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The string model with N =2 world-sheet supersymmetry is approached via ghosts, Becchi-
Rouet-Stora-Tyutin cohomology, and bosonization. Some amplitudes involving massless scalars
and vectors are computed at the tree level. The constraints of locality on the spectrum are ana-
lyzed. An attempt is made to ‘“decompactify” the model into a four-dimensional theory.

I. INTRODUCTION

The N=2 superstring, introduced by Ademollo
et al.'? has not attracted too much interest because the
critical dimension is 2 (Ref. 1). Recent studies have fo-
cused on the representations of the N=2 superconformal
algebra,> '3 the applications to Calabi-Yau compactifi-
cation,!* !5 the relation between world-sheet and space-
time supersymmetry,'®~'® and various other topics.'” 2!

Our purpose in this paper is to carry out the ghost-
extended quantization of the open N=2 model and dis-
cuss related topics. Section II reviews the model and the
Becchi-Rouet-Stora-Tyutin (BRST) quantization. Vertex
operators for the massless scalar and the massless vector
are constructed in Sec. III. In Sec. IV we calculate Yu-
kawa couplings and four-point amplitudes for these
states. When massless vectors appear in D=2 particle
theories, they may be eliminated, at the cost of introduc-
ing nonlocal interactions. Although they contain no de-
grees of freedom, it is more natural not to eliminate
them. In string theory, the same is likely to be true.

Section V discusses the twisted sectors.”??> They con-
tain D=2 fermions. The requirement of locality imposes
severe Gliozzi-Scherk-Olive- (GSO-)type constraints on
the physical spectrum.

In Sec. VI we try to “decompactify” the model by re-
grouping the two scalar fields in the N=2 theory, X*(z)
and Y*(z) (u=1,2), into a four-component object. One
motivation in studying the N=2 system was to try to
construct a four-dimensional string theory. We come
quite close to succeeding but encounter an obstruction
(see Sec. V).

Our notation is that of Ref. 23; z =exp(o +iT), a'=1,
g"=n*"=(5'9) in Minkowski space and n**=(}9) in
Euclidean space. We work in the latter and eventually
Wick rotate results. The N=2 superspace variable Z
stands for (2,6 _,0, ). The Appendix presents the decom-
position of the BRST operator into various ghost charges
and the two picture-changing operators.

II. COVARIANT QUANTIZATION OF THE N=2 STRING

The N=2 superstring is covariantly quantized by in-
troducing ghosts and obtaining the BRST charge.?* %8
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In N=2 superspace, there are two Grassmann variables
6.} and 6, two supersymmetry generators Q Fand Q,
and two covariant derivatives D) and D, (Ref. 1).
Here, a is a world-sheet spinor index. Switching from

the index a to complex notation, one uses 6+, 061, 67,

0 ,and D*,DY, D™, and D, etc., where

D*=3,.+6%3,, D™=3,,+679,,

_ _ (1)
+ + B 5—
D*=38,+68%3,, D =9, +073,.

The nonzero anticommutators are
{(D*,D"}=29,, {D",D7}=29, . )

The action can be written in terms of two fields
S(2,2,6%,07,67,67) and S*(z,Z,07,0767,0) satisfy-
ing the constraints D S =D S=0 and D "S*=D"S*
=0: action= [dzdz [d07d0"d9~d6~S*S. The field
S™* is related to S by interchanging + and — indices and
complex conjugating the field but not z (see * involution
below). The solution of the equation of motion
D*D*S=0 is S§=S,+S,, where D'S,=D"S,
=D"S5,=0 and D*S,=D"S,=0 (Ref. 1). A real
superfield X* is constructed via

XHz,0%,07)=8,(z+676%,07)+S*(z +0707,0") .

A U(1) operator acts on tensors carrying + and — in-
dices 1. The number of plusses minus the number
minuses is the U(1) charge. It is convenient to switch to
an SO(2) formulation, in which indices become 1 and 2
instead of + and —

A, =—"""=
+ V2
The components of X*(Z) are

XM(Z)=XMz)+60, 9k (2)+0_9" (2)+i6_0,dYHz) ,

(3)

where X*(z) and Y*(z) are free bosons and ¥¥(z) are free
fermions. Note that 0Y*(z) and not Y*(z) appears in
XH*(Z), this means that the zero mode, iyf in Y*(z) does
not appear.

