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Exact solutions of the massive Klein-Gordon-Schwarzschild equation
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A continuous, one-complex-parameter family pair of solutions of the Klein-Gordon equation for
a massive particle in Schwarzschild space-time, given in terms of elementary functions, is derived.
The domain of analyticity of the solutions is 0 <7 < + « for extensive regions of the complex plane

of the parameter.

Attaining solutions of the field equations in a curved
background is interesting in different contexts: (i) for the
computation of the quantum propagator in a curved
background; (ii) in classical black-hole scattering; (iii) for
questions related to a possible proof of nontriviality of
the A¢* theory in a curved background; (iv) in the study
of gravitational collapse; etc. We shall here deal only
with the case of a spin-zero particle of mass m in a
Schwarzschild background, as created by a noncharged,
nonrotating black hole of mass M. The metric is

ds?= |1-2GM 142 ll_ZG—M e
r r
—rXd6*+sin’0d¢?) , (1)
and the corresponding field equation is
(V,VF—m?)d=0. )
The solutions of (2) can be written as
r = o (r)Y,,(6,4)exp( —iwt) , 3)

the Y, being spherical harmonics. The functions f;(r)
satisfy the radial equation'?

df ,(r) 1
ZJel 2 2 +1) 2GM
dr? oMt s
x [1-2M 11 ¢ (h=0, @
with
re=r+2GMIn ZG’M—I (5)

Notice that adopting this definition with absolute value,
we will be able to use the coordinate r, also when
r <2GM =rg (rg is the Schwarzschild radius).

Our aim is to find exact solutions of Eq. (4) valid in ex-
tensive regions (as large as possible) of space-time. We
start with an ansatz of the form

fotr)=aexp{+ilor, +g(p)]} , (6)
where
p=1— 2GM ’ 7

r

and where for the function g(p) we write

glp)=bIn(1—p)+ 3 (a,+b,pz",
n=t (8)
z=4p(1—p) .

For the moment we shall only consider the plus sign in
front of the i in (6) but an ansatz with —i would be equal-
ly good. Notice that the region exterior to the event hor-
izon, r >rg, is here 0 <p <1. We always have 0<z <1,
and z—0 both when r —rg and when r — . Substitut-
ing (6) and (8) into (4), we see that the radial Klein-
Gordon-Schwarzschild equation is exactly satisfied, pro-
vided that

(@—k)* -
b=—"2, by=a_,=0, b_,=4k—d)=4a,

26 +i - .
a=—="—[—2ab—(T+1)+i(a—b)], 9
' ez FhHia=b)] ©

2
2aal+b———l-+i

b
b= 4 2 Q= —2a, ,

1
2k

where we have set

=2GMw, k=2GMk ,

o

_ (10)
k=(0*—m>'V? T=I1(1+1),
and, in general, for n > 2, that
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4 =
4n(2@—in)

n=

+83(n—1)4i[n?b, _,—

(4n—1)n—1)a, _,—
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{—2®(2n—1)b, _+2(n—1)(b—2a)a,_,—2(n—1)ab, +5(2n—3)bb, _,

12n—1)2n=3)b, _,]} (11)

and
b"=?{—2(5+7€)na,,+%[(2n—1)a+(n—l)b]b,,_1+b(n—1)a,,~1
n
+S,(n)—S,(n)+S;(n)+in[na, ++b, —(n—a, 1}, (12)
where
Sy(n)=1 2 [kb, _,—2(k—1)a, _,+4ka, [(n—k+1)b, _,—2(n—k)a,_,+4n—k+1Da,_; ],
Sy(n)=1 3 [(2k—1)bk_,+4kak][(2n—2k—1)b,,_k_,+4(n—k)a,,_k], (13)
k=1
Si(n)=1 2 {[(2k —1)by _,+4ka, (n —k)(b, _;+2a,_y)

—[kbk_1—2(k—l)ak_l+4kak][(2n—2k+1)b,,~k+(n—k+1)a,,_k+l]} .

We are interested in well-behaved solutions of (4). To
this end we make the following assumption: a,, and b, are
analytical in 1/n for n large enough. One gets

a, a
—ao+——+—+
a,_1
b, B, B
=Bo+— s+ (14)
bn—l n
a—n__.. +ﬁ+ﬁ+---
b" "’7’0 n n2 N

Substituting these expansions into (11) and (12), we come
out with the (unique) solution

a
" _i—L oy,
a,_, 2n
b 1
2 l——4+01n"?), (15)
b 2n+ (n™%)
a
ﬁ=—%+0(n‘2)

Even more, by restricting us to the two first terms in each
case, i.e., setting the terms of O(n -2) strictly equal to
zero,

a, 1 b, 1

1 1 2n (16)
T2’ b,y b, 2’

a, n—1
we obtain an exact solution of the recurrence equations

(11) and (12), given by

_ 2n—=1n _ . 2n—1
a"_c——(Zn)!! , b,= 2c——(2n)u . (17)

