds Ne ~saN

—z—— tr [ " ds etV (3.13)
which is a constant and can thus be neglected.

Of course everything done up to now is formal and re-
quires UV and IR regulators. The mass terms introduced
in (2.12 and (2.13) will be our IR regulator: its standard
imaginary part makes all the previous integrals conver-
gent for large s.

The small-s UV divergences are regularized dimension-
ally. Recall the DeWitt-Schwinger!! proper-time repre-
sentation of the Green’s function, which for coinciding
arguments reads

G(x,x) 1

B =TE

© ids
X
fO (l-s)n/Z

e MSF(xzis),  (3.14)
which is based on (3.8). Equation (3.14) is valid for La-
grangians for which the mass term goes with the unit ma-
trix, i.e., a;=0. None of our gauges is of this type, but
instead H,(m)=H,+m?M, M#1. If a, is such that M
is invertible (our gauges are of this type), then working
with H, M ~'4+m?I one can use (3.14) for MG. Of course
as detM does not depend on the Riemann tensor the
anomaly computed from H,+m?*M or H,M ™ '+m?I
will be the same. Similarly we will have, from (3.9),

(x,uv| In(—MG)|x,aB)

=i[—-g(x)]_‘/2ﬁ

x [ ;n‘fiﬂ e TImBERY (x3is) . (3.15)

Expanding F(x ;is) adiabatically in (is),

F* g(x;is)= 2 al”, a(x)isY (3.16)
and recalling from (3 10) and (3.15) that
w=1 [ -4 e m I (isjn‘fiﬂ e MBS TeF (x3is) (3.17)
one obtains with the help of

[ _Tl%{:e—imzs:(imZ)(n/Z)—Zr s (3.18)

the following expression for the m 2-independent piece of
the effective action:

o1
(477)2 4 n

W gin(n)= [ d*x Tra,(x) . (3.19)
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It only remains to compute a,(x). This will do as fol-

lows.
Introduce
G(x,y)=[—g(x)]"*G (x,y)[ —g »)]"/* (3.20)
and its Fourier transform
~ 1 .
G(x,x")= d'k e *v9(k) , 3.21
ox (27)" f ¢ ( )

where y# are normal coordinates of x, the origin being at
x', and k-y =ka17"’3y3, so that one works in a localized
momentum space. Notice that (3.15) can be written as

(x|In(—MG)|x)=— fszG(x,x)dmz , (3.22)

where the m? integration brings down the extra power of
(is) that appears in (3.15) as compared to (3.14). From
(3.10),

Wzé' [ d*x[—g (0] f:;dszrMG(x,x),
(3.23)
J

A= f D¢, D¢, exp [i f d*x¢[ap,+1(a;0+a,R +a3m2)¢l]]
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which from (3.19) leads to

. n ©
Tra2=él6ﬂ2 lini(4—n)f (‘21 ’; J 5 dm* M ¢ k) ,
n— m m

(3.24)

where 92(k) is the second-order term in the adiabatic
expansion (proportional to R?, etc.) of €(k). All what
remains is to compute (k).

Before doing so, let us study the ghosts which go with
our gauge fixing [(3.11) and (3.12)]. It corresponds to the
generalized gauge conditions

g ¥ =9, (3.25)

and

(VoVp+ VeV, —R W P=4, . (3.26)

Recall ’t Hooft’s device'? for adding the gauge-fixing con-
dition to the Lagrangian. It is based on the fact that

(3.27)

is constant. Notice that no determinant appears in (3.27): we do not have Nielsen-Kallosh!® ghosts. Then using the
Faddeev-Popov procedure for quantizing a theory with local symmetries, one has, for the generating functional,

Zo [ DY A8(g,, 0" —$1)8((2V,V5—R )P — ;)

4 20—R
X det

where S [¢] is the classical action. The determinant in
(3.28) is the Jacobian of (3.25) and (3.26) with respect to
the transformations [(2.6) and (2.8)]. It corresponds to
the ghosts. Notice it does not depend on the gauge pa-
rameters a and a;. Equation (3.28) shows that the ghosts
will be higher-derivative ghosts. There are two ways of
avoiding these and thus all the complications of higher-
derivative operators. First, work in a maximally sym-
metric space, for which

R;wko =K(gvkgya —gvag,uk) ’

(3.29)
R,,=—3Kg,, R=—12K.
Then the determinant of (3.28) is
4 20—R R
det R2 =12detO det E]-——?,— .
20—R 4D2—2RD+T
(3.30)

There are therefore two different complex conformal sca-
lar ghosts whose contribution has to be subtracted from
the computation which will be performed in the next sec-
tion.

