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Abstract: To study the Slonczewski Spin Transfer Torque Effect in the quantum limit, a new
model of Hamiltonian is needed. In recent years, it has been found that the requirement of Hermitian
Hamiltonians can be replaced by a weaker condition that is the PT symmetry. This new theory
allows a whole new branch of Hamiltonians to be accepted by the quantum theory. It is believed
that these Hamiltonians could help to explain unstable systems and dissipative effects. This work
aims to study a purposed PT symmetric Hamiltonian, which explains the Slonczewski STT effect,
to see whether the rules of Quantum Mechanics can be applied or not.

I. INTRODUCTION

It is a well known fact that Quantum Mechanics is
based on various postulates that cannot be proved. In
spite of this, the postulates have been tested many times
in diverse experiments that are considered to be unques-
tionable.

However, this view is challenged by many studies that
received little attention until recently such as [5]. These
studies state that the condition of self-adjointness can be
replaced by the weaker condition of PT symmetry. Con-
sidering this, one can obtain new forms of Hamiltonians
whose spectra is real for some parameters.

New results show that non-Hermitian PT symmetric
Hamiltonians have two different regimes. The first is the
regime of unbroken symmetry, where all the eigenvalues
of the Hamiltonian are real. However, PT symmetric
Hamiltonian eventually breaks the PT symmetry regime
and some eigenvalues of the Hamiltonian become com-
plex. The understanding of the transition between these
two regimes is very important for the understanding of
many instabilities.

The non-Hermitian Hamiltonians are PT symmetric,
and, therefore they are invariant under the simultaneous
action of parity and time reversal (~x→ −~x, t→ −t, i→
−i). This is due to the PT symmetric Hamiltonians
commute with the antilinear operator PT and because of
it, their eigenvalues are guaranteed to appear in complex
conjugate pairs.

In this work the focus is placed on the description of
Slonczewski Spin Transfer Torque, using a PT symmetric
Hamiltonian provided by [1], who discuss the effect of
the Hamiltonian in the limit of large spin. Instead of the
limit of large spins, we focus on the Quantum Mechanics
involved with the Hamiltonian. First, it is questioned
whether it is possible or not for a particle to tunnel, and
if in this case the perturbation theory would work. In
addition, we tried to find the probability of transition
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using the instanton model [4], but we found unexpected
results that until now we have not been able to explain.
Later, a possible interpretation for the complex spectrum
is presented, though we lack of experimental results to see
if it is correct. Finally, the correspondence between the
results obtained and the results found for the limit of
large spin [1] are studied.

At the beginning the aim of this study was to compute
the dissipation effect that would emerge from a Hamilto-

nian H =
−kzS2

z+kxS
2
x

1−iα , which is the same transformation

used in [1]. However, we found it really difficult to trans-
form the Hamiltonian H to a PT symmetric one, and
thus the topic was modified and it became the explained
previously.

II. MODEL

This study wants to find a model for the quantum
behaviour of the Slonczewski Spin Transfer Torque. A
simple setup preparation for this experiment is a ferro-
magnetic cylinder placed on a magnetic field H; the di-
rection of H is considered to be in the x axis. Then, an
electric current J is polarized in the direction y, which
passes through a non-magnetic metallic spacer and in-
duces torque.

To describe this mechanism a non-Hermitian Hamilto-
nian for a single spin operator is introduced

H =
−kzS2

z +HxSx + ijSy
1− iα

(1)

where the anisotropy term has been restricted to the sec-
ond order for simplicity, jS is considered to be the spin-
angular momentum deposited per second in the direction
Sy and α > 0 a phenomenological constant.

In the limit of small α and taking the spin polarized
current j = γH0β, the Hamiltonian (1) can be trans-
formed into the following PT symmetric Hamiltonian,

HPT = γH0(−kzS2
z + hxSx + iβSy), (2)

where hx is the applied magnetic field measured in units
of some characteristic magnetic field H0 and β is a di-
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mensionless Spin Transfer Torque parameter, determin-
ing (relative to S) the amount of angular momentum
transferred on time (τ = (γH0)−1).

