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Abstract

Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening
techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive
techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is
intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers
often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-
aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach
enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails
encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal
overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal
overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are
generally recorded for each compound as a quality control measure before its insertion into the library.
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Introduction

Fragment-based drug discovery has emerged in the past decade

as a powerful tool for drug development and is now widely applied

both in academic and in industrial screening programs. Its success

derives from the structural simplicity and relatively low molecular

weight (150 to 300 u) of the fragments, which contrast with the

more complex, medium-weight compounds normally employed in

high-throughput screening (HTS). Using fragments has three main

advantages over using larger compounds: firstly, the chemical

space is significantly smaller, and therefore, can be explored more

efficiently; secondly, the hit rates are 10 to 1000 times higher; and

lastly, fragments often show high ligand efficiency, thereby

facilitating work to improve their affinity [1].

Various biophysical techniques such as X-ray crystallography,

surface plasmon resonance and NMR have been exploited for

fragment screening, where they must provide reliable detection of

the mostly weak interactions between fragments and the target,

with a low occurrence of false positives and negatives.

NMR-based fragment screening methodologies have become

very popular, as they fulfill these requirements excellently. The

only disadvantage of NMR compared to other screening methods

is its low intrinsic sensitivity. To compensate it, and to increase

throughput, researchers often assay fragment mixtures, rather than

single fragments, in NMR-based screening [2–3]. Modern NMR-

based screening methodologies rely mainly on ligand observation

experiments in which either a conventional NMR parameter of

the ligand (e.g. relaxation properties), or the intermolecular proton

magnetization transfer from the protein to the ligand, is evaluated

[3]. In theory, both types of experiments enable direct identifica-

tion of one or several binding fragments in a mixture that also

contains non-binding fragments, yet they do not require

deconvolution. The only requirement is that the NMR signals of

the fragments in the mixture can be distinguished one from

another, so that they can be evaluated separately, a subject which

is only marginally covered in the literature [4–5].

We addressed the NMR signal overlap issue through the

following process: firstly, conversion of NMR data for compounds

from our in-house fragment library into a meaningful, computer-

readable format; secondly, evaluation of different computational

algorithms for the task of reducing signal overlap; thirdly,

preparation of in silico mixtures of fragments taken from our in-

house library, based on zero or near-zero signal overlap; next,

confirmation that the in silico mixtures behave similarly to real

(chemically synthesized) fragment mixtures; and finally, testing of

the general adaptability of the algorithm.

Methods

NMR Spectrometry and Computation
All NMR spectra were acquired on a Varian Inova 500 MHz

spectrometer with a 5 mm PFG Penta Probe at 37uC. S/N for 1H
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was 815:1 (0.1% ethylbenzene in CDCl3). All calculations were

performed on an SGIH AltixH 4700 server (64 cores, 128 GB

RAM).

Sample Preparation, and Generation of Fragment
Fingerprints

Stock solutions (100 mM in 9:1 DMSO-d6/D2O) of each

compound from our in-house fragment library were prepared, and

then inspected visually to confirm solubility. Soluble compounds

were further diluted to 1 mM in deuterated buffer (25 mM

phosphate, 50 mM NaCl, 11 mM t-butanol, pH 7.0), and their

individual 1D-1H-NMR spectra were recorded using presaturation

for water suppression. The purity and identity of each fragment

was manually checked in each spectrum. Compound concentra-

tion was calculated based on an internal standard (t-butanol).

NMR data for all fragments that passed quality control were then

translated into computer-readable files, called fingerprints, by an in-

house modified Varian script for automatic processing. The

routine for signal integration was modified to integrate a narrow

zone around each signal and to create an ASCII file for each

NMR spectrum, consisting of the integration range of each signal

and the value of the integral. Therefore, the generated file

comprises several regions defined by start and end values that

mark the spectral regions containing signals. Raw data were

adjusted for subsequent calculations by removing regions origi-

nating from H2O (4.780–4.530 ppm), DMSO (2.754–2.613 ppm)

and t-butanol (1.320–1.130 ppm) and by reducing the size of all

remaining regions by 50%. The library was analyzed, obtaining

and average number of integration zones of 7.561.9, an average

size of the integrations zones of 0.15260.048 ppm, an average

number of peaks of 12.766.7 and an average line width of the

peaks of 3.261.5 Hz.

Algorithms
The task of designing mixtures of a non-redundant pool of

fragments is a case of the knapsack problem, one of the typical, non-

deterministic polynomial time (NP-complete) problems widely

described in the literature [6–7]. To solve this problem,four

different types of algorithms grouped in two types were tested:

deterministic (greedy [6–7] and backtracking [6–7]) and stochastic

(Simulated Annealing (SA)and genetic [9–10]).