The other option is to notice that a+pf3, being the
coefficient of R, ,gR #vaB does not depend on the Ricci
tensor. Thus the determinant in (3.28) reduces to

20—R (2V,V5—R)(V*VP+VAy*—RF)

exp(iSq[¥]), (3.28)
[
4 20 ,
det 200 4L =12det™0 . (3.31)

We will not perform this second computation, as the
value of B, obtained from the first one makes anomaly
cancellation impossible. The computation of B, is al-
ready a major undertaking by itself.

Let us, before finishing this section, comment on the
number of degrees of freedom our field ¥*¥, whose dy-
namics is governed by (2.5) with ¢, =1, describes. It is a
symmetric rank-2 tensor whose trace is projected out by
(2.4): this gives 9 degrees of freedom. There are two
complex ghosts, so that 5 degrees of freedom are left.
This is too much for a spin-2 massless particle. This is a
consequence of Weyl invariance. By having a further lo-
cal invariance gauge invariance is reduced. Instead of be-
ing of the type of first derivatives of a vector function it is
[recall (2.8)] of the type of second derivatives of a scalar
function. Thus, instead of reducing 4X2=28 degrees of
freedom (the trace is not projected out) so that 10—8=2
degrees of freedom are left, it only reduces 2X2=4 de-
grees of freedom. In flat space these consequences of
conformal invariance are well known:'* the field de-
scribes also lower-spin particles. Taking a symmetric
rank-2 tensor field and imposing Weyl invariance leaves
no other choice: our spin-2 field describes more than just
a massless spin-2 particle, as there is no Weyl-invariant
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description of a single massless spin-2 particle in terms of
a symmetric rank-2 tensor field of dimension M with dy-
namics given by a local Lagrangian.

IV. THE COMPUTATION AND CONCLUSION

We will here compute a, for the gravitational back-
ground corresponding to (3.29), for which very important
simplifications occur. This is a long computation per-
formed with an algebraic program, so that only some in-
termediate steps will be given. As a check the computa-
tion has been performed in both gauges given in Sec. II.
The final results coincide, as they should.

The following normal coordinates have been used

8V ="7,,+Ky,p,(1+Ky?)+0(K?) 4.1
for which, up to K2 included,
oo =Ky*(mp +Ky,py,)

4 P P (4.2)

—g=1+KyX1+Ky?) .

Recall that the covariant derivative acts on ¢, according
to
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=%
B G
with
G =24K? . (4.6)

Our starting equation is (3.3). In momentum space,
and expanding in K,

g/,waﬁ(k)=gpvaB(0)+Kg,uvaﬁ(1)+Klgyvaﬁ(2)+ cee,

4.7)
a v v
ﬂgvaﬁ -é_k— =7{'¢f aB(O)+K7{I¢; aﬁ“)
+KZHE g P
Obviously
ﬂﬁT#V(O)g“VaB(m:_%(ﬂpaﬂrfrn”;’mfa) , (4.8)

which is precisely (2.19). In the two gauges we work
G*¥ ,p is thus given by Eqgs. (2.20) and (2.22). The K and
K? equations are, omitting indices,