III. TUNNEL SPLITTING

The aim of this section is to find a way to perform
a perturbation theory for a PT symmetric Hamiltonian
and to explore if it is in accordance with the diagonaliza-
tion of the matrix associated to it. To do so, all the steps
of the perturbation theory will be applied consecutively
and we will realize where the corrections should be done.

If we consider the Hamiltonian expressed in equation
(2) provided by [1], since the Sz does not commute with
the Hamiltonian, it is to be expected that m is no longer
a conserved quantum number. Therefore, the magnetic
moment of a nanoparticle initially put in a state m can
now tunnel. We know that this happens for a Hermitian
Hamiltonian, and we want to test it for a PT symmet-
ric one and see if it is in accordance with the results of
perturbation theory.

If we take hx = 0 and small β, the problem of tun-
nelling between m and −m becomes a two-state prob-
lem whose solution using perturbation theory [3] is well
known. In this case and for a large variety of spins
(S = 1, 2, 3, 4, 5, 6, 7, 8), it has been found that the eigen-
vectors of the equation (2) allow tunnelling between the
states m and −m.

The resulting Hamiltonian is HPT = γH0(−kzS2
z +

iβSy). The tunnelling splits the degenerate levels in

εm,± = εm ± ∆
2 , with its correspondent eigenstates

ψm,± = 1√
2
(|m〉 ∓ | − m〉). Then, if we take into ac-

count that Sy = 1
2i (S+ − S−), the Hamiltonian becomes

HPT = γH0(−kzS2
z + β

2 (S+ − S−)). The ∆m can now
be computed with the 2|m|-th order of the perturbation
theory,

∆m = 2Vm,m+1
1

εm+1 − εm
Vm+1,m+2 · · ·V−m−1,−m, (3)

where ∆ is the tunnel splitting, εm is the unperturbed
energy of the m-th level and Vm,m+1 = |〈m|iβSy|m+ 1〉|
that fulfils,

Vm,m+1 = Vm+1,m =
β

2

√
S(S + 1)−m(m+ 1). (4)

Here, it should be noticed that the expression for a Her-
mitian Hamiltonian is Vm,m+1 = 〈m|iβSy|m+1〉, though
in our case, in order to correct the theory for the PT
symmetry an absolute value is needed.

Therefore, with the substitution and some arrange-
ments, it is found the following expression for the tunnel
splitting ∆m considering m < 0,

∆m =
2kzγH0

((−2m− 1)!)2

(S −m)!

(S +m)!

(
β

2kz

)2|m|

(5)

if β = kzβ
′, then we get the following expression.

∆m

kzγH0
=

2

((−2m− 1)!)2

(S −m)!

(S +m)!

(
β′

2

)2|m|

(6)

Now, to see if it gives a good approximation to the real
tunnel splitting, the matrix associated to HPT should be
diagonalized in order to confirm if the tunnel splitting
resembles with the energy levels.

Supposing the work is done with nanoparticles with
spin S, then the energy levels will be ε1, . . . , ε2S+1, but
these will be paired two by two excepting one of them.
To find the tunnel splitting of these paired energy values
(∆d,m),

∆d,m = |εi − εj |, (7)

supposing that the energy i and j are paired.

|m| ∆m ∆d,m e

5 5.38228 · 10−18 5.38428 · 10−18 2.0026 · 10−21

4 1.11607 · 10−12 1.11555 · 10−12 5.1900 · 10−16

3 4.375 · 10−8 4.38365 · 10−8 8.646 · 10−11

2 2.9167 · 10−4 2.94016 · 10−4 2.346 · 10−6

1 1.5 · 10−1 1.788 · 10−1 2.88 · 10−2

TABLE I: Perturbation tunnel splitting, Diagonalized tunnel
splitting, and absolute error for S = 5 and β = 0.1kz.

