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We study the Becchi-Rouet-Stora-Tyutin (BRST) structure of a self-interacting antisymmetric
tensor gauge field, which has an on-shell null-vector gauge transformation. The Batalin-Vilkovisky
covariant general formalism is briefly reviewed, and the issue of on-shell nilpotency of the BRST
transformation is elucidated. We establish the connection between the covariant and the canonical
BRST formalisms for our particular theory. Finally, we point out the similarities and differences

with Witten’s string field theory.

I. INTRODUCTION

As is well known,"? the gauge transformation of the
free string field theory admits an infinite tower of null
vectors, leading to the appearance of states of an arbi-
trary ghost number in the quantum gauge-fixed action,
coming from the ghost-for-ghost mechanism. In con-
trast, Witten’s interacting string field theory has a gauge
transformation with null vectors only on shell, that is to
say, using the equations of motion of the classical field
with a ghost number —1 (Refs. 3 and 4). This fact
prevents one from using the naive Becchi-Rouet-Stora-
Tyutin- (BRST-)covariant gauge-fixing procedure. In
Ref. 3, this problem was solved by inspection and the
quantum gauge-fixed action was constructed demanding
that it be invariant under a guessed BRST transforma-
tion, which turned out to be nilpotent only on the equa-
tions of motion of the quantum action. This allowed us
to introduce the whole tower of fields with arbitrary
ghost number, making the transition to the free theory
understandable. As was already mentioned in Ref. 3 and
completely worked out in Refs. 5 and 6, the final result
can be obtained in the framework of the Batalin-
Vilkovisky covariant general formalism under the only
assumption that the naive measure of the functional in-
tegral is BRST invariant, which has been shown to hold
in Ref. 7.

In Ref. 8 the similarity between Witten’s theory and
the theory of a self-interacting antisymmetric tensor field®
was traced, and the problem for the latter was solved
along the lines of Ref. 3. In this paper we want to clarify
the relation between the on-shell nilpotency of the BRST
transformation of the quantum action and the existence
of on-shell null vectors of the gauge transformation of the
original theory, specializing our results to the antisym-
metric tensor theory mentioned above. For this theory
we also study the relation between the BRST generator
obtained from the gauge-field action using Noether’s first
theorem and the BRST generator obtained from the
knowledge of the canonical constraints and their rela-
tions. This is of current interest because it could give
some insight into the canonical formalism of Witten’s
theory.

The paper is organized as follows. In Sec. II we review
the Batalin-Vilkovisky formalism, and present the general
result concerning the nilpotency of the BRST transfor-
mation. In Sec. III we apply the general results to the an-
tisymmetric tensor, whose canonical structure is studied
in Sec. IV, where the relation to the covariant (Lagrang-
ian) formalism is commented upon. Finally, in Sec. V we
set our conclusions and the relation to Witten’s theory is
discussed.

II. BATALIN-VILKOVISKY FORMALISM

As we have already said, the quantum actions of both
the self-interacting antisymmetric tensor and Witten’s
string field can be written down using the covariant gen-
eral formalism developed by Batalin and Vilkovisky.'®~!?
Here we just want to set the notations and specialize the
results to the particular kind of theory we are interested
in. The general result concerning the nilpotency of the
BRST transformation is also presented.

The fields appearing in the classical action & are denot-
ed by ¢"

S=8[¢'), i=1,...,n (2.1)

and they are included in a larger set of quantum fields
generally denoted by ®“:

[$}C (@4}, A=1,...,N. 2.2)

To each field we associate an antifield ®* with opposite
statistics,

e(®4)=e,, €(P*%)=€,+1 (mod?2), (2.3)

and this allows us to define an antibrackets in the phase
space of fields and antifields:

3,F 8,G d,F 3G

(F,G)= — . (2.4)
a®1 3%  3d* 9“4
The functional integral of the theory is given by
Zy= [exp éwz[cp] [1do4, (2.5)
A

where Wy [®] is the restriction of W[®,®*] to a surface
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determined by

_ov[®]
=

The functional Y[®], with odd statistics, is called the
gauge-fixing fermion, and the functional integral Zy does
not depend on its form, provided that WV satisfies some ad-
missibility conditions and W is the solution of the equa-
tion

q)*

LW, W)=iAW , (2.6)
where
3, d
A= ! 2.7)
D4 ad*,

Expanding W in powers of #,

W=S+ 3 #W,, (2.8)

n=1
Eq. (2.6) gives, for the lowest term,
(5,8)=0. (2.9)