As starting point for all algorithms, we implemented the same

data structure. This structure was an array with the compounds,

each one with its respective fragments, where in deterministic

algorithms, the solution array was progressively filled, while

stocastics was initialized with a random permutation of the

fragments.

We used both the greedy and the backtracking algorithms to

maximize the number of library fragments that could be used for

five-fragment mixtures that would not have any signal overlap.

This was accomplished through a scoring function that maximizes

the number of fragments (Table 1, A1 and A2). In this case, the

valid criterion for extending partial solutions was the success of

adding new fragments into the mixture, such that once the process

arrives at a solution, no more fragments can be added. To

facilitate searching in the greedy algorithm, the fingerprint library

was sorted by spectral area coverage at the beginning of the

procedure. For the backtracking algorithm, to amplify the

screening in the solution space and shorten the time required, it

was executed several times in parallel, using random starting

points.

In the SA and genetic algorithms, a different scoring function

was used (Table 1, B1 and B2) to minimize overlap in each

mixture. In the genetic algorithm, an initial population of 1000

candidates was established with standard conditions of selection,

breeding and mutation taxes [9–10]. The evolutionary process was

extended over 50 generations. We carried out 100 iterations of the

SA algorithm in parallel with two million cycles, where the

temperature value was close to zero. To study the scalability of the

virtual libraries, the SA algorithm was then run 100 times

independently, using the same algorithm conditions with the

different lists. Finally, the effect of temperature was tested using

values from 0 to 25000 in a virtual library of 500 fingerprints that

contained an equal proportion of aliphatic and aromatic peaks.

Generating Virtual Fingerprint Libraries
We modeled virtual fingerprints using parametrized values to

mimic the fragment fingerprints obtained experimentally from our

in-house library. A virtual fingerprint comprises a series of start

and end points delimiting diverse peak regions. The number of

peaks per fragment, and the position and width of each peak

(integration range), are randomly established according to a

Gaussian function. In this procedure, a Box-Muller transform is

used to generate standard, normally distributed random numbers:

N(m,s2). Different mean values and variations were selected in

each case (all in ppm). The number of peaks and the integration

range follow a normal distribution of N(8,4) and N(0.1,0.03),

respectively. The peak position was determined using two

combined normals [N(2,1) and N(7.5,1.5)] with different proba-

bilities, producing three different distributions (strongly aliphatic,

strongly aromatic and balanced). The effect of the library size on

the solution was tested using four different sizes: 500, 1000, 3000

and 5000 fragments. The effect of the number of fragments per

mixture was also assessed for each distribution-size combination:

5, 8, 10, 15 and 20 fragments.

Table 1. Characteristics and performance of the tested algorithms.

Algorithm Algorithm Type Execution Time Scalable Optimization

Greedy Deterministic Very short Yes Very low

Backtracking Deterministic Very long No Low

Genetic Algorithm Stochastic Short Yes Not possible

Simulated Annealing Stochastic Short Yes High

The scoring function in the deterministic algorithms is based on achieving zero signal overlap (Scoring = Ni, where Ni: number of fragments in the mixture) while in
stochastic algorithms the scoring function is based on achieving minimal signal overlap (Scoring~

PN

i~0

Niov=Nitð Þx100ð Þ2 , where Nov: number of overlapped signals of
compound i, and Nt: total number of signals of compound i).
doi:10.1371/journal.pone.0058571.t001
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Results and Discussion

Translating NMR Data into Fingerprints
All computational projects demand careful preparation of the

input data, whose quality dictate the quality of the results.

Therefore, the first issue we tackled in this project was to translate

NMR spectra into a meaningful, computer-readable format. We

chose to directly use the NMR spectra that had already been

generated in the setup and quality control of our in-house library

in order to avoid the necessity of performing any additional

experimental work. The in-house script process and integrates

narrow regions around each signal creating an ASCII file for each

spectrum. This file comprises a collection of segments defined by

the starting and ending chemical shifts of each integration zone.

Thus, each fragment’s spectrum is an ensemble of different

segments of signals and surrounding space. We refer to the entire

ensemble as a fingerprint.