We have the following operator-product expansions
(OPE’s):
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XHM2) XY (w)~n""In(z —w)~ YH(2)Y¥(w) , ~n*In(Z,,) where Z,, =z, —z,— (0} 0, +6,6; ). The
8, derivatives of Z, are a,aza,, =1, azbzab =—1,
Y)Y (w) -z-’:;)— . DX(Z,)=D}f(Z,)=6% where 6, =6, —9" In addl-
tion, D565 =D 6% =0, D,T 65 1 and D, 65,
These OPE’s are all encoded in XH*Z,)X"(Z,) The N=2 superspace Taylor-series expansion is
J
f(ZH)=73 ZIT(Z [1+6 WDy +6,D," +1(6,,6,D, D, +6,045D, D,;)1f(Z,) . 4)
n=0 *

Defining [d6* [d6076076"=1 and ¢$DZ,=§(dz,/
27ri) f de; f df, , one can derive the integration formu-
las

¢DZ Gab ab Z _ la A
azmﬂ )=—181(Z,)
1y

$pz, me )=—281 D, £(Z,)

_ )
$pz, Zn+1f<za)=———a"obf z,)

(Z,)
g;Sz)z,,fzn+1 ——a"  (Dy Dy —Dy Dy )f (Z4)

ab

Other N=2 formulas are similar to the N=1 ones given
in Sec. IIT of Ref. 25.

Primary N=2 conformal fields \Pg(Z ) are character-
ized by a weight 4 and a charge gq. They have the follow-

ing OPE with the stress-energy tensor T (Z):

6,05,
h ab~ab \yh q9 h
T(Z W Z, )~ —
(Z)Yy(Zy)~h 2 Vo (Z,) 2Zab‘l’q(Zb)
22 . (6, D, —0,D, )\I/Z(Zb)
eabeab h
\I/ . 6
” 9, Vi(Z,) (6)

The contribution to the stress-energy tensor from X* is
TXZ)=1D_X*D  X*(Z). The theta-independent com-
ponents of TX(Z) are the U(1) current-algebra fields T,
the 0,60_ component contains the Virasoro generators
L,, and the theta components are the superpartners of
the L,: G, and G, [see Eq. (2.7) of Ref. 1].

The superfields X*(Z), D, X“Z), D_XXZ), and
exp(k-X)(Z) satisfy Eq. (6) with, respectively (h,q)

=(0,0), (h,q)=(],+1), (h,q)=(3,—1), and(h,q)=(%k2,
0). The OPE of TX(Z) with itself is
0!1 6(1
TXZ)THZy) ~ 2+ 247 X7,
4z2 z2
+ﬁ(9;,,p,,+—e:,,1);)ﬂ(zb)
0%
ab X,
+ Z, b3, NVAR (7)

where D =7}, is the dimension of space-time. Using the

[

integration formulas in Eq. (4), Eq. (5) can be shown to
embody the N=2 Virasoro algebra’ with a central term
equal to D.

The N=2 superstring action is invariant under several
local transformations. Gauge fixing generates a
Faddeev-Popov determinant expressible as an action term
using an N=2 superfield ghost C(Z) and an antighost
B(Z):

C(Z)=c(z)+ib,y (2)—iO_y, (2)+i0_0,&(2),
(8)
B(Z)=—in(z)—i6,pB_

(z2)—i0_B(2)+6_0,.b(z) .

The ghosts ¢(z) and b(z) are for the 7-0 reparametriza-
tion invariances; y;(z) and ;(z) are the spinor ghosts for
the two local supersymmetry transformations and £(z)
and 7(z) are the ghosts associated with the local U(1)
symmetry. Their Lagrangians are first-order systems®
with background charges Q@ and statistics € of
(Q,e)=(—3,+), (2,—), and (—1,+) respectively. The
ghost OPE is C(Z,)B(Z,)~ 0,0, /Z,,b B(Z,)C(Z,).
The ghost stress-energy tensor T&YZ) is T&(Z)
=0,(CB(Z)— D, CD_B(Z)—1D_CD.B(Z). B(Z)
and C(Z) are ¢g=0 conformal fields with h=+1 and
h=—1. The OPE of T®Y(Z) with itself is Eq. (7) with
X —gh and D——2. Defining T(Z)=TX(Z)+ T Z),
the central term in the N=2 algebra vanishes if D is two.
Throughout this paper we take D=2 so that T(Z) itself

isa ¢g=0, h=1, N=2 conformal field.

