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The gauge-invariant actions for open and closed free bosonic string field theories are obtained
from the string field equations in the conformal gauge using the cohomology operations of Banks
and Peskin. For the closed-string theory no restrictions are imposed on the gauge parameters.

I. INTRODUCTION

The construction of a gauge-invariant field theory is a
subject of recent interest. The first attempt was done by
Siegel' who constructed a gauge-fixed covariant action
based on the Becchi-Rouet-Stora-Tyutin (BRST) formal-
ism. Later on, Kaku? and Banks and Peskin® presented a
nonlocal action which becomes local with the introduction
of Stuckelberg dynamical fields.*~7 Independently, Neveu
et al. constructed actions with a finite® and infinite®!°
number of Stuckelberg and Lagrangian multiplier fields.
These authors realize the existence of additional sym-
metries!! in their actions. The analysis of these sym-
metries leads one to consider a larger gauge-invariant ac-
tion that can be written as (@ |Q |@) where Q is the
Becchi-Rouet-Stora operator of the first quantized
string.!> This action has been proposed independently by
Witten.!> When we integrate the Lagrange multiplier
fields we recover the action of Refs. 4—7. The extension
to open free superstrings has also been done.'*~!7

In the case of the closed bosonic string,!! the situation
is more involved because of the presence of the constraints
(Lo—Ly)¢=0 and its generalization for the supplementa-
ry fields. Neveu et al. also constructed an action with fi-
nite® and infinite’ number of supplementary fields, where
the condition (Ly—Ly)¢=0 is put by hand. Additional
symmetries also exist for these actions!® and a larger ac-
tion with more supplementary fields was constructed.
There is a difficulty in writing this action in terms of the
Becchi-Rouet-Stora operator of the first-quantized closed
string due to the presence of two sets of anticommuting
zero modes, which imply the appearance of four possible
vacua. If one only considers two vacua, identifying two
anticommuting zero modes, it is possible to write the ac-
tion in terms of a modified BRS charge.!”!® In the case
when one considers the whole set of vacua,'? it is possible
to write an action containing the BRS operator Q such
that the constraints (Lo —L,)$=0 and the ones related to
it are obtained as equations of motion. The difficulty of
this action is that the gauge parameters are restricted.
The Ramond-Neveu-Schwarz and Ramond-Ramond sec-
tors of closed superstrings have the same difficulties of
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the closed bosonic string, plus the problems due to the ex-
istence of zero commuting modes.

In this paper we will construct the gauge-invariant ac-
tion for the open- and closed-bosonic-string field theories
without any restriction on the gauge parameters. The
departure point will be the equation of motion in the con-
formal gauge and the gauge transformation of the string
field.!?

A suitable action in the conformal gauge is introduced
using the cohomology operators of Banks and Peskin.*
This action, denoted by A4, is not invariant under gauge
transformations, so then we will modify it introducing
supplementary fields and appropriate gauge transforma-
tions for them in such a way that the resulting action,
A", is gauge invariant under the whole set of transfor-
mations.

The equations of motion in the conformal gauge should
be obtained from 4" by performing a suitable gauge
transformation. This is not possible at this level because
there exists a piece of the supplementary field that is
gauge invariant.'®!® This leads to the introduction of a
new equation of motion which does not follow from A4 ‘",
Therefore a new action Af)z) is needed. On the other
hand, one realizes that a subset of the equations given by
A'Y has additional gauge invariances.'® Of course, nei-
ther A" nor A{? are invariant under them. As before we
will introduce more supplementary fields and construct a
new action 4‘® which has the same kind of difficulties as
AV, Therefore we need to iterate the procedure up to in-
finity. The final action can be written as (¢ |Q | ¢) for
the open string®!3 whereas for the closed string the ex-
pression is more involved. It is important to point out
that in the later case the action gives as equation of
motion (Lo—Ly)$=0 and its generalizations without re-
striction on the gauge parameters. This new action is re-
lated to the one that was first proposed by Ballestrero and
Maina.?

