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The properties of a proposed model of N point particles in direct interaction are considered in the
limit of small velocities. It is shown that, in this limit, time correlations cancel out and that
Newtonian dynamics is recovered for the system in a natural way.

I. INTRODUCTION

During the last few years a great deal of interest has
been focused on the elaboration of models based on
direct-interaction theory' to describe the dynamics of rela-
tivistic interacting particles. Dirac? was the first to sug-
gest a Hamiltonian framework to pursue this objective,
based on the construction of a realization of the Poincaré
group in terms of 12 parameters. The works of Bakam-
jian and Thomas® were the first attempt at an explicit
construction of such a realization, but these authors were
not able to define Poincaré-invariant world lines.

This unpleasant feature was, however, an early indica-
tion of the no-interaction theorem, later stated and
demonstrated by Currie, Jordan, and Sudarshan.* This
theorem shows that the requirements of Poincaré, world-
line invariance, with a canonical realization of the Poin-
caré group are mutually exclusive.

The development of the study of systems with con-
straints,” where the constraints themselves define the
dynamics of the system (singular Lagrangians, etc.) has
explicitly shown a way to circumvent the consequences of
the no-interaction theorem. In particular it has allowed
for the construction of realizations of the Poincaré group
of the Bakamjian-Thomas type, but recovering their full
physical meaning through the prescriptions given to relate
the physical positions to the canonical (with respect to
Dirac brackets) variables. World lines are thus identified
through such prescriptions. Explicit models have been
proposed both for the instant form® and the front form’
of dynamics.

Another important question is that of separability® or
the cluster decomposition property, whose necessity was
first raised by Foldy and later investigated by several au-
thors. It is well known that this is the origin of difficult
problems for systems containing more than two particles.

By separability, or the cluster decomposition property,
we mean the following: if a system of N interacting parti-
cles breaks into two or more dynamically independent
clusters, because of the finite range of the interactions or
because the clusters are separated by a large spacelike
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separation so that their interaction vanishes, the set of
constraints must likewise break into two or more corre-
sponding subgroups, each one describing the separate
dynamics of the corresponding cluster. An important
consequence of the separability requirement is the need
for many-body forces.’

The approaches to the problem can be classified into
two groups. One of them starts with a set of N first-class
constraints and was initiated by Todorov,'® Komar,!! and
Droz-Vincent.!> Generally speaking, in this kind of
model it is necessary to specify a set of N —1 “gauge-
fixing” constraints'> in order to have a definite classical
dynamics. A different approach, starting with both first-
and second-class constraints'*!> has been followed by oth-
er authors. The requirement of separability in the above-
defined sense is only accomplished in some of these
models in a perturbative way.'¢— 18

In the present paper we want to discuss a model based
on 2N —1 Poincaré-invariant constraints which form a
“quasi-second-class” set, i.e., the rank of the (2N —1)
X (2N —1) matrix of the Poisson brackets of the con-
straints is one less than its dimension (rank 2N —2),
thereby making it possible to extract one linear combina-
tion which is first class. The explicit form of the con-
straints in this model is suggested by the Hamiltonian
constraints of a two-particle system.!’

A model of this kind has been proposed in Ref. 19, see
also Ref. 20; here we want to show that this model, with a
slight modification, admits a well-defined nonrelativistic
limit (or, rather, a 1/¢ expansion), so that this model ac-
quires a physical content.

The aim of this work is to show, by exhibiting a specif-
ic model, that the requirements of relativistic invariance
(world-line conditions satisfied and so on) and cluster
decomposition property are not mutually exclusive.

II. THE MODEL

In order to characterize the constraints which define
our model it is convenient to recall the Lagrangian for the
two-body problem:?!
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&L =—{[m2%?—V(r)]%,*}?
—{[m?e? =V (r)]}) 2, @.1

m,,m, are the rest masses of the particles, V is the in-
teraction potential, and r =x, —x, is the four-separation
between the particles.

The Hamiltonian primary constraints turn out to be
generalized mass-shell equations

Q;=p2—m*c?*+V(ir?)=0, i=1,2, (2.2)

where the symbol =~ is defined as in Ref. 5.
There is also a secondary constraint

(p1+p2)V'(r)=0, (2.3)

which deserves a comment. Whenever V'(r?)s40 the con-
straint (P;+P,,r) =0 holds; it defines a correlation be-
tween points of both world lines corresponding to the
same value of the evolution parameter (this correlation,
however, can be eliminated in favor of an instantaneous
force). On the other hand if V'(r?)=0 (2.3) is automati-
cally satisfied, and any correlation between worlds lines
disappears; in this case these are straight lines and the
evolution of each particle is completely independent of the
other.