.The N=2 BRST charge Qpgrst (Refs. 26-28) is
Oprst = PdZ jprer(Z)  where  jprep(Z)=C(TX
+178)(Z)+1[D_(CBD,C)—D (CBD_CQ)]. The

term in [ ] does not contribute to Qgggr but is needed so
that jgrer is an h=0, ¢=0 conformal field. Only for
D=2 is Q¥rsr=0 (Refs. 26-28). The expression for
Jerst in terms of the field components is written in the
Appendix.

The factors of 7 in the field expansions, e.g., in Eq. (8),
have been chosen so that superfields have definite trans-
formation properties under an involution operator
defined as

z*¥=z, (a+bi)*
(A )*=4_,
(AB)*= A*B*,

=(a —bi) (a and b real) ,
(A_Y*=4,, 9)
(A+B)*=A*+B* A*=4,

The involution operation acts on linear combinations
of superfields and is similar to complex conjugation ex-
cept that it does not complex conjugate z. For any field,
(A*)*= A. With our conventions
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XH* =XH *=_T,
C*=C, B*=—

(D X*)*=D_X*,

" ) (10)
B, jgrst= "JBrsT -

III. MASSLESS STATES AND VERTEX OPERATORS

Physical states correspond to BRST-invariant vertex
operators. In this section we construct two such opera-
tors: one for a massless scalar and one for a massless vec-
tor. The scalar is the same particle for which amplitudes
were computed in Ref. 1.

There are four sectors, NS-NS, R-NS, NS-R, and R-R,
where NS stands for Neveu and Schwarz and R for Ra-
mond, corresponding to the different boundary condi-
tions for ¢, and ¥,. The scalar is in the NS-NS sector
and the vector is in the R-R sector. In constructing the
vertex vertex operator, ghosts play an important role.
The twisted sectors R-NS and NS-R are discussed in Sec.
V.

As in the N=1 case,”® bosonize B; and 7;:
B;=09&exp(—@;), v;=exp(e;)n; as well as the ¥(z):
[¥}(z)5iv2(2)]/V2=exp(+¢,;). Define a generalized bo-
sonized field by

wq:gz = 141,720, 0191, qz"’zcé’lx:zz , (11)
where 051’:22 is a cocycle operator. Using methods in Ref.
23 we define

Cargy =explimlpyNy +q1(Ny +N,)

+q2(_N¢l +N¢2_N‘pl )]} N (12)
where N¢i=[8¢,]o and N¢,i=—[8<p,- Jo are the number
operators for the ¢; and y,—f3; systems: [N¢i,
exp(g¢;)(2)]=gdexp(gd;)(2). [Ny, explg@;)(2)]

=qd;exp(q@;)(z). The Ramond sector for the ith fer-
mion occurs when p; and g; are half-integer. An alterna-
tive approach would be to bosonize in the =+ basis.

The computation of scattering amplitudes requires
picture-changing operators®® {£;,Qprst} [see Egs. (A4)
and (A5)] so that integral and c-type (indicated by ¢ and
f superscripts) vertex operators can be generated in vari-
ous pictures.?’> Let S and V stand for scalar and vector.
If k=0 and ke, =0 then the following vertex operators

are BRST invariant:
J

sho_pto=[dz 2, S explic-X0(2) , (13)

S¢_1—1(k,z)=c¥2, % exp(k-X)(z), (14)

5§ 0/(k)= [ dzlk-0Y +(k-#,)(k-,)Jexp(k-X)(z) ,
15)
S0 (ks 2)={c[k-3Y +(k (k)]
— kv +k -7,y explk-X)(z)
(16)

