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Abstract 

Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response 

in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small 

intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% 

cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, 

we evaluated the lymphocyte composition of the Peyer’s patches (PPL), small intestine epithelium (IEL) 

and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the 

small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, 

IgA+ cells and granzyme+ cells as well. In cocoa-fed animals, we identified a five time reduction in the 

percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. 

Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+ cells and an increase of 

NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell 

proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene 

expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition 

and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on 

its tolerogenic effect. 

Keywords: cholera toxin; cocoa; ovalbumin; TCRγδ+ cells; tolerance  
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1. Introduction 

The intestinal tract is the largest surface of the body protecting the internal towards the external 

environment. The primary function of the intestine is digestion and absorption of nutrients [1], but it 

is also recognized as the major immune organ, with the gut-associated lymphoid tissue (GALT) playing 

a central role in immune system homeostasis [2]. The GALT comprises approximately 70% of immune 

cells from the entire immune system [2], protecting the enormous intestinal surface (200 m2 in 

humans) [3], which is in contact every day with a vast number of potentially harmful antigens [4]. The 

GALT is structurally and functionally classified into two different compartments: the organized 

inductive site and the diffuse effector site. The organized compartment is composed of Peyer’s patches 

(PP), mesenteric lymph nodes (MLN) and isolated lymphoid follicles, whereas the diffuse compartment 

is formed by lamina propria lymphocytes (LPL) and intraepithelial lymphocytes (IEL). PP lymphocytes 

(PPL) and MLN lymphocytes (MLNL) are considered to be responsible for inducing oral tolerance or 

initiating immune response to antigens [5,6]. Situated in the lamina propria, LPL also contribute to oral 

tolerance, respond to antigen uptake and initiate migration of dendritic cells (DC) to the MLN [7]. 

Located between the epithelial cells, IEL regulate intestinal homeostasis, defend against infection and 

protect the integrity of the epithelial barrier [8,9].  

Food allergies are currently considered a major public health concern due to their increasing 

prevalence. Food allergies affect approximately 5% of the general population and 8% of children 

worldwide [10]. According to current understanding, multiple pathways, cells and molecules are 

involved in the generation of an allergic response. Upon oral sensitization, allergens resisting 

denaturation and digestion in the gastrointestinal tract [11] reach the intestinal epithelium in an intact 

form and penetrate the first barrier of defense, the mucus layer, produced by the goblet cells, and 

then the intestinal epithelial cell barrier. Afterwards, DC, mainly found in PP, acting as antigen-

presenting cells, pick up the allergen and present it to T helper (Th) cells in PP or MLN [12]. Later, Th 

cells proliferate and differentiate into Th1, Th2, Th17 or regulatory T (Treg) cells according to different 

cytokine patterns [13]. In most food allergies, an imbalance is evident towards Th2 response [14]. The 

immune response ends with the activation of effector cells such as B cells, which later turn into IgA-

secreting cells. Nevertheless, it still remains a matter of debate which cells are the driving forces for 

initiating sensitization in the gut. 

In a healthy immune response, ingestion of food proteins results in the development of oral tolerance, 

that is, the suppression of an immune response [7,10]. This immune unresponsiveness affects different 

immune compartments and is associated with the suppression of antibody production [7]. In contrast, 

a food allergy develops when there is either a failure in the induction or a breakdown of oral tolerance 
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[15,16]. Due to its increasing frequency, researchers worldwide are focusing on new food allergy 

preventive measures with increasing awareness of a potential beneficial role of nutraceuticals.  

Previous studies have indicated the ability of a cocoa-enriched diet to influence the GALT functionality 

in rats. Accordingly, we have shown that cocoa consumption modifies the PPL composition in rats 

[17,18]. The tolerogenic influence of cocoa in a rat oral sensitization model has recently been 

demonstrated [19]. A 10% cocoa-enriched diet inhibited the synthesis of serum specific anti-ovalbumin 

(OVA) antibodies and attenuated intestinal IgA. Additionally, this nutritional intervention induced 

changes in the lymphocyte composition and gene expression of MLN [19]. Specifically, in MLN, a cocoa 

diet increased the proportion of TCRγδ+ cells, playing a crucial role in the tolerance to oral antigens, 

and CD8+CD103+ cells, associated with regulatory functions. A decrease in CD4+CD62L+ and 

CD8+CD62L+ cell percentage was additionally observed, indicating a reduced influx of lymphocytes in 

MLN [19]. Together, these results show the capacity of a cocoa diet to induce oral tolerance and its 

potential role as a nutraceutical in food allergies.  

