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Abstract

Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a
functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native
disulfides depends on their C–C–S–S dihedrals, x2 and x’2. Moreover, the interplay of chemical reactivity and mechanical
stress of disulfide switches has been recently elucidated using force–clamp spectroscopy and computer simulation. The x2

and x’2 angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered,
so–called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C–C–S–S
dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of
disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress
brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free
energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open
conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical
stress with the distance between the two a–carbons of the disulfide moiety reveals that the strain of intrachain Ig protein
disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold
increase of the rate of the elementary redox SN2 reaction step. All these findings constitute a step forward towards
achieving a full understanding of functional disulfides.
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Introduction

Disulfide bonds are known since long to play crucial roles in the

workings of Nature’s protein machinery [1]. For many years it has

been accepted that disulfide bonds have been added during

evolution to enhance the stability of proteins that function in a

vividly fluctuating cellular environment by establishing covalent

crosslinks [2], thus protein folding and disulfide bond formation

going hand in hand [3]. However, recent evidence indicates that

disulfide bonds can be more than just inert structural motifs [4].

Today, the emerging paradigm is that the disulfide proteome

consists of two subproteomes, a ‘‘structural’’ and a redox–sensitive,

‘‘functional’’ class as many disulfide bonds have been discovered to

play crucial roles in regulating the biological activity of the

proteins themselves [5–8]. Such so–called ‘‘disulfide switches’’ are

enabled by the very chemistry of sulfur bonds, which can easily

undergo redox reactions at mild, physiological conditions [9–12].

Moreover, since a few years only, we have witnessed a growing

interest in probing experimentally the cleavage and interchange

reactions of functional disulfides under controlled stress conditions

in order to fully understand the molecular basis of these

elementary biological processes [13–16].

Most interestingly, it has been observed that numerous

‘‘disulfide switches’’ are associated with strained conformations

involving the C–C–S–S dihedral angles, i.e. x2 and x’2 as defined

in Fig. 1, in response to geometrical constraints imposed by

proteins in certain regions of their structures, such as e.g. in the

case of staple conformations that store a significant amount of

torsional strain energy [8]. Since the value adopted by x2 and x’2 is

seemingly a factor that controls the ability of a given disulfide to

act as a switch, the energy landscape of disulfide bridges for

hindered torsional motion around their x2 and x’2 angles has

recently raised much interest [17,18]. In particular, the potential

energy surface (PES) for the torsion around these dihedral angles

has been computationally investigated in a small model system

(diethyl disulfide, DEDS) to scrutinize the conformational ener-

getics of the disulfide bridge [17,18]. Upon mapping the

distribution of the disulfide bonds in the Protein Data Bank

(PDB) onto the computed two-dimensional PES, an astonishing

conformational diversity of disulfide bridges in terms of their
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preferred x2 and x’2 values has been observed [17,18]. Although

the majority of disulfides adopt the lowest energy conformation, a

significant amount of disulfides is found in other regions of this

PES (including other local minima and non-stationary points)

[17,18]. This computational and statistical analysis on the

conformational landscape of disulfide bridges has certainly

delivered useful information as to know which disulfides are likely

to be redox–active. However, recent work on the mechanochem-

istry of disulfide bridges suggests that another variable should be

explicitly included in this analysis in order to have a more

complete picture of the interplay between conformation and redox

activity of disulfides.

Research on the mechanochemistry [19–21] of disulfide bridges

[22] has already provided spectacular insights into the intimate

coupling of chemical reactivity and mechanical stress [23,24].