II. OPEN BOSONIC STRING

In the conformal gauge, the equations of motion for the
string functional ¢[x(o)] are known to be
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(Lo—1)¢=0, (1a)
L,$=0, n>0. (1b)

As suggested by Siegel, the unfixed gauge theory must be
invariant under

8¢=L _ A k>0 )

where the A are arbitrary string functionals.

In order to simplify our expressions, it will be useful to
introduce (§ )-forms,?! which belong to the exterior algebra
constructed on the infinite-dimensional space of functions
x*(o). We can define on these forms the cohomology
operations k, d, d, | of Banks and Peskin,* which obey
the algebra

[k,d]=[k,6]=[k,¢]=0 , (3a)
{d,1}=1{9,1}=0, (3b)
[d,d]= 1k , 30

as well as the nilpotency conditions
d*=9*=0. @)

Relation (3¢) is true only when the dimension of the
spacetime is equal to 26. Operation d, called the exterior
derivative, and operation 9, the divergence, are the adjoint
one of the other with respect to the scalar product

f,9)= [ DIxH)]f[x#(0)]g[x (0] (5)

defined on the space of string functionals. Explicitly stat-
ed, we have

(9f,g)=(f.dg) . (6)

The string functional can be thought of as a (J)-form,
while the arbitrary functionals A* can be arranged into a
(§) form denoted by A!. Then Eqgs. (1) are written as

K¢=0, (7)

d¢=0, (8)
and the transformation (2) becomes

Sp=0A'. 9)

Obviously, Egs. (7) and (8) are not invariant under (9).
Equation (7) is a “true” equation of motion, in the sense
that it contains second-order derivatives, while (B) is usu-
ally interpreted as a gauge condition.

In order to comstruct a gauge-invariant action, we
depart from

AV =1(,kd)+(S',do) , (10)

where we have introduced an auxiliary (})-form s!, which
incorporates the gauge condition (8). Now, following the
method of Ref. 10 we transform 4" under (9):

845 =1($,kdA) +(8s',dp)+(s',ddA") .
We choose

6s’=—%k1\1 (11)
and then
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8AYL =(s,,ddA)=(s,,0dA") +(s!,1kA)
=(s',0dA)—8(s!,1s!) .
Therefore, if we define
APV =48 +(s1 1Y (12)

we get
84 =(s",ddA )= —(s',60¢)) ,

where we have introduced a (})-form ¢! which transforms
as

8pi=—dA'. (13)
Then
541 =—58(s',3¢])+(8s',0¢})

and defining

45" =41 +(s",061) (14)
we obtain
94 =(8s,3¢})
=—1(KA'L3¢))
=—2(dAL k)
=3 (8¢1,k 1)
=18(¢1,k 1)
so finally 84V =0 with 4‘" being defined by
AN=43"— 5(g1,kg1)

=+(d,kd)— +(dLkd)+(s',dp+3dl+1s) . (15

This action gives the following equations of motion:

+Tk¢+3s'=0, (16a)

—1k¢l+ds'=0, (16b)

d$+3p]+21s'=0. (16¢)
They are invariant under

8¢ =0A!, (17a)

8s'=—3kA!, (17b)

Spl=—dA'. (17¢)

The auxiliary functional s! can be eliminated from equa-
tion (17c). @] is a Stuckelberg functional and contains the
Stuckelberg fields necessary to build a gauge theory with
massive physical fields. They cannot be eliminated in a
local way; that is, their elimination produces a gauge
theory with a nonlocal action for the physical fields.

The equations of motion (16a) and (16¢) should reduce
to Egs. (7) and (8) by means of a suitable gauge transfor-
mation. In fact, there is no problem to set s! =0 and then
one is left with

k¢=0, k¢!=0, dp+9¢i=0.
Now, one would have 3¢} =0, but from k¢!=0 and (3¢c)
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this also implies d¢{=0. Difficulties arise when one ob-
serves!® that from (17¢) and the nilpotency property it fol-
lows

8(d¢l)=0

that is, d¢} is invariant under gauge transformation, so
one is not free to gauge reduce (16¢) in order to get
d¢$=0. To solve the problem we should look for an ac-
tion incorporating d¢} =0 as an equation of motion:

AP =4V 4 (s3,de}) , (18)

where we have introduced a new auxiliary (3)-form. ThlS
action is invariant under (17) if one simply takes 8si=o0.
But there is another way which solves the problem and
enlarges the set of gauge invariances. We start by notic-
ing that Egs. (16a) and (16c) have two additional gauge in-
variances:

81 =0A%1+21x?% b&s'=0x?% 8¢4=0, (19)

where A? and X? are arbitrary (})- and (3)-forms, respec-

tively. The appearance of these extra invariances is relat-

ed to the nonindependent character of the first-class con-

straints of the Hamiltonian theory.?* Next we transform
A under (19). A little algebra gives

8AY = — (¢, kdAI—20dX?) +(853,dd})
+(s3,d(dA2+21xY)) .
We choose
]
AP =4 + L3 kd3) =+ (d,kd)—+(),kd])+

From this action one gets the equations of motion

Tk¢+3s'=0, (25a)
— kol +ds'+0s7=0, (25b)
L1K¢i+ds?=0, (25¢)
do+3é}+21s'=0, (25d)
dél +9¢2—21s2=0, (25€)
which are invariant under
8¢ =0A!, (26a)
8¢p1=—dA'+0AI+21X2, (26b)
8pi=—dA?, (26¢)
8s'l=—TkA'+ax?, (26d)
8st=1kAl—dx?. (26e)

Again, Egs. (25a) and (25d) should be pauge reduced to
k¢ =0 and d¢ 0. First, one sets s'=s=0.

Now d@| is no more gauge invariant, so one can get
d¢1=0 (which, together with k$!=0, implies dél=0) by

(3K 3) +(
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8s1=1kAl—dx? (20)
and then
8A% =(s2,d[0A3+21X?])

=(5s3,0dA3)+(s?, 1kA2—21dX?)
=(s2,0dA?)+8(s%,1s3) .

So if we define

AP =4 —(s1,1s1) (21)
then

8547 =(s2,dd A1) = —(51,80¢3) ,
where

S8di=—dAl. (22)

Following the same steps as before we write

8A% = —8(s%,3¢3)+(8s7,0¢3)
and define
AP =47 +(s2,042) (23)

which satisfies
8AY =(851,0¢3)=(
=(7kAL,3¢)) =7 (dALk¢)) = —
So finally 64 ?’=0 with

+KA?—dx?,343)
T8(63,kd3) .

s,ddp+3di+ s +(s},ddl+3d3— is?) . (24)

means of a gauge transformation. But all this reduced
Egs. (25¢) and (25¢) to k¢3=0 and 3¢%=0, so d¢>=0
also, while from (26c¢) one can see that

8(d¢3)=0

Therefore, the gauge transformations we have carried out
are not consistent, and again one is led to search for an ac-
tion giving d#3=0 as an equation of motion. One can
also see that Egs. (25), except (25¢), have additional gauge
invariances which now leave é, ¢, and s' unchanged.
Hence we can repeat the same steps that led from 4! to
A® and the process follows without end. As shown in
the Appendix one gets the action

E k)

+[S/ T, déi+9¢i T+ (— DS/ ]

27

which is invariant under
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8¢i=—dAl_ +aAIt 2~ 1)~ xiH], (28a)
ss,-"+‘=—‘—_zikA;I“—dx:iiHax;I“ . (8b)
for i =0, ..., o (unless an index is <0).

It is known that action (27) can be formulated in terms
of the BRST charge operator Q of the first-quantized
theory:

=Hp|0le), (29)

where the “total” field | @) is decomposed as

|@)=(d+5sBo)| =), (30)

where both the “minus” vacuum and |@) have ghost
number —%, and ¢ and s have ghost number 0 and — 1,
respectively. When spanned in terms of a basis of oscilla-
tors, ¢ and s give the components of the various forms ¢;
and sf +1 The BRST charge Q can be written as!!