Vol =V p =00~ Thothn, — Tt . (4.3) 9= g0z (L g 4.9)
In this space and
OR =F=0 (4.4) g(2)=g(0)ﬂa (2)9(0)+g(0)7{a Me) (4.10)
so that Some intermediate results are
J
G p'(1)=16PQ (P*+PQ + Q?)k k "k .k g— 4P k Kk "1,
+2(2k*P*—6k>Q*—3P*—4P2Q —6PQ>+12Q°) (0" k Yk g+n¥ gk ko + 1Y JkPk g +0” gkPk )
+2P%(2k*P?—3k*P + 1)} 5~ (4k*P*— 6k *P3+2P2—TPQ + 60 )" 1" g+1* " o) @.11)
and
G 45 V(2)= —8PQ (P> +3PQ + Q %)k k "k .k 3 —2(6k2P*—18kQ*—9P3+7P2Q — 15PQ>+27Q° "k .k
+(—12k2P*+36K2Q*+11P3—2P2%Q +42PQ2——63Q3)k“kVnaﬁ
—2(—2k’P*+6k?Q*+3P>+P?Q +3PQ*—12Q°)(n* .k kg +n gk ko + 1" k¥ g+ gkk,)
+1(76k*P*—108k*Q*—114k2P3>+ 162k 2Q3—53P>+132PQ =990 g
+2(—2k*P*+3k2P>— P2 +2PQ —20)(n* " g+ 1" " o) - 4.12)

Notice that 9! is not symmetric, nor is there a reason for it to be so in the coordinate system used. To second order

our results are, for the first gauge,

Tr9 O DHN(1)8'V(1)= 192k P7— 640k P®+ 720k *P5 + 384k 2P*+ 160P* — 828 P2Q —444PQ%+ 960k 2Q7
—4224k%Q%+7968k*Q°— 7008k 2Q*+31200Q° ,
Tr[M (1) —I19(D)#H(1)8(1) =192k *P7 — 480k °P®+ 480k *P5 — 768k 2P*+ 96 P3 — 420P2Q
+1452PQ*— 192k *Q 7+ 960k °Q°— 1392k *Q°+ 336k 2Q*— 26403 ,

Tr9'O(#HP(1)9'9(1) =64k °P®+ 128k *P5+ 438Kk 2P*

(4.13)

+604P>+202P2Q — 1626PQ2+ 1344k °Q®+ 2208k *Q°+4842k 204 — 672003 ,
Tr[M (1) =119 (D#HZ(1)9'°(1)= — 96k *P®— 192k *P5— 390k 2P*+612P3 — 66P2Q —2718PQ>— 384k Q6
—2112k*Q°+522k2Q*+433203 ,
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and, for the second gauge,

2999

Tr9O(2)#V(2)91(2)= — 96k P7+ BE kOPO+ 1321 *P5 4 1455k 2p* — 661 p3 — 19461 p2() 4 33237 PO 2 + 1248k °Q
— 20‘:99k6Q6+ 41291 k4Q5__ 10005k2Q4'—%Q3 ,
Tr[M (2)—I19'2(2)#(2)91(2) =480k 8P7 — 1185  OPO 4 3045 4 PS4 3135  2p4 4 11265 p3 4 3035 p2()

— 109545 )2 — 480k 3Q 7+ B k 6QO— 18825 k45 4 10005 2044 #8615 93
Tr8O(2)#2(2)9'9(2)= — 23 OPO— Bk 4P+ 3744k 2P*+ 12813 p3 4 2491 p2Q — 249900 pQ 2 323 60 ¢
+ 1497k 405+ 8010k 2Q* + 800 03 |
Tr[M (2)—119'0(2)HP(2)90(2) = 1423 SpO+ 13 | 4p> — 8023 24— 16065 p34 8655 p2() - 263185 p2— 2085 | 60 6
+#k4Q5_¥k2Q4__1%Q3 .

It should be noted that in the above expressions total
derivatives have been omitted. Using (4.10) and (3.24)
one obtains, after performing the integrations,

Tra,=2K? (4.15)
for both gauges. The ghost contribution to Tra, is
| =2%+32)K?, (4.16)

which subtracted from (4.15) and using (4.5) leads to the
final result

_— 27
B=—% .

As the lower-spin values of f3, this is also negative. No
anomaly cancellation is possible.

(4.17)

(4.14)

For particles of spin up to 2 described by canonical di-
mension fields of scalar, spinor, vector, vector spinor, and
symmetric rank-2 tensor type the gravitational trace
anomaly cannot be vanishing.
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