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BRST-invariant path integral for a spinning relativistic particle
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The propagator of a relativistic spinning particle is calculated using the Becchi-Rouet-Stora-
Tyutin- (BRST-)invariant path-integral formalism of Fradkin and Vilkovisky. The spinless case is

considered as an introduction to the formalism.

I. INTRODUCTION

The Becchi-Rouet-Stora-Tyutin (BRST) transforma-
tions in gauge-invariant field theories were first
discovered as symmetries of the quantum Lagrangians. !
The Hamiltonian version was constructed later.?* The
BRST formalism has also been used in the first-quantized
approach to particles* and strings,> as well as in the con-
struction of associated field theories.® The unification of
BRST, Parisi-Sourlas, and space-time symmetries has re-
cently been achieved.’

The propagators of spinless and spinning relativistic
particles have been derived.® In this paper we want to
compute the same propagators using the BRST-invariant
path-integral method of Batalin, Fradkin, and Vilkovi-
sky? in order to further understand the BRST formalism
in the first-quantization approach. The spinning particle
contains four first-class constraints associated with
reparametrization and supersymmetry invariance and five
second-class constraints brought in by the first-order
character of the equations of motion of the Grassmann
odd variables. The organization of the paper is as fol-
lows. In Sec. II we consider the case of the spinless rela-
tivistic particle as an introduction to the formalism.
Then in Sec. IIT we deal with the more involved case of
the spinning relativistic particle. We summarize our re-
sults in Sec. IV.

II. THE BRST PATH INTEGRAL FOR THE
SPINLESS RELATIVISTIC PARTICLE

The action for the free relativistic scalar particle is
Tb jrm—
S[x]=—mf drV'x? . (1)
Tﬂ
The canonical momenta
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give rise to a vanishing canonical Hamiltonian and a
first-class constraint
$=p’—m? ®

which are consequences of the reparametrization invari-

, u=0,1,...,D—1 2)
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ance of (1).
The canonical action is then

S[xpAl= [ drl—ip—Ap—m?)] . )

Using the BRST-invariant canonical formulation of Bata-
lin, Fradkin, and Vilkovisky we consider the action®3

seﬁ=f7bdf<—xp +Ar+9°P,—H.z) , (5)
where
Hg=H,—{¥,0}=—{¥,Q] . 6)

V¥ is the so-called gauge fermion, which has a ghost num-
ber —1 and Q) is the BRST charge.
Let us rewrite the ghost variables as

n*=(—iP,C), P,=(+iC,P),
with nonvanishing Poisson brackets
{P,C}={C,P}={P,C}=(C,P}=—1.
The expression for the BRST charge  is
Q=—iPr+C¢ . (7

As we are interested in the relativistic gauge9 A=0, the
gauge fermion VW is chosen to be

v=PA . (8)
Plugging all this into (6), the effective action (5) becomes
Sp= f:”[ —%p +Am+PC+CP—iPP
—Mp2—m?)]dr . 9)

The transition amplitude for a particle going from x, at
7, to x, at 7, with the BRST-invariant boundary condi-
tions?

m(1y,)=m(7,)=C(7,)=C(7,)=C(7,)

=C(1,)=0 (10)
is given by
G = [[dulexp(iS.y) , (11)
where
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[dp]=[dx][dplldA][dn][dP][dP][dC][dC] .
Let us compute the bosonic part of the path integral:
Gy = [ [dplldx][dw][dA]exp

After integration over p, and 7 we are left with

if:”df[—xp+iw—k(p2—m2)]] . (12)

) T, . 2
. . : %
= [ [dx][dA]8[A i ~—+Am? 13
G, f[ x J[dA]8[A(7)]exp lffa dr Ty m (13)
Since 8[A(7)] selects the constants paths A(7)= A, the functional integration becomes an ordinary one over A,. Thus
T, . 2
= L[ X 2
Gb—-fdko[dx]exp tha dr any +Aom l . . (14)
The integration over x* is easily done by the classical shift procedure:
. — . (xb T Xq )2
szfdko[“»ﬂ'l}uo(Tb_Ta)] D/zexp 1 m‘*‘}uo(ﬂ,—ﬂ,)mzl l . ‘ (15)
Next, let us consider the ghost contribution
G, = [ [dP][dP][dC][dC]exp ifT *d(—PC+CP—iPP) ] . (16)
The integration over P and P is Gaussian and leads to
G, = [14CIdClexp [~ [ ”dréc'] (17)
which can also be computed by the shift method
_ (Eb—éa)(cb——ca) _
G,=—(7p—7,)exp | — p— =—(1,—7,) . (18)
b a

As it must be, the transition amplitude is independent of the unphysical parameter'® (7, —7,):

(xb —Xg )2

4T

dT

+m?T
(47iT)P7?

exp |i , (19)