0=d+3+kBy—150 , @31)

where 2, ?), 7, and k are operators related to the cohomol-
ogy operations. For D =26 one has

0=0 (32)
and the invariance of 4 under

8le)=0|e), 33)

| €) being an arbitrary state, follows immediately. Be-
cause of the fact that ? has ghost number + 1, | €) must
have ghost number — 5 and can be spanned as

le)=(A+XBoy) | —) , (34)

where A and X have ghost numbers —1 and —2, respec-
tively. It must be also noticed that if

ley=0|€),

then 8|@)=0. This leads to the appearance of the
“ghosts for ghosts” and in fact an infinite chain of
“ghosts for ghosts. . .for ghosts” is obtained.!! All this is
associated to the nonindependence of the first-class con-
straints of the Hamiltonian theory.?>?* Finally, we would
like to point out that the partial actions A4V, ..., 4"
can also be formulated in terms of the same BRST charge
Q if one takes only the first terms in the expansions of ¢
and s (Ref. 24). Nevertheless, their gauge transformations
do not have the form (33).
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III. CLOSED BOSONIC STRING

The equations of motion for the closed-string function-
al ¢[x*(o)] in the conformal gauge are

(Lo+Ly—2)¢=0, (35a)
L,$=0, L,$=0, n>0, (35b)
(Lo—Ly)¢=0. (35¢)

The last equation implements the symmetry between right
and left movers. We expect the unfixed gauge theory to
be invariant under

8¢=L _,A"+L_,A" n>0, (36)

where both A™ and A" are arbitrary string functionals.
Usually, Eq. (35c¢) is preserved under (36) by demanding

(Lo—ZO)An=(L0—Eo)X"=O (37)

but we prefer to have (35b) and (35¢) in an equal footing
and therefore condition (37) will not be imposed in our
construction.

In a similar way as we did for the open string, we intro-
duce (35)-forms which carry two kinds of indexes. We
also introduce two sets of cohomology operations d,d,k, |
and d,9,k,T each of them obeying the algebra (3) and the
nilpotency conditions (4), while operations belonging to
different sets do commute. When acting on a form, every
set works on the corresponding indexes. _

The string functional can be considered as a (8gl-form,
while the A” and A" are the components of an (}3)- and
a (3)-form, denoted, respectively, by A' and A,

Now, Egs. (35) are written as

(k+k)$p=0, (38)
d¢=0, dp=0, (39)
(k —k)$p=0, (40)

and the gauge transformation (36) is
8¢=0A'+0AT. 41)

Equations (38), (39), and (40) are not invariant under (41).
In order to construct the gauge-invariant theory, we start
with

A =1(,(k +K)$)+(T,(k —k)$)
+(s',dg)+(sL,dg), 42)

where auxiliary forms 7, S, and sT have been introduced.
The variation of 45" under (41) gives

840" =1(,(k +K)AA'+3AT)) +(8s',d¢)+(8s",d§) + (8T, (k —K)$)+(T,(k —K)BA'+3AT))

+(sL,d(BA'+3AT)) +(sT,d(3A +3AT)) .
We choose
8s'=—1(k+k)A!, 8s'=—L(k +k)AT, 8T=0

so then

(43)



2484 C. BATLLE AND J. GOMIS 35

=(s,d(BA'+9A ) +(sLdBA'+3AN)) +(T,(k —k)BA'+9A D)) .
Let us work with the last term
(T,(k—k)QA'+3A0))=(T,(k —k)(38c' +38a"))=8(T,(k —k)(da' +3al)) ,

where we have introduced new forms a!, a! such that

Sal=Al, Sa'=AT. (44)
Then, if
D=4 —(T,(k —k)(3a'+3a")) 45)
we get

841 =(s,,d(dA'+3AT)) + (s, d(3A! +DAT))
=(s,3dA'+3dA) +(sL,3dA ' +9dAT) + (s Lk LAY + (s LELAT) .

Consider the last two terms

(s, IkAY+ (s L,TRAD = 2(s L, 1k + AN + T (s LTk + KA + +(s!, 1k —K)A) — L(s T, T(k —k)ATD)
=—8(s,1sH)—8(s,Ts D+ +(s, 1k —K)A) — +(s,T(k —k)AT) .