Despite these previous studies, the influence of cocoa at the intestinal level remains unknown. We 

hypothesized that cocoa-enriched diet might regulate intestinal lymphoid tissue because it is the first 

compartment of the immune system in contact, and these changes could thereby contribute to the 

avoidance of the oral sensitization in rats. On the basis of this hypothesis, the present study aimed to 

analyze the effects of a cocoa diet on the small intestinal immune system in a rat oral sensitization 

model. Therefore, intestinal samples from rats orally sensitized with OVA were evaluated for 

lymphocyte composition in three functional compartments of the small intestinal immune system (PP, 

IEL and LPL) and also for the effect of a cocoa diet on representative molecules produced by GALT. 
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2. Materials and Methods  

2.1. Chemicals, reagents and diets 

Albumin from chicken egg white (OVA; grade V), cholera toxin (CT), collagenase, 1,4-dithiothreitol 

(DTT), ethylenediaminetetraacetic acid (EDTA), fetal bovine serum (FBS), Hanks balanced salt solution 

(HBSS), Roswell Park Memorial Institute (RPMI), Mayer’s hematoxylin solution, eosin Y solution, 

Percoll®, Trizma® base (Tris Base) and Tween 20 were purchased from Sigma-Aldrich (Madrid, Spain). 

Donkey serum was purchased from Jackson Immuno Research Laboratories (West Grove, PA, USA). 

NaN3, p-formaldehyde, tri-sodium citrate dihydrate and citric acid were provided by Merck (Darmstadt, 

Germany) and RNAlater® by Ambion (Applied Biosystems, Austin, TX, USA). Xylene and 4',6-diamidino-

2-phenylindole (DAPI) was purchased from Thermo Fisher Scientific (Vienna, Austria) and ethanol 

absolute from VWR (Vienna, Austria). Fluoromont G was provided by SouthernBiotech (Birmingham, 

AL, USA). Ketamine was obtained from Merial Laboratories S.A. (Barcelona, Spain) and xylazine from 

Bayer A.G. (Leverkusen, Germany). Natural Forastero cocoa was obtained from Idilia Foods SL 

(formerly Nutrexpa S.L., Barcelona, Spain) and AIN-93M diet and basal mix from Harlan Teklad 

(Madison, Wisconsin, USA). 

2.2. Animals and experimental food intervention 

Female Lewis rats were obtained from Janvier Labs (Saint Berthevin Cedex, France) and maintained 

under conditions controlled for temperature and humidity in a 12-h light/dark cycle. The present 

experimental design and procedure were approved by the local Ethical Committee for Animal 

Experimentation of the University of Barcelona (CEEA/UB ref.5988). 

After a week of acclimatization at the Faculty of Pharmacy animal facilities (UB), 3-week-old rats were 

housed in cages (three per cage) and given ad libitum access to water and solid food during the 28 days 

of the study. The rats were randomly distributed into four experimental groups: reference group 

(RF/R), reference group fed cocoa diet (RF/C), OVA-sensitized group (OVA/R) and OVA-sensitized group 

fed cocoa diet (OVA/C) (n=9 each). The RF/R and the OVA/R groups were fed a standard diet (AIN-93M) 

whereas the RF/C and the OVA/C groups were fed an isoenergetic diet containing 10% cocoa (Table 1). 

The OVA/R and OVA/C groups were orally sensitized as described [19,20], receiving 50 mg/mL of OVA 

plus 30 µg of CT in distilled water by oral gavage three times per week (days 0, 2, 4, 7, 9, 11, 14, 16, 18 

and 21). The RF/R and OVA/R groups received 1 mL of distilled water accordingly.  
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Table 1. Composition of the experimental diets. All values are expressed as g/kg of diet. 

Components Standard diet1 10% cocoa diet2 

 
 Basal mix Cocoa powder 

Proteins 140.73 118.27 23.05 

Lipids 38.71 27.06 11.53 

Carbohydrates 721.93 692.41 16.76 

Soluble fiber - - 8.91 

Insoluble fiber 50.00 24.52 26.72 

Minerals 35.86 27.83 6.29 

Vitamins 10.20 7.92 0.04 

Choline bitartrate 2.56 1.98 - 

Antioxidant 0.01 0.01 - 

Theobromine - - 2.50 

Phenolic compounds3 - - 4.02 

Total 1000.0 1000.0 

All values are expressed as g/kg of diet. 

1AIN-93M formula was used as standard diet. 

2The 10% cocoa diet was prepared from a basal mix in which 100 g cocoa/kg was added.  

3Reversed-phase high performance liquid chromatography coupled to a diode array detector revealed that cocoa 

phenolic compounds were epicatechin (2.34 mg/g), catechin (0.4 mg/g) and procyanidins 

 

2.3. Sample collection and processing 

On day 28, the animals were euthanized and the small intestine was carefully collected. After 

discarding the duodenum, the intestine was rinsed with phosphate buffer saline (PBS) solution in order 

to remove fecal content. A 0.5 cm portion of the middle of the intestine was immediately conserved 

in RNAlater, and the consecutive following segment was placed in cassettes and fixed in 4% 

paraformaldehyde. The rest of the intestine was opened lengthwise along the mesenteric line; PP were 

collected and stored in RPMI medium. Finally, the remaining intestine was cut into 2 cm pieces and 

immersed in HBSS supplemented with 10% heat-inactivated FBS to isolate IEL and LPL.  