G(x,—x,)=G,G,=— [

where T =Ay(7, —7,). Although the ghosts are not coupled to the physical degrees of freedom, their contribution is
essential in canceling the 7 dependence. This last integration will be performed only over positive values of T (Ref. 9).
Next we pass to momentum space and get
G(p',p)=8Pp'—p) [ dPx "G (x)= —6<D><p'—p)fo°°drexp[ —iT(p2—m?)] (20)

which gives us the well-known free scalar relativistic propagator

cQ (D)t
Gip'p)=—-0"p =p) 1)
pr—m?—ie

III. THE BRST PATH INTEGRAL FOR THE SPINNING RELATIVISTIC PARTICLE

The action for the spinning relativistic particle!? is

elx

—MmEgg 5 (22)

Nl %2 2
=1 dr | =—+em“—i(elte,—es&s)—i
zf,ra e ( 1 5 5) X

where x € are even variables and €,, €s, X are odd. From their canonical momenta
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we get the canonical Hamiltonian
Hc=—;~(p2‘m2)—-éx(sp +mes) , (24)
five second-class constraints
i . i .
¢u=7ru_‘2—5;v (PP} =i8py ‘P5=775+755: {pssps}=—i, (25)
and four first-class constraints
i 1
X1=m,, ®=- E(EP tmes)—splp,times, X2=m, ‘1)2:?(1’2“’"2) . (26)
We use the graded symplectic structure'!
- {xy.’pv} = {pv’xp} = { E,u."n'v} = {771/’5;4} =gyv ’ 27)
1= {e’ﬂ-e} = —{ﬂe’e} == {85’77-5} = {775’£5} = {Xav)(} =- {Tr)(:X} .
Notice that the form of the constraint @, is different from the usual Dirac constraint.!® Using the Dirac brackets
{swsv}*zig,uv’ {35765}*2—.1. ’ (28)
we can eliminate 7, and 75. The canonical action is given by
_ ' y Lou . : ; ;
S—fT dr —xp+5(s e, —&s€s)txmteém, —xP,—e®, | . (29)
To construct the BRST effective action, let us introduce the ghosts
n°=(P,,—iP,,C',C*, P°=(—C.iC?%P,,P,), {P,CP={P,,CPl=—85. (30)
The BRST charge is
Q,=P,1rx—iP27Te+C1<I>1+C2<I>2—-i-(C1)2F2 ) 31)
}_’1, P, C !, C!are even, while }_’2, p,, C?, C?are odd. The gauge-fixing fermion
V=P, x+P,e (32)

leads to the relativistic gauge Y =¢ =0. The transition amplitude will be computed with the BRST-invariant boundary
conditions

7rX=7re=C"==6"=O at 7=71,,7, 33)

and
(T )=pl, eM7,)=¢el, es(1,)=¢s,, pH(7,)=pf, e'(r,)=¢f, es(ry)=¢s, . (34)

The effective action may be written as

T 1 . . — — — 1 —
Se,f=ff”dr xp+—;—(é“e#-é585)+)(7rx+é1re——Xd)l—ecl)z—C"‘Pa+C"‘Pa——P1P1—iP2P2+é)(C1P2 . (35)

The corresponding amplitude will be

(pLehesy Ty plehes,, 7o) = [ [dplldx1ldelldeslidm, [ delldm, )[dx][dP,1[dP,][dT “][dC]exp(iS.q) - (36)
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Several remarks are in order. (a) This amplitude is not the physical amplitude from which we shall compute the Dirac
propagator; however, it will be useful as an intermediate step. (b) The states |p/e”es,,7,) are not eigenstates of the
operators €4,85, (Ref. 12, p. 256); therefore, the amplitude does not generate contradictions with the principles of quan-
tum mechanics.

The integrations over x*, m,, and m, lead to delta functions of the derivatives of their conjugate variables, so the
functional integrations over p¥, e, and x reduce to 8(p, —p,) and ordinary integrations over e, and X, respectively.

The integration over the odd and even ghosts amounts to just a constant:
[ 1dP,1[aP 4T “Y[dCexp |i [ "dr P262+C2}_’2——i}_’2P2+é)(0C11_’2—P16 '4+C'p,—P,P,

= [ [dT “I[dC]exp —iC? —glet|l=—1. @7

T

rTs

zf dr
Tﬂ

In spite of this trivial contribution, the amplitude will be 7 independent.
The remaining integrations are

: i
C Z_E_Xocl

(ptefesymy |pliehess 7a ) = —8(py —p,) [ “deo [ dxoexp

ie
— 5 (ry =7 )p?—m?) ]

T : IX
Xf[dsu][des]exp ifr,,de é(é“s#—é555)+—£9(pe+mss)‘ ] .
(38)
In order to proceed it will be useful to compute the functional integration:
T .
<Eﬁ’,¢b|eﬂl,ra)=f[deM]exp ifdefr —;—ENéN-HnNsN , (39)

where 7™ is, in general, a 7-dependent external source. Note also that the states |¢¥,7,) are not eigenstates of the
operator £ (Ref. 12).