We see that the constraint (2.3) has nice properties with
respect to the problem of separability, because it makes
the system break into two pieces (in this case of one parti-
cle each) in a very natural way whenever their interaction
vanishes. For a system of two particles this is a conse-
quence of the separability of the Lagrangian (2.1).

For systems of three or more particles we will general-
ize the constraints (2.2) and (2.3) rather than the Lagrang-
ian (2.1), in such a way as to keep the correct cluster

decomposition properties. As a consequence of that we.

will have from the very beginning a canonical formulation
in terms of a set of canonical variables x{',p;” with the as-
sumed symplectic structure

(pF.x}) =g"8; (ij=1,...,N). (2.4)

It must be stressed that in this kind of model the variables
x}* are by definition the physical positions of the particles,
in contrast with other approaches (see for instance, Ref.
12). The no-interaction theorem* which forbids the iden-
tification of physical position variables with canonical
variables does not apply here, due to the presence of
second-class constraints.

For the generalization to N particles we will need
2N —1 constraints (plus a gauge-fixing constraint to be
eventually added at the end). This is necessary in order to
have a 6 N-dimensional realization of the Poincaré group.

The model is defined by the following set of con-
straints:

1...N
Qi=p —m**+ I V;(r;?)=0, i=1,...

b4 N )
J#i
(2.5a)
where
,.ll;.lel‘ _'_th‘ , (2.6a)
I’,-j(r,-j2)=Vj,~(r,~j2) ’ (2.6b)

and

N
Bi= 2 |V,»'j(ri_,-2)|(p,-+pj,r,~j)z0, i=1,...,N.
j=1

(2.5b)

The set (2.6) only contains N —1 independent con-
straints due to the identity 3.'_, B; =0.

A possible objection to this model is that the con-
straints ); contain only two-body forces, so that they
would not satisfy the requirement of separability; but it
must be observed that {); are not the first-class mass-shell
constraints of the Todorov!® and Komar!! approach, as
we have already stressed (for a discussion of this point see
Ref. 19).

The presence of the absolute value in (2.6) is a modifi-
cation with respect to the model proposed in Ref. 19.
With this modification the conditions for separability are
readily analyzed and the conditions for the application of

‘the implicit function theorem, discussed in Sec. III, are

satisfied.

The set (2.5) with (2.6) has the cluster decomposition
property, in the sense that it yields the corresponding set
of constraints when some coupling goes to zero. Even in
the case of partial open chain configurations the correct
set of constraints is obtained. As an example let us write
(2.5b) for N=4:

| Vi [ (p1+p2r2)+ | Viz | (pr+p3,713)

+ | Via| p1+Par1a) =0, (2.72)
[ Vo [ (p24p1sra)+ | Vas | (p2+p3s713)

+ | Vi | (p24paras) =0, (2.7b)
[ V31| (p3+p1,r30)+ | Va2 | (p34Dp2s732)

+ | Vi | (p34Darrsa)=0. (2.7¢)

(It is not necessary to write the fourth.)

If, for example, V;;,=0 we get three constraints, of
which only two are independent, and they are precisely
(2.6) for N=3.

III. 1/¢ EXPANSION

In this section we will calculate the nonrelativistic limit
of the model proposed in the previous section. This will
be done by studying the series expansion of energies and
relative times in inverse powers of c¢. In the limit for
c—w we will recover the characteristic features of
Newtonian mechanics.

Since there are N —1 relative times and N energies, we
look for a total of 2N —1 series expansions; these are pro-
vided in an implicit way by the 2N —1 constraints (2.5a)
and (2.5b). These are written in terms of the variables
x¥,p? of the phase space; since we have assumed that x{
are true physical events we must write

x,“=(ct,—,x,~), i=1,...,N . (3.1)

Hence we have necessarily
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(3.2)

E; being energies, due to the canonical relations (2.4).