This is called the master equation and its solution S is the
main object in the Batalin-Vilkovisky formalism. If the
naive measure [[,d®“ is invariant under the BRST
transformations

3,8

§y®A=(—1)4
3Py |5

(2.10)

then one can show that it is possible to set W, =0, n > 1.
The solution to the master equation, when restricted to
2, gives the full quantum action of the theory, whereas
the W,, n > 1, take care of the noninvariance of the naive
measure under (2.10). What the Batalin-Vilkovisky for-
malism shows is that it is always possible to restore the
BRST invariance of the whole functional integral by add-
ing new terms to S, provided that now the BRST trans-
formation is defined using W instead of S. Anyway, the
measure is not well defined in the covariant formalism,
because BRST-invariant factors, which would give new
Feynman diagrams, can always be considered.!®!3 This
issue can only be addressed in the framework of canoni-
cal formalism, where unitarity fixes everything.

The solution to the master equation has to meet two
basic requirements. The first is the correctness of the
classical limit, which essentially means that

S[P,P*]| e _,=51¢] - (2.11)
The second is the nondegeneracy of the functional in-
tegral. This dictates the minimal content of the set of
quantum fields as well as the admissibility conditions on
the gauge fermion. All this depends on the stage of redu-
cibility of the theory, which we are going to define now.

The classical action is supposed to have at least one
stationary point ¢,

9,S[¢]

-0, (2.12)
' |4

and to be regular in a neighborhood of ¢, As we are
dealing with a gauge theory, m, (bosonic and fermionic)
Noether identities hold in a neighborhood of the station-
ary point:
9,5(4]
a¢’

where R are regular functionals and €(R; )=¢, +¢;.

R. [$]=0, ao=1,...,mq, (2.13)

If they are independent the theory is called irreducible.
Otherwise, there exist m; null vectors Zflf’)a1 [o]:

i ) _ ) _ _
RoZVa, | 4,=0, €(Z()g)=€4 +€, a1=1,...,m;.

(2.14)

Notice that, unlike (2.13), it is sufficient that these rela-
tions hold on shell. If the Z 71",(,‘ are independent, the
theory is said to be a first-stage-reducible theory. This is

the case we are interested in. From (2.13) and (2.14) it
follows that

=n —(mo—ml) (2.15)
which is called the condition of completeness for first-
stage theories. The set of quantum fields for these kinds
of theories is

a

i C Co oo s iors s Conv sy, Crl ITSY . (2.16)
¢',C0)»Ci1)s Ciorags 0y Ci)ay Mitya Coays My - (2.

Da,

All these fields are assigned a ghost number according to
gh(¢)=gh(Il ), )=gh(C(}})=0,
gh(C(8))=—gh(Cig)q,)

= —gh(IT;;), )=gh(I})=1, (2.17)

gh(czzll) )= _gh(é(l)a] )=2 .

The gauge fermion has gh(¥)= —1, and all the antifields
are given ghost numbers consistently with &%
=3W¥ /3P4, The statistics of a field (or antifield) are
given by the statistics of its index plus the absolute value
of its ghost number.

The solution to the master equation is written as

— *
S[P,2* =S [Ppin, Prin] +C <<§°H<o>ao

—= ka ’ ra
+C(l)ln(l)al+c(l*)aln(1)l ) (2.18)
where the “minimal” set of quantum fields is
DA=1{4.C5,CH} (2.19)

whereas the other fields are necessary for the gauge
fixing. It is apparent that, if S[®,;,, Pri.] is a solution
of the master equation, then S[®,®*] is a solution also.
One can expand S [P, Pr..] in powers of the antifields
keelpling a zero total ghost number. The lowest terms
are
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a,
S[cbmm’ mln]—&+¢ C(O)+C(O (Z(lo)a

B,
1+ TB Yo C(O)C((?) )

+C(1)al(ABla0C(O)CH)+Fa B ‘VOC(O)C(O) ©))+87 67 (B Cm +E% 5 clCw)

1ag,

i
+2C 0147 (G o ¥ C(O)C(l)+DB 7 6% C

For the usual first-stage theories no more terms are need-
ed. All the coefficients are supposed to be functionals of
the classical fields ¢'. Let us briefly comment on the
meaning of the various terms appearing in (2.20). §, R :,o,
and Z (“10)(1 have been previously defined. The T;f)’y are
the structure functions of the gauge algebra. The F! apBo¥o
take into account the modification of the Jacobi identity
brought in by the presence of the null vectors Z:I{’)al, and
the Ai'}ao appear when the Z :1‘0’“1 are field dependent.