2.4. Peyer’s patches lymphocyte isolation  

PP were incubated with 1 mM DTT in RPMI medium under continuous agitation (55 u/min, 5 min, 

37 °C). Consecutively, DTT medium was discarded, and PP were washed and passed through a sterile 
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70 µm mesh with a syringe plunger. The suspension obtained was centrifuged (538 g, 5 min, 4 °C) and 

resuspended with RPMI-10% FBS medium. Thereafter, cells were counted and viability was determined 

by staining with trypan blue using a CountessTM Automated Cell Counter (Invitrogen, Thermo Fisher 

Scientific).  

2.5. Intraepithelial and lamina propria lymphocyte isolation  

IEL and LPL isolation was carried in accordance with previous studies [21,22]. Briefly, small pieces of 

intestine, without PP, were incubated with a 5 mM DTT solution in HBSS-10% FBS under continuous 

agitation (55 u/min, 20 min, 37 °C). The first supernatants were then collected by decanting the tubes. 

Afterwards, a solution of 5 mM EDTA in HBSS-10% FBS was added to the remaining intestinal tissue 

and incubated twice (55 u/min, 15 min, 37 °C). The supernatants were collected together with the first 

ones and centrifuged (538 g, 5 min, 4 °C). The resulting cell suspensions were subjected to IEL 

purification. 

For LPL collection, the remaining intestinal tissue from the above incubation was washed with RPMI-

10% FBS (55 u/min, 20 min, 37 °C). The supernatants were discarded, and intestinal samples were cut 

into small pieces for 60 min of incubation with 300 U/mL of collagenase in RPMI-10% FBS at 85 u/min 

and 37 °C. Afterwards, 10 mL of medium was added to each sample to stop the reaction. The 

supernatants were filtered through a stainless steel mesh. Finally, the suspensions containing LPL were 

centrifuged (538 g, 5 min, 4 °C).  

The resulting suspensions of both IEL and LPL were subjected to a cell purification gradient using 

44-67.5% Percoll. Lymphocytes were re-suspended in medium and cell number and viability were 

determined using a CountessTM Automated Cell Counter.  

2.6. Flow cytometry analysis 

For flow cytometric analysis, 5x105 PPL, IEL and LPL were labelled with mouse anti-rat monoclonal 

antibodies conjugated with fluorescein isothiocyanate (FITC), phycoerythrin (PE), 

peridininchlorophylla protein (PerCP) or allophycocyanin (APC). The antibodies used were anti-CD4, 

anti-CD8α, anti-CD8β, anti-TCRαβ, anti-TCRγδ, anti-NKR-P1A, anti-CD25 (BD Biosciences, Oxford, UK), 

anti-CD62L, anti-CD103 (Biolegend, San Diego, CA, USA) and anti-TLR4 (Novus Biologicals, Littleton, 

CO, USA). The cells were stained as previously described [19]. Briefly, lymphocytes were incubated 

with saturating amounts of antibodies in PBS-0.2% FBS-0.1% NaN3 (darkness, 20 min, 4 °C). 

Consecutively, the cells were washed, and fixed with 0.5% p-formaldehyde (darkness, until analysis, 

4 °C). A negative control staining was included in each cell sample. Analyses were performed with a 
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Gallios Cytometer (Beckman Coulter, Miami, FL, USA) in the Scientific and Technological Centres of the 

University of Barcelona (CCiTUB). 

2.7. Gene expression in small intestine  

As previously described [20], intestinal samples conserved in RNA later were transferred into a lysing 

matrix tube (MP Biomedicals, Illkirch, France) for 30 s of homogenization by a FastPrep-24 (MP 

Biomedicals). RNA was obtained using an RNeasy mini kit (Qiagen, Madrid, Spain) following the 

manufacturer’s instructions. RNA purity and concentration were determined by a NanoPhotometer 

(BioNova Scientific, S.L. Fremont, CA, USA). Subsequently, cDNA was obtained in a thermal cycler 

PTC-100 Programmable Thermal Controller using TaqMan Reverse Transcription Reagents (Applied 

Biosystems, AB, Weiterstadt, Germany).  

The specific PCR TaqMan primers (AB) used to perform the PCR quantitative assay (ABI Prism 7900 

HT, AB) were IgA (331943, made to order), TGF-β1 (Rn00572010_m1, Inventoried (I)), CD11c 

(Rn01511082_m1, I), CD11b (Rn00709342_m1, I), OX40L (Rn00585582_m1, I), IL-10 (Rn00563409_m1, 

I), FoxP3 (Rn01525092_m1, I) and Muc2 (Rn01498195_m1, I). The relative gene expression of genes of 

interest was normalized with the housekeeping genes β-actin (Rn00667869_m1, I) or HPRT1 

(Rn01527840_m1, I) using the 2-ΔΔCt method [20]. For FoxP3, IL-10 and OX40L, the gene expression of 

HPRT1 was used as housekeeping gene, whereas for the rest of the gens, β-actin expression was used. 

Results are expressed as percentage of values of each experimental group normalized to the mean 

value obtained for the reference group, which was set at 100%.  