Along such lines, recent pioneering force–clamp atomic force

microscopy (AFM) experiments on a mutated I27 domain of

cardiac titin have revealed an abrupt switch in the redox reactivity

of disulfide bonds when stretching the peptide with external forces

of roughly 0.5 nN [25]. Enormous efforts have been invested to

unravel the molecular origin of this most enigmatic switch and to

decipher the mechanical properties of disulfides in general [25–

34]. Using again a minimal molecular model system, namely

DEDS in bulk water, it has been demonstrated that it is not the

stretching–induced distortions of the central C–S–S–C dihedral

angle (denoted as x3 in the protein literature), but stress–induced

conformational change of the C–C–S–S dihedrals (i.e. x2 and x’2
in Fig. 1) which regulates the measured redox activity [34]. In the

absence of force, the disulfide bond is in a conformational state

that is favorable for nucleophilic attack in the sense of a standard

SN2–type reaction and thus for redox reactions. The molecular

reason is that the x2 and/or x’2 dihedral in the unstretched

molecule is in the so-called ‘‘open’’ state and allows for ready

collinear attack of the nucleophile as explained earlier [34].

However, upon straining the molecule by stretching it, both angles

are quickly deformed towards x2/x’2 & 180u/180u, corresponding

to the so-called ‘‘closed/closed’’ state, which blocks the reactivity

cone for SN2 attack and thus counteracts the redox activity. This

change from open to closed/closed conformations occurs at

around 0.5 nN and provides the molecular underpinnings of the

disulfide switch in the single–molecule limit [25,34]. We mention

in passing that a closed state with respect to the x2 dihedrals

according to this ‘‘mechanochemistry nomenclature’’ corresponds

to a trans conformer within the conventional classification scheme.

The open states, in turn, embrace the subclasses of spirals, hooks

or staples, the latter category including examples of ‘‘allosteric

disulfide bonds’’ [6,35].

These findings suggest a possible link to the aforementioned

functional disulfide bonds in native proteins which are strained in

terms of the x2/x’2 dihedrals, at the level of the underlying SN2–

type redox reaction. It is noted in passing that, of course, global

conformational blocking and lack of solvent accessibility in the

case of buried disulfides, which might hinder the approach of large

nucleophiles already far away from the redox center itself, are

additional important factors that certainly affect the apparent

reactivity of disulfides. Having this in mind, it should be recalled

that IgG4 [36,37] and IgG2 [38] systems exhibit functional

‘‘structural isoforms’’ which are proposed to be mediated via

intrachain disulfide bonds. Thus, apart from the solvent accessi-

bility, the proximity of internal thiols in proteins could also

mediate disulfide bond reduction, making these intrachain

disulfides also interesting candidates for the reduction process.

In view of these observations obtained at the single–molecule

level, it is clear that the explicit consideration of the tensile stress is

mandatory for a full understanding of both the conformational

landscape of disulfide bonds and its connection with their redox

activity. Here, on the basis of extensive isotensional metadynamics

simulations, we will evaluate how the conformational free energy

surface (FES) of disulfide bridges as a function of torsions around

the x2 and x’2 dihedral angles is transformed upon applying tensile

stress. At this point, it should be emphasized that our systematic

study of the conformation energetics of disulfide bridges not only

incorporates the effects of external forces, but it also incorporates

finite temperature and entropy effects through mapping the

associated free energy surfaces.

Our analysis will reveal that tensile stress brings about drastic

topological changes on the conformational FES of disulfides.

Indeed, it will be demonstrated that mechanical stress results in a

notable stabilization of the closed conformation of disulfide

moieties and that this is the single minimum observed in the free

energy surfaces obtained at forces around 1 nN. Besides, we will

present the results of a new statistical analysis of Protein Data Bank

(PDB) structures, which will disclose that the disulfide bonds of

different classes of proteins feature markedly distinct patterns when

it comes to their preferred x2 and x’2 dihedrals and thus

conformations. Specifically, intrachain immunoglobulin (Ig) pro-

tein disulfides strongly prefer x2/x’2 combinations around 180u/
180u, i.e. closed/closed conformations, whereas functional disul-

fides residing in thiol–disulfide interchange proteins (TDi) [39],

disulfide oxidoreductases (DO) [40] and in interchain Ig proteins

Figure 1. Three models of increasing complexity used to
investigate strained disulfide bonds. (a) Diethyl disulfide (DEDS),
(b) cystine, and the (c) polypeptide model (see text). The collinear
constant force of magnitude F0 is applied to the terminal methyl C
atoms in panel a and to N and C termini in panels b and c. The dihedral
angles x2 , x’2 and x3 are defined in panel b.
doi:10.1371/journal.pone.0108812.g001
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most clearly avoid these values of x2 and x’2. The latter classes are