The remaining coefficients extend the previous relations
off shell. For instance, the Egoﬁo appear when it is neces-

sary to use the equations of motion in order to close the
commutator of two gauge transformations (the theory is

said to have an open algebra). The D, B y 5 plays a s1m11ar
role with respect to the Jacobi identity and the G E are

needed to close a higher-order relation. In the case of the
antisymmetric tensor which we will consider, the most
important coefficients are the B/ X which appear when

the nonindependence of the VA (Da, holds only on shell.

Thus, let us consider the case when all the higher correc-
tions are zero except for the B {;0:

S[q)mm’ mm] "S)+¢1R C(O)
+ C(*O)GOZ(I‘))HIC”') +67¢;BL Cl)
(2.21)

After substitution in the master equation, we get the rela-
tions

3,8 . 4

a¢iR’aO (6))20, (222)
3,8

R Z(, Cll—2—— Bl C{l,(—1)"=0.. (2.23)

¢’
In the next section we will solve Eq. (2.23) in the case of
the antisymmetric tensor.

Next, let us give the general form of the gauge fermion.
It has to satisfy several conditions concerning its second
derivatives in order to remove the degeneracy of the
functional integral.!!

For first-stage theories, the simplest form is

— Qa, _ a Q, - Q, ra
¥=C g, X [61+Ci1)0,04,C10) +Ci01yTa,Ci1) » (2:24)

where the X 0[d)] are the gauge conditions on the classical
fields, and the o, o and 0 0 are some maximal rank ma-

trices which remove the degeneracy of the kinetic term of

cho

Co+ - (2.20)

-

the first generation ghosts C(& and C(0)a,- This form of

the gauge fermion gives rise to the so-called degenerate
gauges, where the gauge conditions are enforced through
d functionals. Other forms are available in order to ob-
tain Gaussian gauges.

To end this section, we report two general results con-
cerning the BRST transformation. In the space of fields
and antifields, we can define a ‘“‘gauge-independent”

BRST transformation in the following way. If
F =F[®,®9*] then
8F=(—1)F(F,S), (2.25)

where the (— 1) factor has been set to enforce the prop-
erty

8(FG)=(8F)G +(—1)FF(8G) . (2.26)

This transformation is nilpotent due to the master equa-
tion, which also shows that S is BRST invariant. Howev-
er, one finally eliminates the antifields and deals with the
“gauge-dependent” BRST transformation (2.10) and the
gauge-fixed quantum action

aw

Sl®]=5 5o

D, P*= (2.27)

which depends on the election of the gauge fermion W.
Now two questions must be posed: (1) is S, invariant un-
der 8y and (2) is 8y nilpotent? The answer to the first

question is affirmative:
S\l,ng[(I)]=0 > (228)

whereas with respect to the nilpotency we have the fol-
lowing result:

+1) arng
oP?

3,9,8
A% 9D}

S A=(—1)B (2.29)

2

Both demonstrations are quite straightforward, the only
nontrivial point being to realize that

9,S 9,0,¥ 9,8
3P} dP 3P 3P,

=0 (2.30)

due to an antisymmetry property of its indices. These re-
sults are totally general and do not depend on the stage of
reducibility of the theory. They rely entirely on (2.9),
(2.10), and (2.27). Equation (2.29) can be understood in
terms of the consistency of the gauge fixing
®* =0V /0P with the gauge-dependent BRST transfor-
mations 8W®“ and §,P*, in the sense of demanding
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e 9,8

v
= —1) A
( P4

8 _
Y1 a4

(2.31)

If the transformation was nilpotent before the gauge-
fixing procedure, it has to remain nilpotent if the rela-
tions introduced by the gauge fixing do not contradict the

transformation. It turns out that (2.31) is exactly
equivalent to
a,S
rgf
= (2.32)
P

Thus, the first factor in (2.29) is understood, and so is the
second one, because if S[®,P*] is at most linear in the
antifields, then §&4 =5,d 4.