The results of TABLE I have been obtained using Wol-
fram Mathematica 11.2 for the diagonalization of the ma-
trix, and considering nanoparticles with spin S = 5 and
a current β = 0.1kz. As it can be seen, the perturbation
results predict correctly the tunnel splitting for large |m|,
and the error increases for smaller |m| as it was expected.

The same calculations have been run for larger S and
the results are the same, having great accordance with
the perturbation theory.

FIG. 1: Relative error of using the perturbation theory in-
stead of the diagonalization of the Hamiltonian (2) for hx = 0,
S = 5, considering β = β′kz and the tunnel slpitting is mea-
sured using |m| = 5, ∆−5.

In figure 1 can be seen the relative error of ∆−5 in
function of β considering hx = 0, and S = 5.
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As it was expected, the perturbation theory reproduces
the results very well for small β, but when β is increased
it fails in describing the value of the tunnel splitting.
That result is the same that should be expected from the
usual quantum theory.

IV. ENERGY SPECTRUM

One of the interesting facts of the PT symmetric
Hamiltonians is that it has been proved that they allow
to study dissipative effects and dynamic phase transitions
out of equilibrium systems in the continuous approxima-
tion.

The aim of this section is to develop a few quantum
tools to use during the symmetry breaking and see if they
are in agreement with the results of [1] and the behaviour
of a Slonczewski Spin Transfer Torque (STT) effect.

A. Finding complex Energy values

As it has been seen in the previous section that, con-
sidering once again the PT symmetric Hamiltonian on
[1] for small β all the energy spectrum is real. Thus, it is
in clear correspondence with the usual Quantum Theory
[2]. However, when the current β is increased above cer-
tain value, a pair of complex conjugate energies appears
in the energy spectrum.

ε1 = −1

ε2 = −0.5 + 0.33166i

ε3 = −0.5− 0.33166i

(8)

In example (8) the energy spectrum for the HPT
γH0kz

=

−S2
z + h′xSx + iβ′Sy, where hx = 0, β = 0.6kz and S = 1

can be seen.
It can also be seen that the complex spectrum is paired

with complex conjugates. Moreover, it is easy to see
that all the complex eigenvalues will be paired complex
conjugates. The Hamiltonian in [1] can be rewritten as
HPT
γH0kz

= −S2
z + h′xSx + β′

2 (S+ − S−), and this ensures

that all the coefficients in the associated matrix will be
real and the characteristic polynomial will have real co-
efficients. That is, the only way to have complex roots is
if they come as paired complex conjugates.

It is reasonable to wonder whether there is a complex
energy spectrum of all S or there are some nanoparticles
with a concrete spin that does not allow the spectrum to
become complex. This study has numerically analysed
particles of spin S = 1

2 , 1, 2, 3, 4, 5, 6, 7, 8 and all of them
developed a complex energy spectrum. Moreover, the
study [1] considers a spin S −→∞ and it also finds com-
plex eigenvalues. So there is no evidence that supports
the theory that for certain spins there are no complex
eigenvalues.

Another interesting question is whether when β in-
creases there are new pairs of complex energy appear or

the system only develops a pair of them. The answer is
that all the systems analysed develop new pairs of com-
plex energy levels with increasing β. The results of the
Hamiltonian (2) with hx = 0 and increasing β for S = 3
can be found in table II.

β′1 = 0.2 β′2 = 0.3 β′3 = 1.5 β′4 = 3

ε1 −8.989 −8.973 −8.338 −1.22 + 8.57i

ε2 −8.989 −8.973 −8.318 −1.22− 8.57i

ε3 −3.979 −3.953 −0.96 + 4.01i −7.000

ε4 −3.978 −3.950 −0.96− 4.01i −3.50 + 4.87i

ε5 −1.033 −1.076 −3.758 −3.50− 4.87i

ε6 −0.674 −0.53 + 0.51i −2.83 + 1.67i −5.77 + 1.51i

ε7 −0.359 −0.53− 0.51i −2.83− 1.67i −5.77− 1.51i

TABLE II: Energy spectrum of the Hamiltonian (2) with S =
3, hx = 0 and different β = β′kz.