Defining

AL =41 4 (s 1sH+(sT,Tsh (46)
we have

545" = —(s',084] +035¢]) — (5,084 +36¢T) + T (s, 1(k —K)A ) — T (s, T(k —K)AT) ,

where we have introduced new forms such that

8pl=—dA!, 8¢i=—dAl, 8¢l=—dA!, 8¢T=_—dAT. 47)
Therefore, if we consider

A =43 +(s',841 + 06 +(s,3¢1+34]) , (48)
we get

8AY =(— 1 (k+K)A 08! +3¢D) +(— Tk +K)AL 3¢ +0¢T) + T (s, 1k —K)A) — T(s |, T(k —k)AT) .
As for the open string, the first two terms are canceled by introducing new kinetic terms:

ALY =40 Ll (k+ R — T, (k +K)ph) — (4L, (k +E)pT) (49)
and then

84 =1(s!, 1k —k)A)— L(s, Tk —k)AT) =+ (s',(k —K)8R )+ +(s ,(k —K)8R7) ,

where new forms transforming as

8R;=1A', 8R;=—TA' (50
have been introduced. Defining

AP =4P — L' (k—k)R))— (s ,(k—K)R7) , (51)
we get

848 = —L(— Lk +k)A(k—K)R, )—%(—%(k—H?)AT(k—I?)RT)

= L((k+Kk)8a',(k—K)R|)++((k+k)8a’,(k —K)R;)

and now, if

AP =48 —L((k+K)a',(k—k)R)—+((k+Kk)al,(k—k)R7) , (52)
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84 = — L((k+K)a!,(k—K)IAY) + H((k +K)al,(k —K)TAT)
= —L8((k+k)a!,(k—k)ia') — £8((k +k)al,(k —k)Tal) .
Finally, if
AVN=4P 4 L((k+K)a!,(k—k)la")— L ((k +k)a',(k—k)Tal) (53)
we obtain 84 !’=0. The complete expression for 4! is

D= (4, (k+5)d) — + (1, (k +K)d}) — T(],(k +K)dh) — +(8L, (k +E)pD + ((k — K)o, T)
+(s',dp+3!+3d]+is)+(s,,dp+26 + 3¢+ Ts ) — T((k —K)s,R|) — T((k —K)s,R7)
—+((k—K)Ry,(k+K)a') — +((k —K)Ry,(k +k)a') —((k —K)T,da' +3a’)

+ 1k +E)al,(k—K)ia') — s ((k+K)al,(k—k)Tal) . (54)
Its equations of motion are
(k+k)p+3s'+0s'+(k—k)T=0, (55)
—+(k+k)pi+ds'=0, (56a)
—+(k+k)¢t+ds'=0, (56b)
— Lk +K)pl+ds"=0, (56¢)
_Lk+R)pT+dsT=0, (56d)
dé+3¢}+0¢}+21s'—+(k—k)R, =0, (57a)
d+3¢t+3¢T+2TsT— Lk —k)R; =0, (57b)
— 2 (k—K)s'—+(k —k)k+Kk)a'=0, (58a)
—+(k—K)s"—+(k—k)(k+K)a"'=0, (58b)
(k—k)p—(k—k)(da'+3a")=0, (59)
—dT —5(k+k)R,++(k+k)la'=0, (60a)
—dT—+(k+Kk)R;—+(k+k)Ta'=0, (60b)
and the gauge invariances are
8¢=08A'+0AT, 8pl=—dA!, 8p1=—dA', 8¢l=—dA!, 8¢T=—dAT, 8s'=—1(k+k)A
8sT=—+(k+k)AT, 8R;=1A!, 8Ry=—TAl, 8T =0, 8a'=A!, da'=AT. 61)

As for the open string, there are some quantities involving ¢%,¢%,¢¥,¢¥ that are gauge invariant:
8(de})=8(ddl)=8(dp])=8(dp])=5(dpt—d¢))=8(d¢i—dgl)=0 . (62)

In order to gauge reduce (55), (57), and (59) to the corresponding equations in the conformal gauge, we must demand the
above quantities to be zero by the equations of motion, so then we consider