The above results tell us that one can always define a
BRST transformation depending only on the quantum
fields (classical fields, ghost fields, and auxiliary fields)
and construct a gauge-fixed action invariant under it.
However, in general the nilpotency of that BRST trans-
formation is assured to hold only on shell, using the equa-
tions of motion provided by S, Nipotency off shell will
be kept only if the solution to the master equation con-
tains terms at most linear in the antifields. Terms at least
quadratic in the antifields are brought in when the rela-
tions of the classical gauge algebra need the equations of
motion of the classical action to close.

III. THE ANTISYMMETRIC TENSOR FIELD

Consider a self-interacting tensor field B, m four di-

mensions, described by the Lagrangian den51ty
Lp=—3B FH A AN, (3.1
where 4, is an auxiliary vector field with field strength
- be 4 b
Fj,=0,A5—-0,A,+f" 4,4 . (3.2)
The action is invariant under the gauge transformation

8B =e""(D,8,)%, 8AM=0. 3.3
J

S[®,®*]= [dx[Ly+B2,,e7%(D,C), )

+C(D,Cy))—+

The gauge-independent BRST transformations produced
by S are

8B =€ (D, Cio)0 ji_ gvho pabepgx Ce
Scfom = ——(D#C(,, ), 8C fomz —Hfomr
8CH) =0, 8C =M% 8CH) =111, ,
8“?0);4:5[1?1):5“({11) ’

(3.14)

and

by ~ ’ ’
B}, Bi.ge""BfeeCt, +C 5t Moy, +C &)+ CAY IS ] -
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The covariant derivative

D& =893, + f* A, (3.4)
satisfies

[D,,D,]*=f""F3,, €7 (D,F,,)'= (3.5)
The equations of motion of B?*" give

F°¥=0 (3.6)
while the rest of the equations relate 4%* and B?*Y,

A4,+2(D"B,,)*=0. (3.7
The gauge transformation has a null vector on shell:

8§ =(D, &)= B =Leth7 fadbpd §b (3.8)

and the reducibility stops here, so we are dealing with a
first-stage, on-shell reducible theory. In spite of the pres-
ence of the structure constants f°%, our theory has an
Abelian gauge algebra due to the fact that the vector
field, which appears in the covariant derivative, does not
transform. Therefore, we can use the expression (2.21) to
find the solution to the master equation. The set of classi-
cal fields is
¢i= [Bapxl(

x), A (x)} (3.9)

while the R f,o, which are nonzero only when they refer to
B°*¥(x) are, according to (3.3),

Re#VxEbIW) — gvhopab(x)§(x —y) . (3.10)
From (3.8) we get Z(al‘)a :

Z535¢D = pbe(x)8(x —z) . (3.11)
Now we can substitute in (2.23) and obtain the B :

Blhgtxhama) — _ Lemvho pabeg(x —y)8(y —z) . (3.12)

The solution S[®,®*] to the master equation is thus

(3.13)
[
SB:#V = —%Ffw’ SC(‘O")“ =—(D;Bgg )afam# ,
8C &5,=0,
8CH = — 1B, Bluge P —(D,CH)*,  (3.15)
8C {5=0=8C{1} ,
5H<0)ﬂ C*Oa)“’ ‘Snl)__c(l)’ SIT=—C1y .

In order to get the full quantum action, we have to
choose a gauge fermion. The simplest ¥ having the form
(2.24) one can use is
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V= [dx(C%, d B +C?d*Cs +C?& 9¢Ce). out this program, and this is the case for ¥ in (3.16). Had
f (0u0B (= O O m we worked with the dual of our B*, (3.16) would have
(3.16) been a good election.

. . . Instead of (3.16) we choose
However, we have in mind to write down the BRST

charge Q uging Noe‘ther’s first theorem, and then express V= f dx (e C 0,85, +C¢ HC )
the result in canonical terms. In order to do that, we
have to be able to substitute all the velocities appearing in +C fo)ua“C ). (3.17)

Q using the Legendre transformation provided by L. It
turns out that not all the admissible W’s allow us to carry ~ The quantum gauge-fixed action is then

J

Sl ®]= fdx[ —1BL F* 4+ 1454 —23°C {§{(D ,Ci0p—DgC0)q)* —3*C {1(D,C 1))
+ 26,05 f “*OC (53°C (HC1) + €499, B, 1§, +3C 5 {0+ 94Clo, 117y, —3C ), IT)]  (3.18)
and the gauge-dependent BRST transformation is the same as that in (3.14) except for
8yB M =€""*(D, C (o), )°+ 21 *(3*C by, —3*C B)Cy,, . (3.19)
We can check that 6yS =0, and that