Another property that must be taken into account is
that for S ∈ N there has to be a real energy value, due to
there are 2S+ 1 different values, and the complex values
must be paired.

The next steps provide an interpretation on these com-
plex energy values.

B. Interpretation of the Energy Spectrum

It is known from the Shröndinguer equation [2], that
if the Hamiltonian is time independent, then exists the
following time evolution operator

U(t) = e
iHt
~ (9)

In this study, the time evolution operator is used with
a complex energy spectrum. This leads either to an in-
crease or a decrease of the probability of finding the par-
ticle in certain states.

Considering a nanoparticle with spin S,
|ψ′1〉, . . . , |ψ′2S+1〉 the eigenvectors of the Hamilto-
nian (2) for a given β and supposing there is only a
pair of complex eigenvalues which are ε2S = a + bi
and ε2S+1 = a − bi and a normalized initial state

|ψ〉(0) =
∑2S+1
i=1 ci|ψ′i〉, with

∑2S+1
i=1 |ci|2 = 1, the usual

time evolution operator leads to the following expression,

|ψ〉(t) =

2S+1∑
i=1

cie
−iεit

~ |ψ′i〉 (10)

which is clearly not normalized, since

|ψ〉(t) =

2S−1∑
i=1

cie
−iεit

~ |ψ′i〉+c2Se
−iat+bt

~ |ψ′2S〉+c2S+1e
−iat−bt

~ |ψ′2S〉

(11)

If this expression is expected to have a physic interpre-
tation, |ψ〉(t) must be renormalized after the application
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of the time evolution operator. This is new and it is only
needed in the non-Hermitian PT symmetric Hamiltonian
due to in the Hermitian ones the function is still normal-
ized after the application of the time evolution operator.
To express |ψ〉(t) with compact notation, the sum from
i = 1 to i = 2S + 1 will be used, but it is important to
bear in mind that for i = 2S and i = 2S + 1 there is a
real term in the exponential.

|ψ〉(t) =

∑2S+1
i=1 cie

−iεit

~ |ψ′i〉√
1 + (e

2bt
~ − 1)|c2S |2 + (e

−2bt
~ − 1)|c2S+1|2

(12)
So as it can be seen in (12) if t→∞ and c2S 6= 0 then,

ψ(t→∞) = |ψ′2S〉.
Moreover, the theory explained above will be tested

considering that the system can be described as [1] and
follows the Hamiltonian (2). In addition, nanoparticles
with spin S = 5 and with a preparation that fulfils
|ψ〉(0) = |5 5〉 are used. Since in this system m is not
a good quantum number, there will be some mixture of
eigenvectors of the Hamiltonian (2) and the equation (12)
will have to be applied. Then, a numerical expression for
|ψ〉(t) will be generated. To finish, a study of 〈Sz〉(t) will
be performed to discover if this theory is in concordance
with the Slonczewski STT effect.

As it is known, if the state ψ(t) =
∑S
m=−S cm|m〉

where m is the projection of the spin in the third axis

and φ(t) is normalized, then 〈Sz〉 =
∑S
m=−S |cm|2m. To

find an expected value that could describe a real system,
〈Sz〉(t) is required to be at least continuous, and then the
validity of its results can be discussed.

FIG. 2: 〈Sz〉(t) for the resolution of the Schrdinger equation
for Hamiltonian (2) with hx = 0 and β = 0.14kz and for S = 5
with |ψ〉(0) = |5〉.