thus ‘‘conformationally active’’ disulfides, that is, disulfides that

possess a local configurational arrangement close to the disulfide

bridge being the redox center, that favor an easy approach of

nucleophiles. It will be shown that the x2/x’2 & 180u/180u
conformations of disulfides in intrachain Ig proteins, which

originate in interstrand constraints imposed by native Ig proteins,

correspond to a tensile force on the order of 100 pN on these

strained disulfides. Based on this force, which is well within the

range of physiological forces relevant to biological processes [41–

46], it can be argued that these particular disulfides are

‘‘mechanically activated’’.

Results

From molecular models to polypeptides
At the core of our analyses will be to understand the

conformational behavior of disulfide bonds depending on strain,

which is imposed by external tensile stress generated by stretching

the protein isotensionally, i.e. at constant force. The mutated I27

domain of cardiac titin used earlier in AFM experiments [25] is

simplified to the polypeptide fragment Ile–Cys–Leu–Ser–Glu–

Pro–Asp–Val–His–Cys–Gln, where the disulfide bridge connects

the 2nd to the 10th cysteine residue thus forming a loop as

schematically shown in Fig. 1c. This model inherits the topological

essence of the I27 domain of titin [25,26,47] while being stretched.

Furthermore, the system complexity will be reduced systematically

towards the minimal system DEDS, see Fig. 1a, by also

investigating a dipeptide, cystine as depicted in Fig. 1b, which

will enable us to systematically refer to earlier findings [34] in the

current framework. All three models are fully solvated in water at

ambient conditions and stressed by applying a constant force (of

magnitude F0 to the terminal heavy atoms as indicated in Fig. 1)

using isotensional molecular dynamics and metadynamics simu-

lations [21]. Full information on models, methods, and references

is provided in File S1.

Conformational diversity and mechanical stress
What happens to the conformational degrees of freedom when

putting disulfide bonds under tensile stress, i.e. upon mechanical

stretching our polypeptide model? As clearly displayed in panel a

of Fig. 2, the sampled probability distribution function associated

with the x2 and x’2 dihedral angles (P(x2,x’2)) features a

pronounced conformational diversity of the unstretched molecule.

In particular, with an overwhelming probability at least one of the

two C–C–S–S dihedrals is in a conformation that is open to

undergo redox reactions. The picture changes significantly already

at a stretching force of 0.3 nN in panel b, with a strong preference

of x2/x’2 & 180u/180u such that closed/closed conformations are

found to be significantly populated. This trend becomes system-

atically more pronounced upon stressing the molecule up to 1 nN

(cf. panel d), where essentially exclusively the highly strained

closed/closed state is seen to survive. The same observation is

made for the two smaller models, DEDS and cystine, where

closed/closed conformations are overwhelmingly populated at a

force of 300 pN and higher, see Figs. S3 and S4 in file S1. Thus,

we infer that the external force definitely impacts on the

conformational preference of the x2 and x’2 dihedrals in disulfide

systems in the sense of greatly reducing their conformational

diversity towards the closed/closed state. In addition, the two

smaller systems support the key characteristics found for the

polypeptide and are thus valuable reduced models for subsequent

analyses. The force-induced stabilization of the closed/closed

conformation can be easily understood in view of the fact that this

conformation leads to a more extended molecule. This, in turn, is

in line with previous single–molecule force spectroscopy studies,

where it was found that the elasticity of biopolymers in the low-

force regime stems from changes in the values of the dihedrals of

the backbone [48–50]. Such elastic response can in general be well

captured with simple analytical models, such as the worm–like

chain (WLC) or the freely–jointed chain (FJC) models [49,50].