5,8
BYBCH = [N —LF Y, +eum A THRICE = f e Ch (3.20)

according to (2.28) and (2.29).
Next we compute the BRST charge Q, associated to 8y and S using Noether’s first theorem. To this end we need

Sy L gr=[1€4000 ?6)FGM+2H?0>V(D”C(V0> —DYCg), )*—T{\(D, C (1)) —4€ 05 f P NGRC (HCE + TG ITE]. (32D
A straightforward calculation gives (i,j =1,2,3)

Q= de{EOijk[Fi‘}'f‘Z(Dino,' 1C Gk —‘(Dicm)af)féﬁfabci)%)cfnnsi—%eouktpfmkn?j‘7)1‘11)73?8)‘**7371)7_)?8)} ) (3.22)

[

where Q is the canonical generator of the transformation 8y, in
the sense that
a— aliEf——Ze I, i<
U= 3pai oijk 14(0y J > 8y®A=FL*{®4,Q}, (3.24)
o 9Ly where { , } are graded Poisson brackets'>'* and FL*
0T 3paoi T stands for the use of relations (3.23).
9.L To what extent does expression (3.22) for Q depend on
Pog= e _(E ak _HC @) +g%1y, gauge fixing? As we have already said, one must be care-
aC (o) ful when choosing V¥, because in general one is not able to
al.L (3:23)  express the resultant Q in terms of canonical variables, at
P = — gf least if one does not want to work in a submanifold of the
aC fo whole phase space. However, we know'*~1¢ that Q, the
BRST charge of a given gauge theory, can be directly
= —2(D,CH, ——D“C?O, )2 written in canonical formalism without any gauge fixing,

taking only into account the Hamiltonian constraints of

the original gauge-invariant theory and their relations.

= In the next section, we will see that Q has the same form
Ouap fabce, b ¢ _ o0uyyra > s
+4HEL 0L (0)pC i) —& NG as the canonical Q.

aI=*£gf
Ply=—=—(DoC))*,
3 6 a IV. HAMILTONIAN ANALYSIS
(D
3.L In order to study the canonical structure of the gauge-
a I~gf  a . . .
= ={pp - invariant theory (3.1), we have to define the canonical
ra
aC (i) momenta
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oLy oLy
= Tray =" 4.1)
): RS-V R
which bring in a set of primary constraints,
Mg =0, M%=0, M§=0, p!=M¢+BE=0, 4.2
and a Hamiltonian density
H.=1BiF"Y—1A§A4°— LA A"— B33 4§
+f%Bg Abac. (4.3)

We are considering only the independent variables B,
B, i<j, Aj and A/ However, whenever spatial
indexes are summed, all of them are supposed to run
from 1 to 3.

We consider the primary Hamiltonian density!’

FH p = .+ AOTIG; + AT, + A%p¢ + A°°TI 4.4)

and apply the stability algorithm. The primary con-
straints II§; and p{ form a second-class subset and their
stability determines the up to now canonically unknown
functions A°% and A%

kgiz_%Aia+fachgiA6—(DkBik i (4.5)

Al=(D; Ay)* . (4.6)
Now we can compute Hf’] and I18 using #*!, which is
obtained'® by adding to 7, the primary pieces (4.4)
which have been canonically determined in (4.5) and
(4.6). We get

nla]:_% i[}—(Din()j)a’ i)j:1’2y3 ’ (47)
=148+ fBs 15, —(D,I1,)" . (4.8)

We notice that I1 6 is second class,
(T§(x), IE(y)} =16%8(x—y) ,

and its stability I12=0 will determine A°°, which we do
not need anyhow. Instead, Hj’l is first class because its
brackets with all the other constraints produce, at most,
terms proportional to I1§;, which is a constraint. In addi-
tion, the algebra of first-class constraints H;‘j and Hfj is
Abelian, which was already noticed in the Lagrangian
analysis.
One can see that

M§=—rocafing, 4.9)
so we end with a set of first-class constraints,
g, —IM§=1F+ (D), (4.10)

and a set of second-class ones: II§;, pf, I1g, I1§. Let us in-

troduce the notation
T%=— €%, (4.11)

which is a combination of first-class secondary con-
straints. We observe that

Z,bebkE(D,gb—fabcngk )Tbk

_ _eoki_[fabC(Dk HOi )bngj , (4.12)

so we get an on-shell relation between the constraints, be-
cause the right-hand side is (quadratically) vanishing on
shell. This is the canonical counterpart of the on-shell
null vectors of the gauge transformation, Eq. (3.8).