2.8. Hematoxylin eosin and periodic acid Schiff stainings 

Fixed intestinal tissues were dehydrated, paraffin-embedded and cut into 4 µm sections using a 

microtome (Thermo Scientific Microtome HM355-S). Subsequently, the sections were mounted on 

glass slides and dried overnight at 37 °C.  

For hematoxylin eosin (HE) staining, the samples were deparaffinized and rehydrated. Afterwards, 

intestinal tissues were stained with hematoxylin for 7 min, washed with running tap water and stained 

with eosin 5% for 4 min. Slides were again washed twice in distilled water and mounted with coverslips 

using Fluoromount-G. 

For Periodic Acid Schiff (PAS) staining, deparaffinized and rehydrated samples were immersed in a 0.5% 

periodic acid solution for 5 min and washed in distilled water. Afterwards, sections were submerged 

in Schiff’s reagent for 15 min, washed in running tap water and counterstained with Mayer’s 
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hematoxylin solution for 1 min. To finish, slides were rinsed in running tap water and in distilled water 

and mounted with coverslips. 

After histological staining, microscopy analysis was performed using the TissueFaxs technology 

platform (TissueGnostics, Vienna, Austria). By means of the TissueFAXS 4.6.6245.1019 BF software, 

acquisition was done with a 200x magnification objective. Afterwards, PAS staining samples were 

analyzed using HistoQuest v4.04.0131 software (TissueGnostics, Vienna, Austria). Five microvilli of 

each intestine were selected as regions of interest (ROIs). The number of goblet cells was counted 

manually. Goblet cells are expressed as PAS-positive cells per mm2 of area. All analyses were done 

twice, examining different sections and different microvilli to obtain representative results. The 

counting of goblet cells was done by two independent investigators.  

2.9. Immunofluorescence staining of small intestinal tissue 

For immunofluorescence (IF) staining, sections were deparaffinized and rehydrated. Successively, 

antigen retrieval was done followed by permeabilization with PBS-0.2% Tween and a blocking with 

serum. Sections were incubated for 1 h with the primary antibody and, consecutively, washed and 

incubated with the corresponding secondary antibody for 1 h. After washing, the samples were 

incubated for 10 min with DAPI to stain the nuclei and finally mounted with fluoromount-G.  

For IgA IF, 10 mM Tris-1mM EDTA (pH 9) was used for antigen retrieval and 5% donkey serum for 

blocking. Polyclonal goat anti-rat IgA α chain (Abcam, Cambridge, UK) was used as primary antibody 

and Alexa Fluor 568 donkey anti-goat IgG (Life Technologies, Austin, TX, USA) as secondary.  

For granzyme B (GzmB) IF staining, 10 mM citrate buffer (pH 6) was used for antigen retrieval, and 10% 

of normal goat serum for blocking. The primary antibody used was polyclonal rabbit anti-rat GzmB 

(Novus Biologicals), with Alexa Fluor 647 goat anti-rabbit IgG (Life Technologies) being used as 

secondary antibody. In both stainings, a negative control was done omitting the primary antibody.  

After IF stainings, pictures were acquired by TissueFaxs 4.2.6245.1019 FL software using a 200x 

magnification objective. Stainings were analyzed using TissueQuest 4.0.1.0128 software 

(TissueGnostics). Five microvilli of each intestine were selected as ROIs to be analyzed together and to 

obtain the scattergram of positive cells. All analyses were done twice, examining different sections and 

different microvilli for representative results.  

2.10. Statistical analysis 
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Data are expressed as means ± standard errors. All statistical analyses were performed using the IBM 

Statistical Package for the Social Sciences (SPSS, version 22.0, Chicago, IL, USA). 

Prior to the analysis, the Levene’s and Kolmogorov-Smirnov test were performed in order to assess 

variance equality and normal distribution, respectively. When all the results indicated equality of 

variance and normal distribution, a two-way ANOVA test was performed (oral sensitization and diet). 

When the interaction between oral sensitization and diet was statistically significant, a one-way 

ANOVA with Bonferroni’s post hoc test was carried out to detect differences among groups.  

The results that had different variance and/or different distribution were analyzed by non-parametric 

tests; Kruskal-Wallis followed by Mann-Whitney U tests were performed. In all cases, significant 

differences were accepted when P≤0.05. 
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3. Results 

At the end of the study, the body weight increase of the animals fed standard diet was about 186%, 

whereas animals fed cocoa showed an increase of almost 157% [19]. This lower body weight increase, 

also observed in previous studies [17-18], was not associated with less food intake. Considering the 

average food consumption throughout the study and the amount of cocoa in the food, the daily 

amount of cocoa powder ingested was 11.75 g/kg. 

3.1. Effect of a cocoa diet on the intestinal structure and the proportion of goblet cells in orally 

sensitized rats 

HE staining (Figures 1a−1d) did not reveal morphological changes due to the nutritional intervention 

with cocoa or with the administration of OVA plus CT. In addition, no significant variations were 

detected among groups concerning the proportion of goblet cells (Figures 1e−1i).  