The raw data were adjusted for the subsequent calculations in

two steps: firstly, signal regions common to all the spectra were

defined (i.e. signals from H2O, DMSO, and t-butanol [internal

standard]), and all segments that overlapped with these regions

were partially or completely removed; secondly, since the size of

each segment generated by the script was larger than that required

Figure 1. 1H- NMR spectra sample. A: Overlaid 1H-NMR spectra of five different fragments (1 mM in sample buffer: 50 mM phosphate buffer
pH 7.0, 50 mm NaCl, 3% DMSO-d6), recorded at 37uC and 500 MHz. The arrows indicate residual peaks from H2O, DMSO and t-butanol (internal
standard). B: Fingerprint of an in silico-designed mixture with zero or near-zero signal overlap. C: 1H-NMR spectrum of the five fragments mixed
together (500 uM each) under identical experimental conditions as in 1A (the signal at 0 ppm corresponds to DSS).
doi:10.1371/journal.pone.0058571.g001

Figure 2. Effect of the reduction of the size of the fragments. X-
axis showed %reduction of the size of all segments and y-axis
%similarity between the number of peaks in each segment before
and after the reduction.
doi:10.1371/journal.pone.0058571.g002
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to clearly separate the signals from each other, the size of all

segments was reduced by a 50%. In fact, the size of the necessary

zones varied from 30% to 90% of the size of the zones defined by

the script. The in-house script provided too wide regions of

integration and after analyzed them we checked that reducing the

regions to the 50%, the 90% of the peaks included in the region

provided by the script was recovered obtaining a more suitable size

of the region of integration. Figure 1A shows several overlaid 1H-

NMR spectra corresponding to single fragments; Figure 1B shows

the fingerprints of the corresponding compounds, used to design

fragment mixtures that would show nearly zero signal overlap; and

Figure 1C shows the actual 1H-NMR spectrum of the mixture of

fragments studied in the same NMR tube.

Algorithm Evaluation
As explained, we examined four different algorithms for

preparing five-fragment mixtures that would have zero signal

overlap. Among the deterministic methods, the greedy algorithm

could group only the 60% of the fragments into mixtures of five

without causing signal overlap; while when it grouped the

remaining 40% into mixtures of five, they exhibited strong

overlap. The backtracking algorithm showed a similar behavior,

making greedy methods advantageous owing to its relative

simplicity and speed. Backtracking is a refined brute force

approach: it systematically searches for a solution to a problem

among all available options. In our case it made the finding of a

final solution nearly impossible, due to the fact that the number of

compounds demanded long calculation times. However, as a

partial solution, the backtracking algorithm was able to group 75%

of the compounds into five-fragment mixtures without overlap.

Analysis of the remaining 25% of compounds revealed that they

comprise complex fragments that have many signals located in the

crowded aliphatic and aromatic regions. In light of this result, we

realized that we needed to define a new scoring function based on

minimal overlap for all the fragments from the library, rather than

zero overlap for only some of these fragments. Another problem

highlighted by the backtracking algorithm is that the required

calculation time grows exponentially with the size of the data set.

Therefore, we decided to explore stochastic algorithms, which we

expected to be much faster and enabling the performance of

multiple calculations in parallel. Genetic algorithms failed to

provide a coherent solution, due to problems in the breeding and

mutation steps, causing a loss of compounds in each evolutionary

cycle. The problem showed by the genetic algorithm was that the

fragments were stored in arrays, and the array was considered as

an individual of the algorithm. Thus, when crossover of the best

individuals were carried out, it was possible that some fragments

were repeated in the same individual. Although in the formula was

introduced a parameter in order to maximize diversity, it was not

possible to totally avoid the fact that the algorithm remove those

fragments to reach a global minima. Considering that the main

interest was to keep all the fragments, the optimization with the

genetic algorithm was considered as not possible. Contrariwise, the

SA algorithm (Monte Carlo-Metropolis) yielded good results in a

reasonable time. It can be run with libraries of up to 1000

compounds in less than 5 minutes, thereby enabling parallelization

of massive independent runs. Unexpectedly, we found that

temperature had a negligible effect on the results, as we describe

later.

Figure 3. Histogram representation of the 1H-NMR peak distribution. A: 1H-NMR peak distribution of the 342 fragments of the in-house
library. B(1–3): Analogous plots for the virtual libraries of 3000 fragments having the following signal density distributions: 50% aromatic, 50%
aliphatic (B1); 70% aromatic, 30% aliphatic (B2); and 30% aromatic, 70% aliphatic (B3).
doi:10.1371/journal.pone.0058571.g003
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Figure 4. Results for the virtual library of 3000 fragments comparing randomly constructed (orange) and optimized (blue) libraries.
The parameters and values tested were: library size (A-D: 500, 1000, 3000 and 5000, respectively); peak distribution (strongly aliphatic, strongly
aromatic and balanced); and number of compounds per mixture (5, 8, 10, 15 and 20). For each set of conditions, the SA algorithm was run one hundred
times independently.
doi:10.1371/journal.pone.0058571.g004
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Optimization of Mixtures from the In-house Fragment
Library

We performed 100 independent runs of SA for the 342

fragments from our in-house library that passed quality control.

One hundred random solutions were calculated in parallel by

clustering the fragments into mixtures having the same number of

fragments. Based on the assumption that each component

contributes equally to the final score of the mixture, the random

mixtures showed an average signal overlap of 44% per compound.