AP = AN 4(53,dD) +(sTa8h +(53,d8D + (53,380 + (51T dgl—dh) + (s 1T, dp] — o)) . (63)

Following the same strategy that proved to be successful for the open string, we notice that Egs. (55) and (57) have addi-
tional gauge invariances:

8¢=(k —k)p, 8T=—5(k +k)p—dw'—dw!, da'=8a"=0,5¢!=03A7—0A\T+21x2 84!=0A2+3AT+2.x!T,
8pt=3A2—3AT—2.x"T, 84T=3AZ+0AIT+2TA2, (64)
8s'=ax2 - T+ (k —K)w', 8s'=0X2+3X'T+(k —Kk)o' ,6R;=2dp+4l0', 8R;=2dp+4i0",

where Af, RN A%, X2, x, xl, P> o', and w! are new gauge parameters, and now we can repeat what we did for the open

string. But in the present case, in order to have an action invariant under (64) we must introduce an enormous number of
forms:
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2 2 1T 2 1T 1.
¢27 ¢2’¢2’¢2’ 27¢1 11»¢11 ,Shslysl ,Sl,Sl,sl H R R R“,R R R“,

1 1 2 2 2 2 . 2 1T 2 . 1 T
Tl’TerlyT y ap, ap, aTaTal a[ ’ B B B sy My vV, Vv

After a tedious calculation one gets the action

AP=4V 1 (¢2,k+k )$3) + + (b2, (k +K)pi) + (3, (k + K )g2)
+ b (k+ )¢ + 1 (84, (k +F)pd) + T Lk +K)p'T)
+(s7,d¢1+0¢3—¢} — 15 )+ (s],d¢} +043— B+ 2T %T)

(s2,dpT+ 362+ 31T — 21511 4 (52,307 +a¢2+a¢ 1152

+(s”d¢§—2¢}+a¢%—é¢-—z M+ (1 dgl d¢1+a¢ﬁ+a¢}}—¢s¥)

— Lk =k)s?, R =k —K)s?,RH— Tk —K)s3,RY)

— k=R R - L((k —K)s T, R — 3k —=K)siT RT;)

+(k —B)LTH+((k —E)¢L, TH +((k —K)$], TH +((k — k>¢l,T)

+4((k —k)R1,38* =3B+ +(k —k W)+ 1 ((k —K)R 1,32+ 3B+ (k —k W)
—((k —k)R}, — +(k+K)a}++dB)—((k —k)R}, — (k+k)a1+7d32)

T T
—((k —F)RL, — +(k+K)a2++dB)—((k —k)RL, — L+

D —Yk+k)at++dp)

—((k —F)R;, =tk +B)al+ +dB) —((k —K)R L5, — Lk + K)all + LdB) —((k —K)T,+(k —K)p)

1
—((k—k)T},—da'+3a}—3a} +218*) — ((k —K)T|, —da' +3a2—dat — 218"

—((k—FK)T}, —da' +6a1+8a 11218 —((k —K)TY, —da’ +3a2 + 3a + 2787)

Lk —K)a', 108 — 138 T+ +(k —k)ivh) — L((k —k) ’—laﬁ“ T — +(k —Kk)Tvh)
—((k—k)a?, 16(k+k)la1—2ld/3’2)—(k —B)all, tk + k)12 —Talh) — T+ (1dB—TdBM)
—((k—k)a.,g(k—}—k)TaT——;- 1dR'N) —((k —k)a, % (k +K)la {T L11dp'T)
—(k—R)adT, L (k + K1 +Tad) — L(1dB T+ TdB)) — ((k —K)ad, — & (k +K)Ta2++TdB)
— Lk —F)BL LB + 7((k_k)35 Uﬁi)

—((k =K, Sk +F)k —K)p+ +(k —K)(v' +3v))

— e ((k —FW (kK —k) v — = ((k =kl (k —k)Tvh) .