V(f_l/Z,l/z)(k,E)zde E#V'u_l/z_l/zexp(k'X)(Z) s (17)

Vit -1k 62)=ce,VE ,_y pexplk-X)(z) . (18)
In Egs. (13)-(18), k* and € are momentum and polariza-
tion vectors, the (g,,9,) subscripts denote the various
(@1,9,) ghost pictures,” and the vector field V-, | , is
related to a R-R spm field by | 248 122172
=(1/V2CY")esS T2 £ S_f Fo=v2{, B0,
The y* are D=2 gamma matrices: (y*)®?=(c*)*¥ and
Cop= =(02) «p 18 the charge- conjugatlon matrix. The D=2
Lorentz decomposition of S _¢,, _# ', is as follows. There
are two scalars [when (a,8)=(+,—) and (—,+)] and
one vector [when (a,8)=(+,+) and (—,—)]. Because
(Cy*) is diagonal, only terms for which a=p enter.
Note that in the expressions of the vertex operator for the
scalar and massless vectors the zero mode iy°® of Y does
not appear.

IV. SOME YUKAWA COUPLINGS AND
SCATTERING AMPLITUDES AT THE TREE LEVEL

We use Eqgs. (13)-(18) and the techniques in Ref. 23 to
compute scattering amplitudes. Three c-type vertices
must be used and the total ¥, —f3, and y,— /3, ghost num-
bers must be —2 in a correlation function in order to can-
cel the background ghosts charges.

The three-scalar Yukawa coupling is zero for n odd.!
Three-vector and vector—two-scalar couplings vanish be-
cause correlation functions with an odd number of vector
fields are zero. The latter is a bit unusual since in particle
theories vector-scalar-scalar interactions are usually
nonzero. The vector-vector-scalar coupling is

Vi1 (klrfl:zl Wi p-1m(k%e,2)8( ) (k3,23)E(zy)) =iee, el , (19)

where €?=1=
and €%-k%=0, one finds e‘“’eLef,= 0.

The four-scalar amplitude is

(St-y, -1

—€?! but vanishes for kinematic reasons. When momentum conservation is combined with €!-k!=0

klz, )S(f_1,_1)(k2)Sfo,o)(k3,z3)S(”O,O,(k4,z4)§(z4)>=%t—foldx X327 (1 —x) /271 (20)

where s =(k?+k*)?=k2k%and t =(k'+k?)?=k!-k2. Equation (20) agrees with Ref. 1.

The two-scalar—-two-vector amplitude is

<S(CAI,;

nk',zy )S({,O)(kz)V(C—l/Z,—1/2)(k3’63’z3 W10, -1k €,24)8(24))

=(63.k3)eﬂv€zk?’foldxx3/2(1_x)t/2*] . (21)
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The four-vector amplitude is

11 2 2 3 3 4 4
Vi —1 k€20 2y 1 (KW 1) (KP€,230V 1 1 o) (k4 €%24)E(24))

There are poles in the s channel at s=0 corresponding
to the massless scalar state. This is expected since the
OPE of two vector fields contains the scalar field:

- - _ w0 0 (w)

1 2-12@V oy p(w) ) (z—w)
As should be the case from SL(2,R) invariance, Egs.
(20)-(22) do not depend on z,,z;,z4. The insertions of
&(z;) are needed because of the nonzero background
ghost charge, Q = —1 for the 7-£ system. These inser-
tions do not ruin the BRST invariance of the scalar and
vector vertex operators.

Note that in the computations of the scattering ampli-
tudes at the tree level the zero modes of Y do not enter;
however, they are essential for loop amplitudes; for a dis-
cussion see Refs. 21 and 28.

V. TWISTED STATES

Usually world-sheet symmetries translate into space-
time symmetries. Hence one would expect N=2 super-
symmetry in the model. Such states appear in the NS-R
and R-NS sectors."?> The boundary conditions are as
follows: 7, &, and 3Y#(z) are antiperiodic in o; ¥4, B,,
and y, are periodic for the R-NS case and #4(z), 3;, and
7, are periodic for the NS-R case. The conditions of the
The NS-R and R-NS sectors are called twisted:! the be-
havior of dY*(z) is similar to a Z, orbifold.”