First of all, it should be said that for S = 5 and hx =
0, the first complex pair of eigenvalues appear for β =
0.135kz. This means that in the case of figure 2, the
diagonalization of HPT has complex eigenvalues.

As it can be seen, the evolution of 〈Sz〉(t) begins with
a value near 5, then it begins a transition from 5 to 0 and
it stabilizes in 〈Sz〉 = 0. This could mean an alienation
of the spin with the direction of the current β.

The next step is to see how does the 〈Sz〉(t) change
when the electric current β is increased. It does also
mean that there will be more than one pair of complex
eigenvalues of the Hamiltonian (2). So it is important to
see if the expected value will still be continuous or it will
have any discontinuity.

FIG. 3: 〈Sz〉(t) for the resolution of the Schrdinger equation
for Hamiltonian (2) with hx = 0, β = 2kz and for S = 5 with
|ψ〉(0) = |5〉.

In figure 3, it can be seen that the transition between
〈Sz〉 = 5 to 〈Sz〉 = 0 happens faster than in figure 2.
However, it can be seen that the expected value of the
〈Sz〉 is inverted for a while; the expected value of the Sz
is negative during a short period of time.

It could be relevant to know if there is any current β
for which 〈Sz〉 switches from |ψ〉(0) = S to |ψ〉(t) = −S,
although until this moment we have not been able to
find it. However, this is an interesting way to follow this
study, since it could be important for the development of
quantum computers in the future.

V. CORRESPONDENCE PRINCIPLE

The correspondence principle in physics states that the
behaviour of systems described by quantum mechanics
reproduces classical physics in the limit of large quantum
numbers.

To see if the results of this study reproduce the quan-
tum behaviour of nanoparticles in a Slonczewski STT
model, the results should be compared with the results
in [1]. Using the same values of kz and hx, the value of
the critical β (which is the current needed for the Hamil-
tonian (2) in order to develop the first pair of complex
conjugate eigenvalues) should be almost the same in [1].

In [1] S → ∞, kzS → D
2 with hx = 1 and D = 20 are

used and this finds that βc ≈ 4.5. If the Hamiltonian (2)
is substituted by these values, with S = 5, kz = D

2S = 2,

then HPT = γH0(−2S2
z + Sx + iβSy) = 2γH0(−S2

z +
1
2Sx + iβ′Sy). Some analytical calculations have been
run for the Hamiltonian (2) and the results have been
β′c = 0.5175, βc = 1.035. The same calculations have
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been tested for larger S = 6, 7, and it has been found
that βc ≈ 1. The results do not seem to be in agreement
with the value found by [1].

Although our results are in accordance with the results
found by E. Chudnovsky (private correspondence), which
have not been published yet, that say that the value εc =
βc

kzS
should be constant. Since in our experiment kzS is

constant, βc should be constant as well.
Moreover, the real and imaginary parts of the energy

spectrum for S = 3 has been plotted in figure 4, and the
results compared with [1] are practically the same.

This brings us to conclude that there are some dis-
crepancies between the units used by [1] and the ones we
used.

FIG. 4: Real and imaginary spectrum in function of β for the
diagonalization of the Hamiltonian HPT = γH0(−2S2

z +Sx +
iβSy) for S = 3.

VI. CONCLUSIONS

• It has been found that the tunnel splitting of the
non-Hermitian Hamiltonian (2) is in great accor-
dance with the perturbation theory. As expected,
the perturbation theory is almost in full agreement
with the energy spectrum of the Hamiltonian for
low β, though it is not the case for higher β.

• It has been given a possible interpretation for the
complex eigenvalues of the energy spectrum, and
how it would affect the expected value of the third
projection of the spin. The results shall be com-
pared with experimental tests to see the level of
accordance.

• It has been noticed an agreement between our re-
sults, Chudnovsky’s and [1].

Future steps for this work are to find if there is any way to
invert the initial spin. This will be done by using Landau
Zener effect and dumping.
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