Conformational diversity and mechanical coordinate
Next, the impact of stretching on the total population of open

conformers is analyzed systematically in Fig. S6 in file S1, which

exhibits a significant decay upon stretching, again found for all

systems considered. This suggests the question if there is a simple

way to connect this observation, i.e. the conformational response

of the x2 and x’2 torsional degrees of freedom of the disulfide

moieties to tensile force, to a structural parameter? Indeed, the so–

called mechanical coordinate q, i.e. the distance between the

atoms to which the external force is applied, increases qualitatively

in a similar manner according to Fig. S7 in file S1. In addition, this

behavior of q versus F0 perfectly correlates with the decreasing

contributions of open conformers in Fig. S6 in file S1. However, its

change in absolute terms is strongly system dependent: q increases

by about 6 Å from zero force to 2 nN in case of the polypeptide,

whereas this amounts to only 3 and 2 Å for cystine and DEDS,

respectively.

Comparison to native redox disulfides
After having demonstrated that the conformational diversity (in

particular, the open character of disulfide bonds that facilitates

redox reactions via nucleophilic attack) is dramatically reduced if

polypeptides as well as smaller molecules get stretched with forces

of sub–nN magnitude, we will now inspect whether the native

disulfides exhibit any conformational preference depending on

their particular protein environment. The scatter plot of Fig. 3

reveals that TDi, DO and interchain Ig protein disulfides prefer to

stay in open conformations, thus being prone towards redox

processes [34]. This is in consonance with the experimental

observation that these classes of proteins contain functional

disulfides that readily undergo oxidation/reduction themselves

and also facilitate the reduction of other disulfides, thus regulating

protein function [51]. In stark contrast with the conformational

trends uncovered for TDi, DO and interchain Ig protein

disulfides, our statistical analysis (see Fig. 3 and Fig. S2b in file

S1) shows that intrachain disulfide bonds in Ig proteins mostly

prefer x2/x’2 & 180u/180u and thus the closed/closed state

[52,53], thereby hindering redox reactions at the level of the

underlying SN2–type chemical reaction. The analysis presented

above on the influence of mechanical stress on the conformational

diversity of disulfides (cf. Fig. 2) suggests that this specific

conformational preference can be traced back to these intrachain

disulfide bridges being subjected to tensile stress. In the next

subsection, we will estimate the value of tensile stress that is

compatible with the systematic strain observed in this class of

disulfides.

Molecular understanding
Upon analyzing a variety of structural properties in addition to

q, we found that the computed distance between the two a–carbon

atoms of the disulfide moiety (the Ca–Ca distance) correlates

uniquely and quantitatively with tensile force for all systems
investigated as revealed by the circles in Fig. 4; note that what we

call ‘‘a–carbon’’ following the usual protein nomenclature would

be the ‘‘b–carbon’’ with respect to a chemical reaction involving

the disulfide bond. This correlation, first of all, suggests that the

Tensile Stress and Conformational Diversity of Disulfide Bonds
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Ca–Ca distance versus force curve can be used as a (nonlinear)

‘‘ruler’’ to translate tensile stress to strain within disulfide bonds,

which is simply measured (or parameterized) by the separation

between the Ca–atoms. In order to gauge this correlation, we took

advantage of an experimentally reported strained disulfide bond

embedded in a macrocycle (see supporting Sec. I.C and Fig. S1 in

File S1 for details) for which the strain–inducing tensile force is

known independently [27] from our present calculations. For the

same molecule we computed the average Ca–Ca distance (square),

which nicely falls on our correlation curve together with the force

taken from the literature [27] without any adjustment. A further

validation is obtained by computing the correlation curve for

DEDS using the superior QM/MM [54] approach instead of

biomolecular force field molecular dynamics (see supporting Sec.

I.B in File S1). This confirms that the force field approximation

provides us with an accurate Ca–Ca versus F0 correlation curve

(cf. triangles versus green dots).