Let ¢ (for “twist”) represent an operator which imple-
ments the boundary conditions on Y*(z):

O (w)
Vz—w
for some operator O(w). Bosonizing £ and 7 via

E=exp(x), h =exp(—Y), the following are BRST invari-
ant:

AYH(z)t (w)~ (23)

cu W2 90 eXt exp(k-X)(z) (R-NS),

24
cu,V_9,%%X’t exp(k-X)(z) (NS-R), 24
if 1k?=0 and the spinor wave function u,, satisfies the
massless Dirac equation u¥=0. One component of u,
must be zero. When u,70 for a= +, the Dirac equation
condition becomes k'—ik?’=0; when u,#0 for
a=—,k'+ik?=0. In Minkowski space, there is a fer-
mion moving to the right or to the left at the speed of
light.
The requirement of locality imposes constraints on the
spectrum. Locality is equivalent to the GSO projection
and dictates that the algebra of operator products not in-

2.3 4 4.2 .3

1- . 1- .
=~f01dxx5/2(1-—x)’/2 ceee E€ee | o

x (1—x)

f
volve root singularities. Since

\I/'“(l)/Z ?,/,Z(Z)WBI _OI(U))~ —\I/9.3/2(1/l2(U))/(Z _w)3/2 )

the operators in Eq. (24) are not local with respect to the
scalar vertex operator W °, °,. Either (a) the fermions
cannot be retained in the theory, (b) the scalar must be
removed, or (c) the scalar vertex operator must be
modified by inserting operators with nontrivial operator
products with 7 or Y. As an example of (c) one could in-
sert a factor of £(z)=e” in the scalar and vertex vertex
operators.

Unfortunately, one does not know much about the
twist operator ¢. If one assumes that ¢(z)t(w)
~1/(z —w)'*, then

W2 0 eX 2t ()12 0 e Xt (w)
~phaseXW¥—211 % 0¥ /(z —w)

but since ¥172 9 ,eX/?t(z) and ¥} %, x(x) are not mu-
tually local, the fermionic state cannot be included in the
theory. Hence, if ¢ (2)t(w)~1/(z —w)!’4, the GSO pro-
jection would remove all fermions. To better understand
the constraints of locality we have created some models
for t.

The derivative of a boson is expressible as a product of
two fermions®®

AYU2)=if'f3z), 3YUz)=if2f4z). (25)

As long as fz)f/(w)~8Y/(z—w) all correlation func-
tions of dY*(z) are reproduced by the representation in
Eq. (25). Usually, fi=(1/V2)e# +e H') and fi*2
=(i/}/§)(eHI—e“H') for i=1,2, but one can bosonize
the f* differently:

- 1 w, - 1 L H_ —H
f Ve (e +e ), f 5 (e e ), o6
3=_I_(eH+e—H) 4:_1'___(6H_e411)
V2 ’ V2 ’

where H and H’ are free bosons. The advantage of Eq.
(26) is that ¢ can be represented as a spin field for the
f3—f*system. Define

t+=\/l§(eH/2+e—H/2)’ t~:‘/1§(eH/2__e—H/2)'
27
The operators t* and ¢~ satisfy tH(z)tF(w)

~1/(z —w)!/*. The conformal dimension of t* and ¢~

is 1, as should be the case for a Z, twist field.**"* In
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what follows we take r=t". Since t(z)t(w)
~1/(z —w)'*, the fermionic operators lead to a nonlocal
theory as demonstrated above. The GSO projection for
this representation of ¢ throws out the fermions. This is
understandable because the operators in Eq. (24) have
fractional statistics. The statistics of an exponential of
bosons, exp(v-H), is (—1)?" where (-) denotes the
Lorentz inner product: -+ signature for e=-+ bosons

and — signature for e=— bosons. For the fermionic
vertex operators, (v ) = —%.