Performing a discretization of the 7 interval in N equal parts it may be seen that we obtain different results depending
on whether N is odd!? or even:!3

D T T r

N even: (g,,7le,,7,0= [[ & [ef,”—sf,”-i— fT deT[M(T) }exp [—%ef,vsaN—-;—fT de'qN(‘r)fT dT’nN(T')] , (40a)
M:O a a a

N odd: (e, 7,le,,7, ) =exp | LeMe,p +L(e, +e, )MfT de?]M(T)“‘%fT bdrnM(T)f:dT’nM(T’) ] . (40b)
This feature shows that the path integration (39) gives rise to two different scalar products:!>

D
N even: (g,le,)= [J d[e¥—e¥], (41a)
M=0
N odd: (g,le, ) =exp(Lede,y,) . (41b)

From (39) we see that the matrix elements of €,, can be obtained through functional derivatives of the transition am-
plitude with respect to the external source n™:

N even: (g,|€yle,)=(—1)? lim ——g—~—~(sb,7b|sa,r,,)
7 (T)

Tb—PTa
D
=(—=1DPTI"M [T (e,n—epn)exp(—Leje,s) (42a)
N
2]
N odd: (g,lé€yle,)=— lim —————(g,,7ple,,7,)
bl M‘ a =T, SnM(T) b bl a
=4ep+ed(eyle,) . (42b)

From these expressions we can see that |e, ) are not eigenstates of the operator £,,.
The transition amplitude can be written for both cases, N odd and even, as

exp ’e\MfT denM('r)]

<eb,7',,|8,,,1',,)=<s,,

sa>exp "‘%f:de’T]M(T)f:dT"T]M(T')] . (43)
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From this expression, deriving functionally twice with
respect to the external sources one can see that the ex-
pected anticommutation relations are satisfied:

<Eb|[€M,€N]+|Ea>=(Eb|Ea Yemn - 44)

We want to use |e) as a basis to build the Hilbert space
of physical states #. In order to do so we need to have a
resolution of the identity for the states |e). However, it
turns out that this is not possible using the odd scalar
product only, so we will restrict ourselves to the even sca-
lar product. In such a case we have

(sblsa)=f(sb|e)dbe(€|sa) . (45)

The wave function of a physical state |¥), ¥(e)={¢e|¢)
can be written as an expansion in terms of €,, with com-
plex coefficients.

Since

(W)= [(¥'le)dPeely) (46)

8(171, ~Pa )

(phehesy, Ty Iphehes, 7, ) = ;
E(Tb—T" Ypi—m2—ie)
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we define (¢|e) such that we get a Hilbert space with
positive norm

(PlY)y={ly')*, (yly)=o0. @7

The dimension of # is 22 *!; the number of indepen-
dent coefficients in a generic expansion of ¥(¢). Our aim

is to get a representation of the operators €, and € in this

space. With this purpose we define a new basis |@, )

(k=1,...,22%1) of states belonging to % and satisfying
> (eloe X (prle’y =(¢ele’) . (48)
k

It is easy to see that the matrix (€4 ) = (@i |Ex ;)
provides a representation of the algebra (44). This means
that we have a reducible representation of the Clifford
algebra of dimension 20 1,

Now we can apply the previous discussion and results
to the computation of the amplitude (38). Using (43) we
obtain

[ dx, <e,,1£a>+<ab|(py§ﬂ+m@5>|sa>§<Tb—ra>

o)
=————5— (&, |(pte,+tme)le, ) . (49)

pi—m?—ie

Finally, writing €,=(1/V2)ysy,, €§=(1/V2)y; the
physical transition will be
<pb 1//’ ) |pa d}’ Ta )

i 8py—p.)
V2 piemi—ie (Ylysp,+m)ly) . (50)

This is not the usual form of the Dirac propagator. This
is due to the first-class structure of Dirac constraint @, in

H,i.e.,
[@1:6)1]+=%6’2 . (51)

This standard form is obtained multiplying by ¥s.

IV. CONCLUSIONS

We have considered the BRST-invariant path-integral
method for spinless and spinning relativistic free particles

to get the Klein-Gordon and Dirac propagators, respec-
tively. The contribution of the ghost part in the spinless
case is essential in order to find a kernel which does not
depend on the unphysical parameter (7, —7,). In the
spinning case, the contributions of the fermionic and bo-
sonic ghosts cancel each other and produce just a con-
stant. However, the amplitude is again independent of
(1, —7,). Both in the spinless and spinning cases, the
BRST-invariant boundary conditions play a crucial role.
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