 

Figure 1. Hematoxylin-eosin and PAS staining. HE staining of small intestine section from a 
representative rat belonging to (a) RF/R, (b) RF/C, (c) OVA/R, and (d) OVA/C groups. PAS staining 
showing goblet cells of small intestine from a representative rat belonging to (e) RF/R, (f) RF/C, (g) 
OVA/R and (h) OVA/C groups. (i) Goblet cells number/mm2 (values are expressed as mean ± standard 
error, n=6).  
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3.2. Effect of a cocoa diet on Peyer’s patches lymphocyte composition in orally sensitized rats  

PP from the RF/R group were characterized by having about 70% CD45RA+ cells, 20% TCRαβ+ cells, 

and less than 3% TCRγδ+ lymphocytes and NK cells (Figure 2a). Likewise, in the RF/R group, there was 

a similar proportion of TCRγδ+CD8αα+ and TCRγδ+CD8αβ+ cells (Figures 2b−2c), and, among all 

TCRαβ+ cells, 65% were Th (TCRαβ+CD4+), 30% Tc lymphocytes (TCRαβ+CD8+) and about 5% NKT cells 

(Figures 2d−2e). Oral sensitization decreased the total proportion of TCRαβ+ cells (Figure 2a) without 

modifying their main subsets (Th, Tc and NKT cells) (Figures 2d−2e). On the other hand, a cocoa-

enriched diet increased the proportion of TCRγδ+ cells (both CD8αα+ and CD8αβ+) and NK cells 

(Figures 2a−2c). Although the total proportion of TCRαβ+ cells was not influenced by a cocoa-enriched 

diet, there was an increase in the percentage of NKT cells and a decrease in the proportion of Th 

lymphocytes (Figure 2d), producing a reduced Th/Tc ratio (Figure 2e).  

The percentage of cells bearing toll-like receptor 4 (TLR4) on PP was also established, but it did not 

reveal any modifications by oral sensitization or a cocoa diet (Figure 2f).  

Further analysis of CD4+ and CD8+ PPL with the activation marker (CD25+), the marker of intestinal 

homing (CD103+) and the marker of secondary lymphoid tissue homing (CD62L+) was carried out. Rats 

fed a cocoa diet showed an increase in the proportion of CD25+ (Figure 2g) and CD103+ (Figure 2h) 

cells at intestinal level. Moreover, a decrease in the proportion of Th CD62L+ lymphocytes (Figure 2i) 

was detected, indicating an increase in CD4+CD62L- cell percentage.  

 

3.3. Effect of a cocoa diet on intraepithelial lymphocyte composition in orally sensitized rats 

In the RF/R animals, the small intestinal IEL population was composed of about 40% TCRαβ+, 25% NK 

cells and 15% TCRγδ+ lymphocytes (Figure 3a). Almost 80% TCRγδ were CD8αα+ (Figures 3b−3c). 

Within the TCRαβ+ IEL, we found 79% CD8+, 14% CD4+ and 6% NKT cells (Figure 3e). Oral sensitization 

with OVA did not induce significant changes in these IEL proportions, in spite of a tendency toward a 

higher Th/Tc ratio (Figure 3f). However, similarly to PPL, an increase in the percentage of TCRγδ+ and 

NK cells was observed as a result of being fed a cocoa diet. The increase in TCRγδ+ IEL was due to both 

the CD8αα+ major population and CD8αβ+ minor population (Figures 3b−3c). A decrease in the 

TCRαβ+ cell proportion occurred in the OVA/C group (Figure 3a), however, these changes could not be 

attributed to any of the Th, Tc and NKT subsets considered (Figure 3e).  



13 
 

 

Figure 2. PP lymphocyte composition. (a) Percentage of the main lymphocyte subsets; (b) percentage 

of TCRγδ+ PPL subsets (c) CD8αα+/CD8αβ+ ratio in TCRγδ+ cells; (d) percentage of TCRαβ+ PPL subsets; 
(e) Th/Tc ratio; (f) percentage of TLR4+ PPL; proportion of (g) CD25+, (h) CD103+ and (i) CD62L+ cells 
in CD4+ and CD8+ PPL. Values are expressed as mean ± standard error (n=6-9). Statistical differences: 
δ p<0.05 (two-way ANOVA) induced by the oral sensitization *p<0.05 (one-way or two-way ANOVA) 
induced by the diet; # p<0.05 (Mann-Whitney U) vs the corresponding reference group. 
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With regard to NK cells, the cocoa diet induced an increase in the MFI of CD90+ (Thy-1) expression of 

NK cells whereas no changes were observed in the MFI of CD25 in this cellular type (Figure 3d). 

With respect to TLR4+ IEL, the cocoa diet reduced their proportion by up to a half (Figure 3g), affecting 

cells both with high and low TLR4+ expression (data not shown). 