A representation of t =exp(b/2) by-passes the prob-
lem of fractional statistics if b is an €= — boson. If ¢ is to

have conformal weight } then the background charge Q
associated with b is —1. Bosonize f> and f* in the fol-
lowing manner:

f3=—\/1_2 (eHeBeb+eHeBe—b) |

i —H —B —
fi=—=(efleBeb—e He 8o )

’

where H has e=-+ and Q=0, B has e=+ and Q=—1
and b has e=— and Q= —1. The operator t =exp(b /2)
satisfies #(z)t(w)~exp(b)/(z —w)'/*. The statistics of
the fermionic vertex operators is anticommunting. The
operators,

W2 9 eX?t(z) and V_{, t172eX1(z) ,

form a local set. They still are not local with respect to
the scalar and the vector. We thus have two GSO projec-
tions: retain two left-moving fermions or retain the sca-
lar and the vector. The former has a trivial S matrix
since (a) a system in which all massless particles move to
the left cannot interact and (b) it is impossible to con-
struct vertex operators which cancel the background y
charge.

In short, it appears difficult to obtain N=2 supersym-
metric multiplets. Although we cannot make a definitive
statement because there might exist some representation
of the twisting of dY*(z) which avoids the problem of lo-
cality, it seems unlikely that scalars, vectors, and fer-
mions can all be retained.

Some general arguments suggest that N=2 supersym-
metry cannot be obtained. The N=2, D=2 supersym-
metry algebra is {QF, QjB} =28,~j(‘}/#C)“Bp“ where C is the
charge-conjugation matrix. More explicitly, {Qﬁ,Q;“}
=28,(p*+ip") and {Q,,Q; } =28, (p>—ip") so that in
the massless case either the Q,” are null operators (for
p?=ip!) or the Q;' are null operators (for p2=—ip').
One massless multiplet consists of a scalar, two fermions,
and one component of a vector all moving to the left. A
string theory based on this multiplet has a trivial S ma-
trix. To obtain nontrivial scattering a right-moving mul-
tiplet must be added so that fermions of both chiralities
enter. In 10-dimensional spinning strings, there are
massless fermions of both chiralities. BRST-invariant
vertex operators can be constructed for both but both
operators cannot be retained if locality is to be satisfied.
The GSO projection removes one of the states. Likewise
in D=2, one expects that locality requires the removal of

fermions of one chirality. A nontrivial N=2 supersym-
metric theory is thus not possible. This is the result that
we have uncovered above.

VI. A d=4 THEORY?

Limiting oneself to the vector and scalar, one can try
to extend the model to four dimensions. As mentioned
above, the zero mode, iy}, of Y*(z), does not appear in
X* and in vertex operators. Nevertheless, X* and Y* ap-
pear symmetrically in Qgggr. Can one append y§ to the
theory to create a d=4 theory? Reference 34 attempted
such a ‘“decompactification”; however, the space-time
symmetry group was O(2,2).

Let us construct O(4) Lorentz generators (we are work-
ing with the Euclidean metric #*¥ for the two-
dimensional objects) M*", and BRST-invariant Lorentz-
covariant vertex operators. The strategy is to group X*
and Y* [as well as ¢§(z) and ¥4 ] into one four-component
vector. Set XUz)=X1z), X*(2)=X%Xz), X (z)=Y!=z),
X%z)=Y%(z), and from ¥, set ' =y}, Y’ =v3, ¥’=¢),
Y= 1/1%. Using X*(z) and ¥*(z), p=1,2,3,4, define in the
standard fashion®® the Lorentz generators M"Y
= fdx [L(XHAXY—XHIXH)+ Y],

The next step is to define four-dimensional BRST-
invariant vertex operators. This is done by letting the
k-X dot product in S{_; _;,(k) and S{_; _,)(k,z) be four
dimensional. Replace €,V{_;, 1, by €4S A1, in
V(f_l,_l)(k) and V{_| _(k,z) where 4 =af=(++ or
——) and allow €, to be complex. V{_; _; (k) and
Vi_1,-1)(k,z) become d=4 vertex operators for a Weyl
fermion of positive chirality as long as €, satisfies the
massless Dirac equation, eA(kHy“)f;:O, where y'=(o!
X1), y?=(0?X1), y*=(0°X0?), and y*=—(0>Xo!)
(Ref. 23). As is well known (see, for example, Ref. 23), a
two-spinor label 4 =af3 transforms as a fermion:

PP (2)S A (w)

~—(z—_1u-)7~;-y’§"AS€,/2_l/2(w) . (29)
where y#V=1(y*y¥—y*y#). In checking the BRST in-
variance, Q9~ f dzjd(z) [see Eq. (A1)] generates the
chirality condition (a) € ,¥3'=€, where y°’=(03X0c?);
the T¥ [see Eq. (A3)] piece of @ requires € 4 to satisfy
the Dirac equation (b) € ((k,y*)5 =0, and the T} piece
of @9 gives a second Dirac equation, (c)
€4k V3 +kyy*—kyy'—k,y?)#=0. Miraculously, (c) is
a consequence of (a) and (b) and hence is not a new con-
straint.

Operators products are d=4 Lorentz covariant be-
cause the vertex operators are Lorentz covariant. For ex-
ample, the OPEof 4, , ;| , with itself is

Sﬁl/z——l/z(z)SEI/Z—l/Z(w)
~LAB_~WO 0 (w)+l(’}/'uVC)AB‘lﬁ ) yo o (w)
(z —w) —-1-1 3 u¥vE—1-—1
—1C*8(3¢,+3¢,)¥ 2, %\ (w)+0(z—w),  (30)
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where C=i(0?Xo!) is the four-dimensional charge-
conjugation matrix. The cocycles in Eq. (12) and boson-
ized ghosts are crucial in generating the correct gamma
matrix structure.

It seems as if one has all the necessary ingredients to
extend the N=2 theory to four dimensions; however, a
problem arises. The picture-changing operator
{€,,Qprst] is not Lorentz invariant due to T3. When

Sio0)(k) and S{y(k,z) are constructed by picture-
changing S{_,_;,(k) and S{_,_;,(k,z), they are not
Lorentz invariant. Although states and most vertex
operators can be extended to four dimensions, we are un-
able to obtain Lorentz-invariant amplitudes.

VII. CONCLUSION

In this paper we constructed vertex operators for mass-
less scalar and vector states for the N=2 superstring and
we computed Yukawa couplings and scattering ampli-
tudes. Several interesting questions remain. (A) We have
come quite close to constructing a d=4, N=2 string
theory. Is there some way to get around the difficulty
that we have encountered? (B) How can one compute
amplitudes involving the twisted states of Sec. V? Is
there a viable concrete representation of twist operators
and is it unique? (C) What is the BRST-cohomology
modulo picture-changing operations? In other words,
what are the BRST-invariant but BRST-nontrivial vertex
operators? What are the possible GSO projections, that
is, which are the possible spectrums of the theory satisfy-
ing locality? We hope these questions will stimulate fur-

ther thinking about the N=2 string model.
|

(£1(2),Q} =cE,(2)— THe ' (2)+ L[bdn,e " +3(bn,e ™’

— (mdm,+ L3nm, +1m,3¢;)e e (2)
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APPENDIX: THE PICTURE-CHANGING OPERATORS

In checking BRST invariance, it is useful to decompose
Jjprst into definite ghost numbers: jgrsr=Jjo+io+Jj
+j, T+ jg, where the superscript denotes. the ¢ —b ghost
number and the subscript denotes the y;—B,+v,—B,
ghost number. The £—m enter in such a way as to make
the overall ghost number of Q 1:

jd(z)=c(T+3chb)z) ,
j8(2)27§(¢2'¢1 +Byv1—Bir2)(2),

(£2(2),0) =cdEy(2)— T e “(2)+ L[bdn,e *+3(bmye ") )(2)— 1£0€ e e ®(2)

~ (3, +L3nm, + 11,09, )e e P(z) .

) ==y, T8 +v,T%)(2), (A1)
ji N 2==1b(yi+ydia),
J3(@2)=4n(y07,—v137,)(2) ,
where
T=13X0X +13Y0Y + 3¢9, — 33y,B;—$3B:v;
+ém , (A2)
T =1(4-dY —9,-3X), TH=21(y,-3X +¢,-3Y) .
(A3)
The two picture-changing operators are
N)z)—1gdg,e e (2)
(A4)
(AS)
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