The new fields transform as

8¢3=—dAl, 86)=—dAll, 8¢2=—dA? 6¢iT=—dAY, 843=—dAl 8¢I=—dAl
8= —(dA2—dA?), 8¢ T=_—(dAT—GALY), 8¢%r=—(dAZ—dAD);

85 = 1k +K)AI—dX? 8si=1(k+K)AZ—dX?, 8s)=1(k+k)AI—dX? &sil=L1(k+K)A —dx"T
8si=t(k+R)AZ—dx?, &I =L(k+E)AT—ax'T;
8R}=1AL8R}=TA{, 8RI=1IA], 8R]=—TA} 8R};=1A}-TA[", 8R};=1A{"+TAT;
1 3 h

8Ti=—do'—+1x? 8T =—do'—+1X"7 8T = —do'—1Tx"T, 8TI1=—do'++TX7;
8al=A2, 8all=All, 8al=A} 5aT=A3 salT=All sa2=A2Z,
8B2=x2 8B T=x", 5B2=X7, Su=2p, Sv'=4w!, Sv'=40'.

(65)

(66)

The algorithm could follow up to infinity as we did for the open string, but we will not carry it out due to the complexity

of the higher steps. Rather, we propose the action
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A=1(d,(k+k)$)+(s,(1+T)s)+(5,Q¢)+((k —k)$, T)— 5 ((k —k)s,R)
+((k—k)R, — gk +K)a+ QB+ ¢ (k —k V) —((k —k)T,Qa—2(1 +T)B+ 5 (k —k)u)
—(k—K)a,— 5k +K)1—Da+ 31 —DQB+ 5 (k—k)(1 =T)v) (68)
—((k=k)B, — 3L =DUHTB+ 1k —k)1 =T))
— (k=K ), o5k +E )k —K)p+ +(k —K)Ov) — (k=K v, (k —K)(1+TW) ,

where ¢,5,R,T,a,B,u,v are to be expanded in an oscillator basis to give the different forms we have worked with. The
operators k,k,|,T and Q=d +d +09+0 have also expansions in terms of the oscillators.!® The first terms in these ex-
pansions give the actions we have built. The action (68) has the gauge invariances

8p=(k—K)p+QA—2(1+TX, &5 =—+(k+k)A+(k—Kk)o+QX,
8R=20p+4(1+ Do+ (1—TA , 9
8T=—1(k+k)p—Qou—5(1=TX, da=A, 8B=X,5u=2p, dv=4do .

If we perform the change

T>T—+(1—-TDB—k+k)ju—+Qv, R>R++(1—TDa++Qu++(1+Tv, (70)
we get
A=+, (k+K)$)+(s,(4+T)s)+(s5,Q6)+((k—k)p,T)—+((k —k)s,R)
+((k=K)p,— (L =T)B— e (k+K)p—t V) +((k—K)s, —+(1 —Ta— ~Qu—+(1+TW) (71)

+((k—k)R, — gk +K)a+ OB+ 5k kW) +((k —k)T, —Qa+2(1+T)B— +(k—k)u) .

This last action is not new. It was first proposed by Ballestrero and Maina®® in terms of the BRST charge operator of
the first quantized theory:

Q=CiK+*+CyK~+Q-Cgit—Cqy1™ (72)
where
1 - 1 - — _
K¥=—=(k+k), 1*=—=(117), Q= d,
\/§( ) \/i(l 1) d+d+d+

and the zero-mode operators obey

{Cd,Cdl={Cq,Cq}=1
all other anticommutators vanishing. The vacuum of the theory, denoted by | — + ), is such that

Co | —+)=C{|—+)=0,

(—=+|C3Cq | —+)=i,
all other zero-mode vacuum expectation values being equal to zero. The action is then given by

i -~_ A i A i _A
=5 {el[Cq. Q@)+ (@ |Qk™|2)——(n|kQlp), (73)

where the fields |@) and |7 ) are decomposed as

|@)=(¢+scd +RCo +TC3Cq) | —+), [n)=(a+BC3 +uCqs+vCiCq)|—+) . (74

The action A has ghost number zero, so then | @) has also ghost number zero because C g and @ have ghost numbers
—1and + 1, respectively. One can also see that |7) must have ghost number —1. The vacuum is taken to have ghost
number zero and then the ghost numbers of the various components are (0, —1,1,0) for | @) and (—1,—2,0,—1) for

[ 7).
The action is invariant under

sley=0le), dlmd=]e), (75)
due to Q 2=0 (for D =26) and {Q,C‘ o } =k . The arbitrary field | €) is decomposed as
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[€)=(A+XC§ +pC 5 +wCdCq5)| —+)

and its ghost numbers are the same as for | 7).
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(76)

When explicitly computed, expressions (73) and (75) give, up to global and field rescaling factors, the action (71), and

its corresponding gauge transformations.