Evaluating both the activation and the homing marker expressions in CD4+ and CD8+ IEL, no significant 

differences were detected in the CD4+CD25+ and CD8+CD25+ subsets in OVA-sensitized animals 

(Figure 3h). As expected, most of the CD8+ IEL expressed the intestinal CD103 marker, whereas only 

about 2% were CD62L+. In contrast, in the smaller fraction of CD4+ IEL, less than 15% were CD103+ 

and about 25% were CD62L+. In CD8+ IEL, oral sensitization reduced the proportion of CD103+ cells 

and increased that of CD62L+ cells. Similarly, the sensitization procedure induced a higher percentage 

of CD62L+ cells in CD4+ IEL which was prevented by the cocoa diet (Figure 3j). An increase in 

CD4+CD103+ cells was observed due to the cocoa diet.  

3.4. Effect of a cocoa diet on lamina propria lymphocyte composition in orally sensitized rats 

Focusing on the LPL composition in the RF/R group, the distribution of the main lymphocyte subsets 

was about 40% TCRαβ+ cells, 35% CD45RA+ lymphocytes, 15% NK cells and less than 3% TCRγδ+ cells 

(Figure 4a). In addition, in the total TCRαβ+ LPL population, about 69% were Th cells, 28% were Tc cells 

and 3% were NKT cells (Figure 4c). No significant differences were detected after oral sensitization. 

However, the OVA/C group had higher proportion of Th LPL (Figures 4c−4d). Moreover, the cocoa diet 

decreased the percentage of NKT cells in TCRαβ+ LPL.  

A cocoa-enriched diet was associated with an increase in the expression of CD90 in NK cells, and no 

changes were observed in the expression of the CD25 molecule (Figure 4b).  

CD25 expression was highly variable on CD4+ and CD8+ cells from IEL (data not shown). No changes 

were observed due to the cocoa diet either through the sensitization procedure in the expression of 

TLR4 (Figure 4e), CD103 (Figure 4f) and CD62L (Figure 4g) in LPL.  

3.5. Effect of a cocoa diet on small intestine IgA+ cells in orally sensitized animals 

RF/R rats showed a percentage of about 2.5% of IgA+ cells located in the lamina propria (Figure 5). Oral 

sensitization decreased this proportion up to 15%. A cocoa-enriched diet was associated with a 

reduction in that percentage to 0.5% IgA+ LP cells both in the RF/C and the OVA/C groups (Figures 

5a−5i). 
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Figure 3. IEL lymphocyte composition. (a) Percentage of the main lymphocyte subsets; (b) percentage 

of TCRγδ+ IEL subsets (c) CD8αα+/CD8αβ+ ratio in TCRγδ+ cells; (d) Mean fluorescence intensity (MFI) 

of CD25+ and CD90+ in NK cells; (e) percentage of TCRαβ+ IEL subsets; (f) Th/Tc ratio; (g) percentage 
of TLR4+ IEL; proportion of (h) CD25+ (i) CD103+ (j) and CD62L+ cells in CD4+ and CD8+ IEL. Values are 
expressed as mean ± standard error (n=6-9). Statistical differences: *p<0.05(one-way or two-way 

ANOVA) induced by the diet; # p<0.05 (Mann-Whitney U) vs the corresponding reference group; φ 
p<0.05 (Mann-Whitney U) vs RF/R group.  
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Figure 4. LPL lymphocyte composition. (a) Percentage of the main lymphocyte subsets; (b) Mean 

fluorescence intensity (MFI) of CD25 and CD90 MFI in NK cells; (c) percentage of TCRαβ+ LPL subsets; 
(d) Th/Tc ratio; (e) percentage of TLR4+ LPL; proportion of (f) CD103+ and (g) CD62L+ cells in CD4+ and 
CD8+. Values are expressed as mean ± standard error (n=6-9). Statistical differences: # p<0.05(Mann-
Whitney U) vs the corresponding reference group. 

 

3.6. Effect of a cocoa diet on small intestine granzyme B+ cells in orally sensitized animals 

In the RF/R group, the percentage of GzmB+ cells in LP was about 1.3% (Figure 6). No differences were 

observed after sensitization; however, the cocoa-enriched diet induced a decrease in the GzmB+ cell 

percentage to 0.4% in the RF/C group, whereas changes in the OVA/C group did not achieve statistical 

significance.  

 

NK

TLR4+

L
y

m
p

h
o

cy
te

s 
(%

)

0

2

4

6

8

10

Th/Tc

R
at

io

0

2

4

6

8

10

12

14

CD4+ CD8+

 L
y

m
p

h
o

cy
te

s 
(%

)

0

20

40

60

80

100

NKTCRγδ+TCRαβ+CD45RA+

CD4+ CD8+

0

2

4

6

8

10

CD25+ CD90+

 M
F

I 
(x

10
3
)

0

2

4

10

20

30

40

CD103+ CD62L+

a

b c

g h

Th Tc NKT

 T
C

R
α

β
 l

y
m

p
h

o
cy

te
s 

(%
)

0

5

20

40

60

80

100

*
*

c d

e

# #

#

#

 L
y

m
p

h
o

cy
te

s 
(%

)

0

10

20

30

40

50

60

RF/R 

RF/C

OVA/R

OVA/C

a



17 
 

 
 