For the function g(p) of (8), we get

g(p)=—1-E;+b ln(l—p)+c(1—2p)n§:‘,] %z .
(18)
This series can be easily summed up:
él =121, (19)
and we arrive at
g(p)=ﬁ+bln(l—p)+2c(l—p) . (20)

Actually, the coefficients a, b, and ¢ are not indepen-
dent. In order to obtain a solution of (4), the initial con-
ditions (9) have to be satisfied [as well as the recurrences
(11) and (12)]. We must impose (16) for n =2,

4a,=3a,, 4b,=3b,, b;=—2a, . (21)
Equivalently, we could have substituted (20) and (6) into
(4). In any case we obtain the following values for the

coefficients a,b,c:

=il, b=i, ¢=0, (22)
and the following relations between the parameters @, 1,
and m =2GMm:

I=—1%+(142i@)"?,
23)
ml=—242(1+id)[2F (1+2i3)7?] .

This yields the one-complex-parameter continuous family
of solutions of Eq. (4):

ior, +[1F(142i3)"?]

foilr)=aexp

2GM

+In (24)

ZGM
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with @€ C arbitrary. A second family of solutions, in-
dependent of this one, is obtained by changing the sign of
the ’s in (24).

In principle, these solutions are valid only for r >rg
(region I of the Kruskal diagram). This is so in spite of
the fact that the function f,(r) of (24) is well defined for
0<r <rg also. The reason is the following. In the coor-
dinates (¢,r) the Schwarzschild metric is singular at r =0
and at r =rg. Even though Eq. (4) holds in both domains
O<r<rg and rg <r < + o and (24) is a solution in both
these domains, how can we make sure that the solution at
both sides of the singularity r =rg is the same? In other
words, as it stands, we do not know if (24) for r < rg is the
continuation of (24) for r > rg¢ when we cross the singular-
ity r=rg (transit from region I to region II of the
Kruskal diagram).

To proceed correctly we have to use a nonsingular
coordinate system, such as the Kruskal coordinates
(¢',r") (Ref. 3)

,_U+V ,_¥V-=U
t'= o r'= 5 R (25)
where
U= —exp _4—GH , u=t—r,,
(26)
v
V=exp —ZG—AZ , v=t+4r,,

|

(t.r(r.) r(r,—o) r(r,—o)—r
Sfult,r(r,))= exp 2GM
rir,—o rir,—o)—r
fnl(t,r(r.))— exp 2GM
r(r,—20) r(r,—20)—r
fIV(t’r(rt))_ exp 2GM

If,(t—a,r(r,, —0)),
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or, equivalently, the coordinates (U,V). The
Schwarzschild metric (1) becomes

2 42GM)’ o
ds“= e 2GM dUudv
—rXd6*+sin’0d ¢?) 27

and is no more singular at r=rg (i.e.,, at U=0 or V'=0).
The coordinates (U, V') extend over the whole regions I,
II, III, and IV of the Kruskal diagram. Equation (26)
gives the relation between (U, V) and (¢,r) at region 1.
Using it we can write the corresponding Klein-Gordon-
Schwarzschild radial equation in terms of (U, V), which
will be valid over the whole extended Kruskal space, but
for the only singular “point” r=0. Let a family of solu-
tions of this equation be g(U, V) which in terms of (z,r)
is given in region I by Eq. (24). Let us rename this part of
the whole solution f(¢,7), i.e.,

gu, V)=

filt,r), U<0, V>0,

(28)

|_ 2GM
r

filt,r)=expl—iwt)f ,(r), r>rs,

with f,(r) given by (24). We then deduce that the corre-
sponding expression of g(U, V') in the other three regions
of the Kruskal diagram, in terms of (z,r), is consistently
given by

]fl(t+a,r(r* —o)),

]fl(t,r(r,—Zo)) ,

where 0 =2GM In( —1) [of course, the same determination of In( —1) is to be used everywhere]. In this way, our exact
solution of Eq. (4) is extended to the whole Kruskal space. Equation (29) provides its explicit expressions in each of the
regions in terms of the coordinates (¢,r). Notice, however, that this expression changes from one domain to another.

In fact, in the black-hole region II (i.e., 0 < r < rg), we have

rir,—o) _ riry,—o)—r
Sfult,r(r,))=a—————exp 21rw+-—2?1w———
_ Yr,—o) Yr,—o)
. —11/2
Xexp | —iou+[1F(14+2im)"/*] SGM SGM , O<r<rg, (30)
—

where ¥(r, )=r is the inverse function of (5). Combining
adequately Egs. (29) we can follow the variation of the
solution of each transit from one region to another along
a geodesic u =const or v =const. For instance, Eq. (30)
gives us the variation of the solution in the crossover
from region I to the black-hole region II along a geodesic
v =const.

