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A modified Bargmann-Wigner method is used to derive (65 + 1)-component wave equatlons The relation between

different forms of these equations is shown.

An elegant method to construct wave equations
for arbitrary spin was given by Bargmann and
Wigner (BW).! Their equations are

DRI®+ - QIp=0,
I®D®I®--~®I¢=O (1)

IRIQ+ + QIRDY=0,
D being the Dirac operator (iy,d8" —m). y isa
symmetric multispinor of rank 2s:
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which describes a particle of spin s.
The Egs. (1) are invariant under the transfor-
mation

P'x)=DA)®DA)®- - - @DA)Y(x), - )

where D(A) is the usual Dirac representation
D(1/2,0900.1/2) of the SO(3, 1) group. Unfortunately
this approach has several drawbacks, so the set
of BW equations cannot be derived from a La-
grangian, without introducing auxiliary fields.
Another serious difficulty connected with the
above is the internal inconsistency of Eq. (1) in
the presence of an external electromagnetic field.
A class of relativistic wave equations which does
not suffer from this last inconsistency is one pro-
posed by Hurley.? His wave functions, describing
a massive particle of spin s, have 6s +1 com-
ponents which transform under the (s,0)
®(s —3,3) representation of the Lorentz group
SO(3,1). These equations are a subclass of those
of Fierz and Pauli® and were later studied by
several authors.*

Now we want to show that Hurley’s 6s + 1 theory
is nothing but a modification of the Bargmanri-
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Wigner set (1), that is to say,
DOT®++-QTyY=0,

I®DRI®+ - ®TY=0,
3)
I'er®---®T®DY=0,

‘where D is the Dirac operator and I" a 4X4 pro-

jector matrix whose expression depends on the
representation of the ¥ matrices of the Dirac
operator. If we choose the Kramers representa-
tion, as we shall do in the followmg, the matrix
Tis

()

The equations in (3) are invariant under the
transformation (2) due to the fact that D is an
invariant operator, and I" has been chosen so that
it commutes with the Dirac representation
D1/2,0900,1/2) - Obyiously this theory describes
a wave functions with 6s +1 components.

An important difference between Eqs. (1) and
(3) is that Eq. (3) can be derived from the single
equation
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the proof being similar to one presented by Hagen®
in a Galilean context. In our case, the crucial
point is that T'(y * P+m )T =mT.

In order to see explicitly the equivalence between
Hurley’s equations and the modified BW set (3)
and (4), we must introduce a new basis in the
(6s +1)-dimensional subspace of symmetric multi-
spinors where Eqs. (3) and (4) have a nontrivial
content:

l==s,-s+1,...,s

—1;64)]: h=—(8—1),...v,8—1 (5)
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being

1
y,,(k)=m og 0(e,® - ®e,®e,® - B®e¢,),

1
y,,(k;ea)=-n—' Z o(e,® - Qe,®e,® - Be,B¢e,),

* QESy,

where a=3,4, k is the number of vectors e,, and
n the total number of vectors involved in the
tensor product. S, is the symmetric group,
n=2s.

This basis has been constructed in order to
have good behavior under SO(3), i.e., |s,7), and
|s, D, are objects of spin s, and |s ~1, k), is an
object of spin s — 1. Let us note that (e,,...,e,)
is the basis of the four-dimensional space where
the Dirac representation acts;. this representation
becomes DY2(R)® D2(R) when reduced to SO(3).
In this case (e,, e,) are the up-down vectors of the
first D/2(R) representation, whereas (e;, e,) are
the same for the second representation.

Let us expand ¢(x) in terms of our Hew basis:

V)= 2 X, (0)|s, 70+ Z Y, (%)ls, D,

r=-8 I==-s

X Zy)s =1, ) e e ®)

h==s+1
Now we want to rewrite Eq. (4) in terms of the ex-
pression (6) of the multispinor ¥. Owing to the
appearance of the projector I', this equation gives
only information about the (6s + 1)-dimensional
space spanned by the vectors (5). Therefore we
have now equations of motion only for the com-
ponents X,Y,Z. Making some trivial but tedious
algebra we arrive at the equations

->
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where S are the matrices of generators of SO(3)
in the spin-s representation, and K are rec-
tangular (2s —1)X (2s + 1) matrices satisfying

S:S; + Kl K; =is€,;,Sp+ 520 .

Equation (7) is exactly the one proposed by Hurley.
Therefore we have shown, by using the changes
of basis (5), the equivalence of formulation (3)

[or (4)] and the one of Hurley. Let us remark
that, if one introduces interaction with an ex-
ternal field, the equivalence only holds between
Eqs. (4) and (7).

The equivalence between (3) and (4) suggests
the possibility of a Lagrangian formulation; in
fact the Lagrangian

LE=YP*°Ry°®- - - ®7°)

x(E T® - ®D®- - -®I‘))zp+H.c. (8)
(i)

i=1
gives the equation
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> r®---®@Tr®D®r®---®D)W=0, (4
i (i)

i=1
but it also appears as a new equation,

Z W®-+ - QW®D OWQ®- --®W)¢=0, (9)-

i=1 i)
where W =($ {). The appearance of this new equa-
tion is due to the fact that the first term on the
right-hand side of (8) is not real. Notice that (4)
is an equation for an object whose components
have at most only one dotted index, whereas (9)
describes an independent object, whose com-
ponents have all the indices dotted, except at
most one. Therefore, in order to have a La-
grangian, we must double the number of com-
ponents of the theory. If we want to have 6s +1
components, we cannot have a Lagrangian; in the
same way, we cannot implement parity.

Let us briefly comment on the Galilean case.
The decompositions (6) can be used in the same
way as we have done before, in order to show the
equivalence between the 6s +1 Galilean Hagen
equations®

GRT®: -+ ®TyY=0,
reGere- - ®ry=0, (10)
rere---®T®GY=0,

where G is the usual Levy-Leblond operator, T
is the projector used before, and the (6s+ 1)
Hurley equations®
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