Figure 5. Percentage of IgA+ cells. Immunofluorescence IgA staining of sections from small intestinal 
samples from a representative rat belonging to (a) RF/R, (b) RF/C, (c) OVA/R, or (d) OVA/C groups. A 
magnification of the specified area for each representative sample is shown (a1, b1, c1 and d1). The 
images show IgA+ cells in red (Texas red). The DAPI blue fluorescence indicates the nuclei. (e) 
Percentage of IgA+ cells in small intestine of the rats (values are expressed as mean ± standard error, 
n=6-9). Statistical differences: # p<0.05 (Mann-Whitney U) respect to the corresponding reference 

group; φ p<0.05 (Mann-Whitney U) vs  RF/R group. Scattergrams of the expression of IgA+ from a 
representative rat of each group of study: (f) RF/R, (g) RF/C, (h) OVA/R and (i) OVA/C. 
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Figure 6. Percentage of GzmB+ cells. Immunofluorescence GzmB staining of sections from small 
intestinal samples from a representative rat belonging to (a) RF/R, (b) RF/C, (c) OVA/R, or (d) OVA/C 
group. A magnification of the specified area for each representative sample is shown (a1, b1, c1 and 
d1). The images show GzmB+ cells in white (Cy5). The DAPI blue fluorescence indicates the nuclei. (e) 
Percentage of GzmB+ in small intestine of the rats (values are expressed as mean ± standard error, 
n=6-9). Statistical difference: # p<0.05(Mann-Whitney U) vs RF/R group. Scattergrams of the 
expression of GzmB+ from a representative rat of each group of study: (f) RF/R, (g) RF/C, (h) OVA/R 
and (i) OVA/C. 
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3.7. Effect of a cocoa diet on the small intestine gene expression of orally sensitized animals 

The gene expression of IgA, TGF-β1, CD11b and CD11c was not modified by oral sensitization but was 

reduced for IgA, CD11b and CD11c in the RF/C and OVA/C groups. TGF-β1 expression was decreased 

only in the RF/C group.  

On the other hand, oral OVA sensitization did not modify the gene expression of Muc2, FoxP3 and 

OX40-L but decreased that of IL-10. Additionally, cocoa diet intake was associated with reduced levels 

of IL-10 mRNA (Figure 7).  

 

 

Figure 7. Gene expression of some molecules in small intestinal samples. The relative mRNA gene 
expression was calculated assigning the value of 1 to the mean of the rats from the RF/R group. Values 
are expressed as mean ± standard error (n=6). Statistical differences: *p<0.05 (two-way ANOVA) 
induced by the cocoa diet compared with its reference group, # p<0.05 (Mann-Whitney U) vs RF/R 
group, ф p<0.05 (Mann-Whitney U) vs  RF/R group. 
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4. Discussion 1 

In a previous study, we demonstrated that a cocoa diet prevents antibody synthesis and modifies 2 

mesenteric lymph node composition and functionality using the same rat oral sensitization model [19]. 3 

These results prompted us to study the influence of a cocoa diet on intestinal tissue composition. The 4 

data presented here demonstrate that a cocoa diet modifies the small intestinal compartment mainly 5 

by increasing the presence of TCRγδ+ cells and NK cells in PPL and IEL. Moreover, a cocoa diet increased 6 

the proportion of CD4+CD25+, CD4+CD103+, CD8+CD103+ and CD4+CD62L- cells in PP. These changes 7 

were accompanied by a decrease in the proportion of IgA+ cells and GzmB+ cells in LP and in the gene 8 

expression of IgA, TGF-β1, CD11b, CD11c and IL-10 in the small intestine.  9 

In contrast with other studies using CT as intestinal adjuvant that reported an increase in intestinal IgA 10 

levels [23,24], the oral sensitization procedure used here decreased the proportion of intestinal IgA+ 11 

cells in LP, although no differences were seen at the secreted intestinal IgA levels in these conditions 12 

[19]. Furthermore, with this sensitization protocol, no changes were found in the gene expression of 13 

IgA and TGF-β1 in line with previous studies [20]. In the current study, a cocoa diet was also associated 14 

with decreased numbers of intestinal IgA+ cells. Previously, we demonstrated that a 10% cocoa diet 15 

attenuated intestinal IgA levels at different ages and in different rat strains, such as Wistar [25,26], 16 

Brown Norway [18] and Lewis [19,27]. With the current results regarding IgA+ cells on LP, we can 17 

conclude that the reduction of intestinal IgA was due to a lower number of IgA+ cells at this level. These 18 

results are in line with the lower IgA mRNA levels found in this work as well as in a previous study [26]. 19 

Multiple cytokines such as TGF-β1 [28] and a vast number of cell interactions are required to activate 20 

and differentiate B cells in PP [16], and to promote their migration to the MLN and the eventual gut 21 

homing [29]. The reduction in TGF-β1 gene expression at small intestinal level suggests that, among 22 

other possibilities, a 10% cocoa diet influences IgA+ B cell differentiation, thereby involving a reduction 23 

of IgA+ B cells in LP. These results are in line with changes in the chemokines CCR9, CCL25, CCL28, 24 