We observe that the solution (24) is best suited for
studying the transit from region I to region II. However,
it is immediate from Egs. (29) that this solution is not
adequate for dealing with the transition from regions III
to I. In this case the other family of solutions (24) with i
replaced by —i has to be employed. If we call it £, ,(r),
with the same notations above the corresponding func-
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tions fy; and f; account for the transition from the
white-hole region III to region I along a geodesic
u =const.

Let us now investigate the asymptotic behavior of the
solution (24). For r —rg, it behaves as

. — r
foilr)~exp |i@In 2GM_1 , r~rg, (31)
and, for r — + w0, as
r . - - r
foilr)~Z=rrexp 1wr+[1+(1+21w)'/2]2—m1—l :

r—--+o . (32)

Setting @ =a +if3, and taking the minus sign, it is easy to
see that for

B<0, a’>pB(58+3), (33)

all the solutions of the family (24) are simultaneously con-
vergent at r=rg and at r=+ . Only for >0 do we
not obtain any solution convergent at r=rg, in accor-
dance with the general results about the analytical prop-
erties of the solutions of (4) which have been already es-
tablished in the literature.* But it turns out that in order
to have m?> 0 it must be B> 0 [when we take the minus
sign in (30)]. However, the following finding is very re-
markable: for a, B, and B/a small and such that the
preceding condition (33) is satisfied (this is immediate to
fulfill), our solution (24) does actually converge in the
compact region rg <7 < + o and has m2>0. Moreover,
when we take the plus sign in (30) and @=if3, B <0 arbi-
trary, we find a solution convergent at r=rg and with
any desired value of m2> 0. On the other hand, the solu-

J
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tion (30), corresponding to region II, also converges as
r—0. Thus, we have obtained a family of solutions
which is analytic in the whole range 0 <7 < + .

For the sake of comparison, it is interesting to point
out that in the case m =0 a discrete family of solutions
(for @=in, n €N) was already known.*> For n=1 one
has [=(—1+iV'3)/2. Actually, this solution is con-
tained in our continuous family, as the particular case
@=i/2. In contrast, for m=0, we have obtained a con-
tinuous family involving real and complex ®’s and with
particular solutions in which m? and [ are positive, for
imaginary . For a general discussion of the mathemati-
cal and physical implications of imaginary frequency
solutions of Eq. (4) see Ref. 6.

Finally, we shall now give some approximate solutions
of (4) which, in spite of not being exact, can be interesting
on their own. From Eq. (23) we observe that, even if we
take w to be real—which is perfectly allowed in any case
[also by (33)]—the exact solutions will involve / or m
complex. Notice, however, that for 0o=if, B <0, we ob-
tain a real and positive m. On the other hand, it is no
novelty that we cannot obtain solutions with real !/
coverging both at r =rg and at r — + c. That this is not
possible was first proved by Zerilli.” Anyway, it may be
useful to give some approximate solutions involving real
values of all the parameters: o, I, and m. This is
achieved by using the same expressions (9), (11), and (12)
for given values of these parameters. The way to proceed
is the following. We calculate a certain number of
coefficients @, and b, say k=1,2,...,p, until we reach
stability (15). This has to be checked numerically. In
general, the number p will have to be larger than the
smaller ®. Then we make use of Eq. (20), previously
modified as follows:

a 2p (2k — 1)1 P 2 X
=— — 1-2 — 4p(1— b 4p(1— , 34
g(p) —p +bIn(1—p)+cl p) -2 k§=‘,l 2k [4p(1—p)] +k§=‘,l (ay +byp)[4p(1—p)] (34)
[
with the a and b given in (9), and In this case, for n >3 the relations (15) are fulfilled with
(2p)! an accuracy of 1073, The same is true for /=1. When
c=—2PE_ (35) @ ~2 one must take p ~10. The series does not stabilize

“p—1m%-

We have carried out a numerical analysis for different
values of @. For @ large the stability of the series is very
remarkable. A standard FORTRAN program with double
precision complex variables easily allows for one
thousand iterations without accumulating errors. For-
mula (34) can be used with p=2 or 3 with a very great
approximation. For instance, for =20, /=0, m =2.5,
we obtain

a=-0.16, b=—6.5x10"*,
a,=—(6.3+1.2i)x1073, b, =(6.3+42.2{)x1073,
(36)
a,=—(2.440.7i)xX 1073, b,=(4.841.5{)x1073,
a;=—(2.040.6i)x1073, by=(4.04+1.3i)x1073 .

for @ < 1. This has of course to be so, because for these
values of the parameters @ and 7 no solution of Eq. (4)
valid in the whole region rg <r < + oo can exist. In fact,
the range of @ for spinless particle emission from a non-
charged, nonrotating black hole begins about this value.®

The possible existence of more solutions of Eq. (4) simi-
lar to the ones derived here is under investigation.’
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