Finally, we should notice that the action of Ballestrero and Maina can be obtained from that of Neveu et al.!®

v=7@I[C5.0119)

(77)

by a simple variation algorithm. Action 4y is invariant under 8| p) =0 | €) provided that k ~ | €)=0. This restriction

can be removed if one introduces an auxiliary field:

A

bAy=1(e| Q€70 -0C5) @)+ 5 (e (C50 -

Cy)0 |e)

=3 (elk=01@) = (9 Ok [) =250 k=0 |¢) (9 Ok~ [8my=Lo¢n | k=0 |¢)—~ Lo¢p| Ok~ 1)

and so we recover the action (73). We can also set

S )=k~ |e)

and then we get an alternative expression for the action:

= $4@1[C5.0119) + (e Q1M —L(n 101 9) .

IV. CONCLUSIONS

We have developed an algorithm to construct gauge-
invariant actions for string fields from the knowledge of
the equation of motion in the conformal gauge and the
gauge transformation for the physical functional using the
cohomology operations of Banks and Peskin.

For the open string case we obtain the well-known ac-
tion written in terms of the BRST charge operator, while
in the closed string case we obtain actions related to the

]

I

one recently proposed by Ballestrero and Maina, incor-
porating the equation (Ly—Lg)$=0 and its generaliza-
tion without restriction on the gauge parameters.
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APPENDIX

Here we want to generalize the procedure carried out in
Sec. II for the two first action levels. At a given level we
have the action

n
am=3 =1 L (g1, ki) + 2 (si*1,di+3¢i L1+(—Dits{ ™) (A1)
i=0 i=0

which is invariant under

dpi=—dAl_+dA T 2~ 1)~Wit) i=0,...,n—1, (A2a)

8¢/ =—dA,_1, (A2b)

Bsitie 2” KA _axitlyaxi+t? i—0,.. . ,n—2, (A2bo)

n (=t n

8Sn_1=—"‘7_k/\n_1 dX,,__z (A2d)

(when an index is <0, the corresponding term is supposed to be zero).
One observes that 8(d¢; ) =0 and we are led to consider the action

Az)n+”=A(")+(S:+l,d¢:) (A3)
We also realize that all the equations of motion of 4", except the one for én, have the additional symmetries

8dn=0AnT'+2(— D" lixnt], (Ada)

8sl_ =0xnt1. (A4b)
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Under (A4), A"+ transforms as

sAy+Y = (— )

As expected we choose
st = —2(—1)"kAZ T —dxrt]

and then further manipulations give

SAFHY =(sr 1 adAr T —(—1)"8(sr T st ) .
If

AP =AY (=1 s (A6)
then

BA({'-H)Z(S:_H,adA:'H): (s +'88¢Zi}
where

dpnti=—dArt! (A7)
so then

(kAR L den) +(XnE1,3dgn)+(8sy T dgn)+ sy T Ld(BAL ! +2(—1

(A5) *

2489
Pl .
r
8A(n+l) 8(s"+18¢"+1 8sn+la n+1
1 n n ¢n+1
If we define
A(2n+1)=A(n+l)+(sn+l a¢:1{ (AS)
its variation will be given by
84T =(— 3 (=1k AT —dX7 11,867 1D)
=1(=D"8($pILkentD
and then 64" V=0 with
A(n+1) A(n+1)+ 4( 1)n+l(¢:i%’ ¢:¢} (A9)

A"+ has the same structure as 4™,
to n— oo arriving at the action (27).

so then we can go
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