Next, the validated nonlinear ruler can be used to analyze the

experimental data after computing the average Ca–Ca distances

separately for the same sets of TDi, DO and different Ig protein

disulfides that underly Fig. 3, see the horizontal dotted lines in

Fig. 4. In the case of disulfide bonds in TDi, DO and interchain Ig

proteins, their average Ca–Ca distances turn out to be very similar,

being about 5:4, 5:3 Å and 5:6 Å, respectively. In stark contrast,

the mean Ca–Ca distance of the intrachain disulfides from the Ig

family turns out to be significantly longer, about 6:4 Å, and is no

more far from the value of the significantly strained experimental

macrocycle, [27], which is about 6:65 Å. It is thus concluded that

the systematic strain of intrachain disulfide bridges in Ig proteins

corresponds to tensile forces on the order of 0.1 nN (the

conformational density landscapes for DEDS and cystine at 0.1

nN can be seen in Fig. S5 in file S1), whereas the TDi, DO and

interchain Ig protein classes are characterized by unstrained

disulfide bonds. It is worth mentioning that interchain disulfides

have a few members overlapping with closed/closed conforma-

tions. Yet, they are not significantly strained since the average of

their Ca–Ca distance is 5:84 Å. A few of the intrachain disulfides,

in turn, spread themselves in the region of open conformations.

Figure 2. Conformational diversity of the polypeptide model depending on tensile force. Probability distribution functions P(x2,x’2)
obtained from Boltzmann–inversion of the two–dimensional free energy landscapes from metadynamics simulations for the polypeptide model at
zero force and 0.3, 0.6, and 1.0 nN in panels a to d, respectively.
doi:10.1371/journal.pone.0108812.g002
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The average of their Ca–Ca distance is 6:25 Å, which means that

they are less strained than most of the intrachain disulfides (which

adopt closed conformations), but, at the same time, more strained

than TDi, DO and interchain disulfides.

Discussion

On the basis of a simple method devised to quantitatively

parameterize the internal strain in disulfide bridges as a result of

tensile stress, it has been shown that disulfides belonging to native

TDi, DO and interchain Ig protein disulfides are unstrained. As a

consequence, they feature a high conformational diversity, and in

particular avoid closed/closed conformations of the C–C–S–S

dihedrals, i.e. x2/x’2 & 180u/180u (cf. Fig. S6 in file S1 at F0~0
nN and Fig. S8 in file S1 for x3), which are generally known to

sterically hinder SN2–type attack and thus redox reactions at the

local level of the elementary chemical reaction. It thus follows that

functional disulfides residing in DO, TDi proteins and functional

interchain disulfides in Ig proteins are ‘‘conformationally active’’

towards redox reactions since their open conformations allow for

easy access of the nucleophile and thus high reactivity.

The picture is vastly different for intrachain Ig protein

disulfides, which overwhelmingly prefer closed/closed conforma-

tions of interstrand disulfide bridges instead. It should be noted in

this context that those intrachain Ig protein disulfides which

extend themselves into the open conformations also exhibit a

longer Ca–Ca distance, making this a characteristic feature. Here,

this preference is directly correlated with internal strain, which

manifests itself by a significant lengthening of the average distance

between the two a–carbons of the disulfide moiety when compared

to that in both TDi and DO proteins. The tensile stress that

distorts the intrastrand disulfide bridges in native intrachain Ig

Figure 3. Statistical analysis of the conformational diversity of
native protein disulfides. Scatter plot of the x2/x’2 correlation for
TDi (open green diamonds), DO (open indigo triangles), interchain Ig
(small red circles) protein disulfides and intrachain Ig (small black
circles) disulfides based on 40, 27, 69 and 927 X–ray crystal structures,
respectively, obtained from the data reported in Ref. [59] that are based
on analyzing the Protein Data Bank.
doi:10.1371/journal.pone.0108812.g003