The knowledge of the first-class constraints (4.10) and
their relations (4.9) and (4.12) allows us to construct the
generators of the gauge transformations, applying an al-
gorithm developed in Refs. 19 and 20. The ordinary gen-
erator is

Gorg= [ dX[MIGS G — P UTLG 4+ £ ATIS1 ]

(4.13)
which produces
8B =€% D&, )7,
. N (4.14)
8B =€"X(D;8; )" .

The part of 8B°/ which is missing is brought in due to
the existence of the relation (4.12), which allows us to
consider

Gex = [ dX(Z, V11,88 4.15)
which gives indeed
8B =D, §,)° . (4.16)

The generator in (4.15) is an on-shell solution of the algo-
rithm mentioned above.

Next we use the general canonical formalism of Frad-
kin and Vilkovisky'#!®2! to construct the canonical
BRST generator. Taking the first-class constraints (4.11)
and their relations in (4.12) we write

Q= f dx[T“Cly); +P )\ Z,C(1))°

+ €25 P8 ¢, + PPl + PP 5] - (4.17)
Up to redefinitions of the ghosts by scaling factors, this
has the same form as the BRST generator (3.22) coming
from a gauge-fixed Lagrangian. However, one must not
forget that the momenta in (3.22) have a meaning related
to a given Legendre transformation, while those in (4.17)
are just the coordinates in an extended phase space.

V. CONCLUSIONS

Using the Batalin-Vilkovisky covariant general formal-
ism, we have recovered the result that a BRST transfor-
mation depending only on the quantum fields can always
be defined and that a gauge-fixed BRST-invariant quan-
tum action can always be constructed, see Eq. (2.28), no
matter how involved the gauge algebra of the theory.

The BRST transformation is always nilpotent on shell,
using the equations of motion of the gauge-fixed action,
but it is nilpotent off shell only when the solution to the
master equation is at most linear in the antifields, the re-
lation being given by Eq. (2.29). This happens when the
gauge algebra of the classical theory is verified off shell,



38 LAGRANGIAN AND HAMILTONIAN BRST STRUCTURES OF . . . 1175

as terms at least quadratic in the antifields appear when
one needs the equations of motion of the classical theory
to close the relations.

The antisymmetric tensor we have considered is an
on-shell first-stage-reducible theory. We have performed
the Lagrangian analysis and, after fixing the gauge, we
have obtained the BRST generator using Noether’s first
theorem. This BRST generator can be given a canonical
form by means of the Legendre transformation associated
with the gauge-fixed action.

The canonical structure of the theory has been studied,
and, in addition to first-class constraints associated with
gauge invariance, second-class constraints have been
found. The first-class constraints are on-shell nonin-
dependent, which in this case means that a combination
of them is identically zero up to a quadratic combination
of second-class constraints. Using the general canonical
formalism developed by Fradkin and Vilkovisky, we have
constructed the BRST canonical generator out of the
knowledge of the first-class constraints and their rela-
tions, with no gauge-fixing input. The result turns out to
coincide formally with the generator obtained via the La-
grangian formalism. This relationship depends crucially
on the election of the gauge fermion. For an arbitrary
gauge fixing, one is not able to express the velocities ap-
pearing in the Lagrangian Q in terms of the canonical
variables.

With respect to the relation to Witten’s theory the
similarity with the antisymmetric tensor holds as far as

both theories are reducible on shell, but Witten’s theory
is infinitely reducible on shell (always with respect to the
equations of motion of the classical field), besides being
non-Abelian.3

In addition, Witten’s theory in its usual form is an
infinite-order action, with derivatives of arbitrary or-
der.?223244 A canonical theory for such singular systems
is presently not at hand, in spite of some recent pro-
gress.”>2% Tt has been argued®’ that Witten’s theory can
be reduced to an ordinary theory if one uses the time
component of the midpoint as the evolution parameter,
and a canonical analysis has been carried out in Ref. 28.
This analysis shows up the presence of second-class con-
straints, tracing a parallelism to our antisymmetric ten-
sor. The formulation of Witten’s theory in midpoint
coordinates has received a deeper analysis in Refs. 29 and
30.

Note added. After completion of this work, we re-
ceived Ref. 31, where the Batalin-Vilkovisky formalism is
also applied to the antisymmetric tensor, in agreement
with our results when they overlap.
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