One can think of the set of constraints (2.5) as a set of
equations for the N unknowns E;, or rather for the kinet-
ic energies &,

gi =Ei—m,~c‘2 N (3.3)

and the N —1 independent relative times #; —t; or, rather,
the combinations

aijzc(t;——tj) . 3.4

A convenient choice of a basis for these a;; has to be
made. We adopt the ay; (i = , N) for this purpose;

hence
Q=0 —ay; . (3.5

Let us rewrite the constraints in terms of the new nota-
tion:

$i2 o Pi2 1---N ) ,
Q;= o2 - i— 2m—i + JE;&, Vij(aij —r1; ), (3.6)
1 N ’ p..-r”
= 2 Vij(aij2~rij2)l [ ‘ a,.j__u
€j=1 c
(3.7)

where
my=mi+m;, &;=&;+&;, pj=pi+p;. (3.8

The natural meaning of the &; is that of nonrelativistic
energies in the limit ¢ ~'—0, so we assume that in this
limit the &; are finite; the explicit calculation below will
show the consistency of this hypothesis. We can now use
the system of equations (3.7) to find ;;: According to the
implicit function theory (see, e.g., A})ostolzz) this can be
done whenever a set of numbers a,J exists such that, if

¢~ 1=0, fora,]—aﬁjo)
B,~=O (3.9)
and
det #0 . (3.10)
day;

If this is the case, we are assured of the existence of the
asymptotic expansion

(1) (2)
a; a;
ay=af +—L 4L . (3.11)
(4

The coefficients a,}), aff), ... can be calculated by a very

simple iterative procedure, which will be outlined later,
once the a,JO) are known.

Conditions (3.9) and (3.10) are easily worked out in this
particular case. They yield, respectively,

2 Aa)=0, (3.12)

Ay =det(4;;)540 , (3.13)
where
N
Aianij—aij 2 aiszﬁ (3.14)
k=1
and
a;=my | I’,](a(O)z—rijz)l =a; >0. (3.15)

It is apparent from Egs. (3.12) and (3.13) that the only
solution to this system of equations is

af'=0, j=2,...,N, (3.16)

as long as these conditions do not force det( 4;;) to vanish,
since the coefficients 4;; depend on aﬁ})). This actually is
the only restriction which the potentials ¥;; have to satis-
fy.

The solution (3.16) is very convenient because it implies
that the series expansion for a;; is of the form

(1) (2)
a,, (Z,J

ay=—" +—L v + - (3.17)
or that the expansion of the relative times is
a“) aﬁf)
t—t=——+ R (3.18)
c? c?

It can be further shown that aﬁf’:O and, in general,
that only terms with even powers of ¢ ~! will appear in
(3.18) because Egs. (2.5 only depend on c? when ex-

pressed in terms of the unknown &; and t; —t;. Hence
(n (3)
L %
—tj=—0 e + — c4 + (3.19)
Likewise we see that
‘ gy g
gi=$$0)+*T+ 2 (3.20)
c ¢

Now according to the discussion given in the Appendix,
the determinant Ay of (3.13) may only vanish when the
system of particles is composed of at least two clusters
with no interaction at all between them. But in that case
the set of constraints (2.5) breaks into as many uncoupled
sets as there are clusters, and the previous arguments must
be applied to each one separately. The time correlations
a;; between particles in different clusters remain arbitrary,
while those in the same cluster are found in the way just
outlined above.

To calculate the remaining coefficients we only have to
substitute (3.17) into (3.7) and equate to zero the terms
containing like powers of ¢ ~!. Since a,~j2 is of order ¢ 2
it is simple to evaluate af—}); indeed

N

S ayed)=

(—12) | (pyry) . 3.21)

E Vi

This is a linear system which can be inverted because
(3.13) is supposed to hold. It is easily seen that the same
kind of linear system arises for higher-order terms, always
leading to unique solutions for the corresponding coeffi-
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cients. This is, in fact, a consequence of the implicit-
function theorem.
Let us now calculate the coefficients & ﬁ.o’,gf ﬁ-”, ..., in

(3.20). From Eq. (3.6) it is easily seen that
1
&=—— |p’— 3 Vy(—r (3.22)
2m; i |
A
and, to next order,
1 !
gV =_ P &2 S V(- r; el . (3.23)
J#i

an expression in which the previously calculated %’ ) and
ai }) must be used.

Observe that the kinetic energies &; can be calculated
without any reference to the cluster structure of the sys-
tem of particles. Indeed the time separations appearing in
(3.23) remain arbitrary, but their presence does not affect
the value of the energy because the coefficients V;( —rijz)
cancel out their contribution whenever the indices i and j
refer to different clusters. Therefore the energy of each
particle only depends on its interactions with other parti-
cles in the same cluster.