Figure 4. Stress–strain relation of disulfide bonds parameterized by the response of the Ca–Ca distance to tensile force. Dependence
of the computed average distance between the Ca–atoms as a function of F0 for the polypeptide model (black circles), cystine (red circles), and DEDS
(green circles) depicted in Fig. 1 and obtained from force field equilibrium (at zero force) and force clamp MD (for F0w0 nN) simulations.
Computational reference data for DEDS obtained from QM/MM simulations are shown by brown triangles and the experimental reference based on
the strained macrocycle [27] (see text) is marked by a violet square. The horizontal blue, pink and orange dotted lines are the average Ca–Ca distances
of disulfide bonds in TDi, DO and interchain Ig proteins, respectively, whereas the cyan dotted line corresponds to intrachain Ig proteins; these
averages have been computed using the identical data sets as those that underly Fig. 3, see caption.
doi:10.1371/journal.pone.0108812.g004
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protein disulfides is shown to be on the order of 100 pN and is thus

well within the range that is easily accessible to biomolecular

processes [41–46].

The question that arises at this point is whether this mechanical

activation could facilitate the reduction of an intrachain disulfide

bond, thus neutralizing (or at least partially counteracting) the

important local steric hindrance effects that a closed/closed

conformation entails for the approach of a nucleophile close to the

redox center. Within a simple mechanochemical picture, Bell’s

model [55], the increase of the rate of a chemical reaction due to

applying an external force is found to be exponential in its

magnitude F0 and can be roughly estimated from

k~k0 exp zF0Dj=kBT½ �, where k0 is the (usual thermal) rate at

zero force and Dj is a length parameter as comprehensively

discussed [21]. Thus, a severalfold increase of the redox reaction

rate is to be expected when applying forces on the order of 0.1 nN,

as indeed measured by force–clamp AFM for disulfide bond

reduction in proteins [25]. Given this phenomenon, the strained

disulfide bonds in intrachain Ig protein disulfides can be called

‘‘mechanochemically active’’ since the exponentially accelerating

mechanical work term *F0Dj over–compensates local steric

hindrance effects on nucleophilic attack of closed/closed with

respect to open conformations. That said, we recall the well-

established fact that intrachain disulfides in Ig domains are buried

in the fold of the protein and that it is commonly accepted that

they are non-reactive [56] because of the lack of solvent

accessibility. Yet, some cases of reduction of this class of disulfides

have already been documented [57,58]. Besides, it has also been

proposed that internal thiols in proteins can promote disulfide

bond reductions in systems that exhibit functional ‘‘structural

isoforms’’ [36–38]. It is thus concluded that mechanical activation

is another important factor in promoting the redox reaction in

those and other cases.

All things considered, the findings extracted from our constant-

force simulations in conjunction with statistical analyses of

available experimental data allow for a better understanding of

the conformational diversity exhibited by disulfides in the first

place. Moreover, they provide fresh insights into the interplay

between conformation and reactivity of these moieties at the level

of the elementary SN2 redox reaction. This will contribute to

ongoing efforts devoted to achieve a detailed understanding of

functional disulfide bonds at the molecular level.

Methods

All force field MD simulations were carried out using

GROMACS together with the OPLS-AA/SPC force fields. The

metadynamics simulations were performed using PLUMED and

GROMACS. The QM/MM MD simulations [54] of DEDS and

the full ab initio MD simulations [54] of the macrocycle were done

using the CPMD package. The force–clamp conditions were

realized using the isotensional method [21]. A detailed account of

the computational details including the references is provided in

File S1.

Supporting Information

File S1 Combined Supporting Information file. Figure

S1. Macrocycle with the photoswitch, stiff stilbene, in its trans

conformation leading to a strained disulfide bond. Figure S2. (a)

Probability distribution function P(x2,x’2) obtained from analyz-

ing the X–ray crystal structures of disulfides in the Protein Data

Bank (101087 observations) shown by contour lines with

superimposed scatter plot of the conformational states of disulfide

bonds in TDi proteins (40 observations) in blue circles, DO

proteins (27 observations) as green diamonds and interchain Ig

proteins (69 observations) as red squares. (b) Same as panel a but

superimposing the scatter plot (circles) of the conformational states

of disulfide bonds in intrachain Ig proteins (927 observations)

showing the preference of closed/closed conformations, i.e. x2/

x’2& 180u/180u. (c) Configuration of a representative interstrand

disulfide bond (CYS A 132 – CYS A 192) in intact IgG1

monoclonal antibody (PDB ID 1IGY), which shows a closed/

closed conformation that is typical to the preferred ones in panel b.