After optimization by SA, the average global signal overlap per

compound was reduced to only 2% (an improvement of a 42%).

The in silico results were confirmed by mixing the appropriate

fragments into mixtures who’s 1H-NMR spectra were then

recorded. A peak list was generated for each mixture and

compared to the fingerprint of each fragment. After the 50%

reduction in segment size, more than 92% of the peaks matched

with the regions corresponding to the fingerprints (Figure 2). Based

on these results, we concluded that the in silico fragment mixtures

corresponded to the real ones.

Evaluating Algorithm Adaptability with Virtual Libraries
Given the size of our in-house library, we were unable to study

scalability and other variables that could affect the SA algorithm.

Therefore, we designed a virtual fingerprint-generator to produce

virtual libraries. A total of twelve different libraries, differing in

global size and peak distribution, were generated. Library sizes of

500, 1000, 3000 and 5000 fragments were chosen. Three different

distributions were selected, representing libraries whose fragments’

NMR signals were strongly aliphatic, strongly aromatic or

balanced. Figure 3 shows a representative example from one of

these virtual libraries. The twelve virtual libraries were then used

to test the ability of the SA algorithm to reduce the global signal

overlap (compared to that of a random solution) for mixtures of

five to twenty fragments (Fig. 4).

For each set of library size, peak distribution, and mixture size,

the SA algorithm was run independently 100 times, and the results

were compared to those from random clustering of fragments into

mixtures. Interestingly, library size and peak distribution had no

significant impact on the SA algorithm while mixture size affected

the global signal overlap for both the random and the optimized

mixtures. Whereas the SA algorithm achieved a global signal

overlap close to 0% for five-fragment mixtures, the overlap

increased when increasing the mixture size. However, in the

random mixtures, for each set of conditions, the SA algorithm still

reduced signal overlap by 35%, regardless of the mixture size.

For mixtures of 20 fragments, SA reduced the signal overlap to

the level corresponding to a randomly assembled mixture of eight

fragments. Although screening of mixtures containing more than

eight compounds is not currently common practice, future

improvements in NMR sensitivity may enable this for cases in

which signal overlap is low enough that deconvolution is not

required. Theoretically, one can expect that with bigger fragment

libraries we should obtain a lower percentage of global overlap

between fragments owing that the number of fragments that can

be mixed is higher. However, in-silico results showed that the

bigger the library the higher the difficulty of finding the best

combination of fragments in the mixtures. This behavior is

explained by the fact that in the second case, the probability of

each fragment of being chosen by the SA algorithm is lower. Thus,

it is more difficult to find the best combination, although Figure 4

shows that the level of overlap for each group of 500, 1000, 3000

and 5000 were nearly equivalent.

Effect of Temperature on SA
Temperature is normally an important variable in the SA

algorithm: during optimization it controls the acceptance of uphill

moves, thereby avoiding local minima. To determine the best

temperature value for the algorithm, the impact of temperature on

the capacity to reduce signal overlap was tested with equally

distributed libraries of 500 fragments each. The temperature value

ranged from 0 (no uphill moves allowed), to 25000 (nearly 100% of

uphill moves allowed by using a value larger than a fully

simultaneously overlapped score of two compounds). Surprisingly,

modifying the temperature had no positive effect on the algorithm,

independently of the conditions tested (Figure 5). It can be

explained owing that each optimization step in the SA algorithm is

not directly linked to the previous one, and consequently, each of

these steps can have highly variable effects. Therefore, late uphill

moves are translated into high increments in the scoring, making

this effect nearly negligible owing that the algorithm reaches its

minima much before that temperature has a real meaning.

Conclusions
We have devised a powerful method for NMR screening of

mixtures of fragments that entails translation of NMR spectra into

fingerprints. Among the various algorithms evaluated to solve the

problem of signal overlap, the SA algorithm offered the best

Figure 5. Effect of temperature on signal overlap. The experiment was performed with a virtual library of 500 compounds and a peak
distribution of 50% aromatic and 50% aliphatic.
doi:10.1371/journal.pone.0058571.g005
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optimization. As proof of concept, we used this algorithm to design

five-fragment mixtures from our in-house library that showed an

average signal overlap of only 2%.

We conceived virtual fragment libraries to evaluate the

performance of the SA algorithm based on peak distribution

(relative aliphatic or aromatic character of the library), scalability

(i.e. library size), and temperature. Results suggest that the method

is amenable to libraries of any size or nature. Furthermore,

temperature had no effect on signal overlap.

This method could improve the efficiency of NMR-based

fragment screening by simplifying detection of binding com-

pounds, as it does not require any special computational hardware

and, in the case of compounds whose NMR spectra are already

available, it does not require any additional experimental work.
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