IV. NONRELATIVISTIC LIMIT

In the previous section we studied the asymptotic ex-
pansions of energies and relative times, derived from the
structure of the constraints. Now we have to analyze how
these expansions lead, at the lowest order, to nonrelativis-
tic dynamics.

To this end let us consider the lowest-order expressions
of the constraints (2.5)

= 2 Vyl—ry’

J##i

, (4.1a)

This set of equations is a set of constraints for the nonre-
lativistic dynamics. We want to show that it corresponds
to a Newtonian dynamics for the spatial coordinates, p;
and r; in terms of a unique time ¢, in our inertial refer-
ence frame.

Let us put
1 2

6, =&, — pil— S Vir;?) |, 4.2)

¢1—t1_ j+1> (4.3)
with

i=1...,N; j=1,...,N—1,
the algebra of constraints is

1 ,

{60} ="“T’njVij(_rij2)(pij'rij) , (4.4)

{¢n¢]} ll 8tj+1 ’ (4.5)

{¢:,¢;1=0. 4.6)

The Dirac Hamiltonian

Hp= 2 Mg+ Z v 4.7)
i=1
is determined by
N Vi(—1:2)
{¢HHD = §1 ‘ﬁpk'f‘b
N—1
2 (8;1—8ik +1)=0 (4.8)
and B
{‘l'j’HD}ZA-l—)\.j_*_le. -(4.9)
From this last set of equations we have
M=ty =hy=ho (4.10)
so Hp is of the form
N p 2
Hp=ho| 3 |Eim75 — |+V |+ Ely,np,, (4.11)
= j=
where
V= 2 —1;%) . (4.12)
l]—] m;
(is£))

From (4.11) the equations of motion for x; and p; are

X;~—Ao{x;,H} (i=1,...,N),
(4.13)
~—Ao{pPi,H} ,
with

24V, (4.14)

i=1

which is the Newtonian Hamiltonian. (Notice that Vis a
function of the spatial r;; only.) On the other hand, from'
the equations of motion for #;, we have ({&;,t;} =§;;)

LAty 14+ - +E N =—N0 . (4.15)
From this, with the use of constraints ¥; =0, we get

t=—MAo t=ti=trym " =Iy (4.16)
so, if we choose the parametrization

Ao=—1, i.e., t=7-+const, (4.17)

we have the equations of motion (4.13) in Newtonian
form:

x;={x,H}, p;={pi,H},

with Li=ty= """ =l,=L.

What remains a complicated task is to find the equa-
tions of motion for the &;, which are determined by the
uj, determined in turn by Egs. (4.8):

. N-—1
giz E uj(8,~1—6

j=1

(4.18)

ij+1) -

However, for the purposes of our discussion it is not
necessary to solve these equations, since, in any case, we
observe that
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$E$1+$2+"‘+$N (4.19)

is, as expected, a constant of motion since it has zero Pois-
son brackets with the constraints (4.2) and (4.3), and hence
it is in weak involution with Hp.

V. CONCLUSIONS

What we have proposed in this work is a model which
satisfies relativistic invariance and the cluster decomposi-
tion property, as we have defined it. We have shown that
it has a well-defined nonrelativistic limit, which is nothing
but the usual Newtonian mechanics. From this point of
view it has a clear physical content.

Some words should be said about the definition we gave
of the cluster decomposition property and what is meant
of it by other authors. It could be observed that, with no
other restrictions on the potential functions V,-j(rijz),
timelike interactions between the particles, out of the non-
relativistic limit, could occur. Even so, a vanishing of the
potentials results in a decoupling of the constraint equa-
tions as we have seen, so any separate cluster has a
separate dynamics.

that is, that it should occur for a great spacelike separa-
tion between clusters of particles, a more specific choice
of the potentials must be made; namely, we must take the
potentials to vanish for r,-j2>0. (Let us remark that the
usual definition of force makes sense for spacelike dis-
tances only.)

With this last choice, the definition of separability, as
defined, for instance, in Ref. 8, is recovered.

For potentials not satisfying this property, more general
kinds of models can be devised, and an enlargement of the
class of models can be achieved by relaxing the require-
ment we have made that the potentials be of positive
derivative. In this last case models without a well-defined
nonrelativistic limit are obtained.

APPENDIX

In this appendix we study the (N —1)th-order deter-
minant

Ay=det(4;); i=1,...,N—1; j=2,...,N.

If we require a more strict definition of separability, Explicitly
]
ap as ainN
—(az+ " +ayy) as; azy
Ay= as; —(az + - asy) ay |, (A1)
an—1,2 an_—1,3 Tt 4NN

where a;; =a;;.