The bridge is strained as a result of being suspended between the

two strands shown in tube representation resulting into x2/x’2&
165u/178u. Figure S3. Probability distribution functions P(x2,x’2)
obtained from metadynamics simulations for DEDS at zero force

and 0.3 nN in panels a and b, respectively. Figure S4. Probability

distribution functions P(x2,x’2) obtained from metadynamics

simulations for cystine at zero force and 0.3 nN in panels a and

b, respectively. Figure S5. Probability distribution functions

P(x2,x’2) obtained from metadynamics simulations for DEDS

and cystine at 0.1 nN force in panels a and b, respectively. Figure

S6. Total open character according to the x2 and x’2 dihedral

angles (see text) for the model polypeptide, cystine and DEDS as a

function of constant external force. The inset shows the closed–

closed (the right picture, x2 and x’2 in the range 180+50u) and the

open–open conformation (the left picture, x2 and x’2 all other

values for the dihedral apart from 180+50u) in these dihedrals.

These data have been extracted from 150, 300, 1300 ns of zero

force and force–clamp MD simulations performed on DEDS,

cystine, and the model polypeptide, respectively. Figure S7.

Mechanical coordinate, q, for the model polypeptide, cystine

and DEDS as a function of constant external force. Figure S8.

Central disulfide dihedral angle C–S–S–C, x3, for the model

polypeptide, cystine and DEDS as a function of constant external

force; the inset visualizes the respective torsional degree of

freedom. Note that this behavior, which is very similar for all

three systems, is similar to the one found earlier for a cystine

molecule.

(PDF)
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31. Baldus IB, Gräter F (2012) Mechanical force can fine-tune redox potentials of

disulfide bonds. Biophys J 102: 622–629.

32. Hofbauer F, Frank I (2012) CPMD simulation of a bimolecular chemical

reaction: nucleophilic attack of a disulfide bond under mechanical stress. Chem
Eur J 18: 16332–16338.

33. Keten S, Chou CC, van Duin AC, Buehler MJ (2012) Tunable nanomechanics

of protein disulfide bonds in redox microenvironments. J Mech Behav Biomed
Mater 5: 32–40.

34. Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Kiss J, et al. (2013) The

Janus–faced role of external forces in mechanochemical disulfide bond cleavage.
Nat Chem 5: 685–691.

35. Richardson JS, Richardson DC (1989) Prediction of Protein Structure and the
Principles of Protein Conformation. Plenum Press, New York.

36. van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martı́nez-

Martı́nez P, et al. (2007) Anti–inflammatory activity of human igg4 antibodies by
dynamic fab arm exchange. Science 317: 1554–1557.

37. Schuurman J, Perdok GJ, Gorter AD, Aalberse RC (2001) The inter–heavy
chain disulfide bonds of igg4 are in equilibrium with intra-chain disulfide bonds.

Molecular Immunology 38: 1–8.
38. Wypych J, Li M, Guo A, Zhang Z, Martinez T, et al. (2008) Human igg2

antibodies display disulfide–mediated structural isoforms. J Biol Chem 283:

16194–16205.
39. Peek JA, Taylor RK (1992) Characterization of a periplasmic thiol: disulfide

interchange protein required for the functional maturation of secreted virulence
factors of vibrio cholerae. Proc Natl Acad Sci USA 89: 6210–6214.

40. Dorenbos R, Stein T, Kabel J, Bruand C, Bolhuis A, et al. (2002) Thiol–disulfide

oxidoreductases are essential for the production of the lantibiotic sublancin 168.
J Biol Chem 277: 16682–16688.

41. Evans EA, Calderwood DA (2007) Forces and Bond Dynamics in Cell Adhesion.
Science 316: 1148.

42. Greenleaf WJ, Woodside MT, Block SM (2007) High–resolution, single–
molecule measurements of biomolecular motion. Annu Rev Biophys Biomol

Struct 36: 171.
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