First note that if we add all the other columns to the last, change the sign of the first N —2 columns and then
transpose the last column in the first place, Ay can be written in the more symmetric form:

ap+ " +aw —ap —a;N_1
—as az + ' FaxN —azN-2
Ay= : - : (A2)
—ay_i,1 —any-—1,2 ay_11+ """ +Hay_ N

In what follows we will show that Ay is equal to the
sum of all possible products of N —1 a;;, with positive
sign, corresponding to all possible trees (connected graphs
without loops) of N vertices and N —1 branches (Cayley
trees):

Ay=38, t=1,...,NV2, (A3)
t

where 8, is the contribution to Ay of the rth tree and
8; >0. The total number of Cayley trees with N vertices
in NV =2 (see below).

A single term &, can be obtain from Ay by equating to
zero all the ag;; corresponding to the branches which do
not contribute to the th tree.

From (A3) it follows that Ay =0 if and only if the a;
(that is, essentially the V};) correspond to a system of par-
ticles separated in at least two noninteracting clusters. If

the N particles constitute a unique cluster of interacting
particles, we have Ay=£0, which is the result used in Sec,
III. Further, Ay is a symmetric unsignant determinant,
due to the circumstance that in the expanded form all its
terms are positive.

In order to demonstrate (A3) we will prove that Ay has
the following properties:

(a) it is invariant for any permutation of the indices
1,2,...,N;

(b) in the expanded form all its terms are positive (as
long as the g;; are positive, i,j =1, ..., N);

(c) it has an expansion formed of distinct terms, as long
as the g;; are distinct;

(d) if we represent each term of its expansion by means
of a graph of N vertices and N —1 branches (where the
branches correspond to the a;; and the vertices to the in-
dices), then no disconnected graphs, nor graphs with
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loops, contribute to such expansion, as long as all the a;
are different from zero;

(e) and finally that the number of terms in its expansion
is equal to the number of Cayley trees, that is, N N=2,

Property (a) can be proved by adding all the other rows
to the first row and all the other columns to the first
column; by changing the sign of the first row and after
that of the first column we get again Ay with the labels 1
and N exchanged. In an analogous way we can exchange
any two labels (see Ref. 23, p. 390).

Let us denote by AXI‘_, i the determinant Ay _, where
the a;y are replaced by a;;, +a;,+ *** +a; . Property (b)
can be proved by induction using the following expansion
of Ay (see Muir, Ref. 23, p. 390)

N—1 N—1 N
Ay= 3 awAy_i+ > awanA¥,
i=1 ij=1

+ - H4awvawccay_iN - (A4)

Property (c) can be proved in the same way.

Each term in the expression of Ay is a product of
N —1a;’s (i,j=1,...,N), so it can be represented by a
graph of N vertices and N —1 branches corresponding to
the a@;;’s. Now, if a graph of this kind has a loop, it is
necessarily disconnected and vice versa. If indeed it has a
loop, we will not have enough branches to build a con-
nected graph. Conversely, if it is disconnected, we will
have at least one branch in excess, which will necessarily
form a loop. So, in order to demonstrate property (d) we
have only to show that when all the a;;5<0 no disconnect-
ed graphs can be present in the expansion of Ay. This
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follows trivially since if a disconnected graph does contri-
bute to Ay it must give a nonvanishing contribution even
when we put to zero the a;;, with i belonging to one piece
of the graph and j to another. The structure of Ay in this
case, as can be seen by explicitly writing it, is the follow-
ing: let us choose i=1,2,...,r and j=r+1,...,n.
Putting a;; =0 we have that Ay is the product of two
determinants, one of which is

ap+ - tay, —a

—a, ap+ - +ap,

which is zero. It follows that in this case Ay =0.

We can conclude from this that only connected graphs
without loops, that is, Cayley trees, can contribute to Ay.
Further, if we show that the number of terms in the ex-
pansion of Ay is NV 2 that is, the number of Cayley
trees of N vertices and N —1 branches (see, for instance,
Aigner?), then Eq. (A3) is proved. The number of terms
in the expansion of Ay can be calculated by putting all
the a;; equal to 1. We get in this way the (N —1)th-order
determinant:

N—1 -1 .-+ —1
-1 N—1 -+ —1
-1 -1 N —1

which can be easily seen to be equal to NV ~2 (add all oth-

er rows to the first and subtract the first column so ob-
tained from all the others).
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