RARα and RARβ, required for gut homing, as previously demonstrated after cocoa feeding [25]. On the 25 

other hand, in the current study, a cocoa-enriched diet was also associated with a decrease in the 26 

proportion of TLR4+ IEL, the receptor binding the bacterial endotoxin lipopolysaccharide (LPS). This 27 

reduction in TLR4+ IEL was in line with previous data detecting a decrease in TLR4 gene expression in 28 

the small intestine due to cocoa diet [25], and could be related to changes in intestinal microbiota as 29 

previously reported in cocoa-fed rats [30]. TLR4 signaling also has implication in the production of 30 

intestinal IgA as activation of TLR4 pathways is associated with an increase of diverse chemokines 31 

(mainly CCL20, CCL28 and CXCL16) related to the recruitment and differentiation of IgA+ B cells to the 32 

intestine [31]. Accordingly, the decrease in the TLR4+ IEL in animals fed a 10% cocoa diet could be seen 33 

in the context of lower numbers of LP IgA+ cells and, the consequently, lower intestinal IgA levels.  34 
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In the current study, neither 10% cocoa diet nor the administration of OVA plus CT modified the 35 

intestinal structure. In order to initiate the immune response, the first barrier that antigens must 36 

penetrate is the mucus layer. This barrier in the intestine prevents food allergy, enhancing gut 37 

homeostasis and oral tolerance [32]. To determine whether oral sensitization and the cocoa diet were 38 

interacting at that point, evaluation of goblet cells and one of their products, Muc2, was considered. 39 

Neither the sensitization procedure nor the cocoa diet modified the goblet cell proportion and Muc2 40 

gene expression. These results are in partial agreement with those  obtained in a food allergy model 41 

in Brown Norway rats fed with two different cocoa-enriched diets with unchanged Muc2 gene 42 

expression but lower numbers of goblet cells [33]. Overall, these results lead us to suggest that the 43 

tolerogenic effect of a cocoa diet is not due to a modification of that barrier. 44 

Even though no changes were detected at the structural level of small intestine, several modifications 45 

were found in the proportions of lymphocyte populations isolated from PP, IEL and LPL, representing 46 

essential sites involved in oral tolerance induction [7,34]. A cocoa diet induced an increase in the 47 

proportions of TCRγδ+, both CD8αα+ and CD8αβ+, cells in PPL and IEL, essential subsets for the 48 

induction of oral tolerance. Our results are in line with those of Akiyama et al. [35], who reported that 49 

unripe apple polyphenols inhibit oral sensitization associated with a rise in the proportion of TCRγδ+ 50 

IEL. In line with these studies, it was described that a decrease in the number of TCRγδ+ cells induced 51 

by anti-TCRγδ antibody treatment  facilitated oral sensitization in mice [36].  52 

Furthermore, a cocoa diet increased the NK cell percentage in both PP and IEL compartments. Although 53 

NK cells are primarily involved in innate immunity, they also have regulatory functions and can 54 

contribute to the inhibition of allergic disease [37,38]. Several subsets of NK cells have been defined in 55 

humans and mice [39,40] but less information about rat NK cells is available. In a recent study focused 56 

on mice NK cells [41], activation of NK cells involved, among other changes, a lower expression of 57 

granzyme B, CD11b and CD11c but a higher expression of CD90 in these cells. It is worth noting that 58 

the increase in NK IEL due to a cocoa diet found here was accompanied by a higher CD90 surface 59 

expression. In addition, cocoa diet decreased GzmB+ cell percentage in the intestinal LP and 60 

downregulated CD11b and CD11c intestinal gene expression. Although further studies are needed for 61 

an in depth evaluation of the NK subset and function associated with a cocoa diet, the current results 62 

suggest that some intestinal NK cells (perhaps related to high CD90 surface expression, low GzmB 63 

content and low CD11b and CD11c gene expression) might contribute to the tolerogenic effect of a 64 

cocoa diet. Additionally, the decrease in CD11b and CD11c gene expression may be related to a lower 65 

presence of dendritic cells in the intestinal wall. These cells could migrate from LP to MLN, where we 66 

have previously observed higher CD11c gene expression [19] and where they could promote tolerance 67 

as suggested [12]. 68 
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A cocoa diet additionally modified the proportion of CD25+ cells in CD4+ and CD8+ PPL. The CD25 69 

molecule is, among others, a marker of Treg cells, which induce tolerance against dietary antigens [42]. 70 

Thus, the increased proportion of CD25+ cells in PP cells after consumption of a cocoa diet might 71 

contribute to the tolerogenic effect of cocoa.  72 

Consuming cocoa also changed the proportions of cells expressing CD103 and CD62L molecules in PPL. 73 

Cocoa-fed animals showed a higher proportion of CD103+ cells in CD4+ and CD8+ PPL, and a lower 74 

proportion of CD62L+ (and consequently a higher CD62L- percentage) in CD4+ PPL. CD103 (also known 75 

as αE integrin) is a marker of gut homing cells [8] with a role in controlling the homeostasis of the 76 

intestinal immune system and inducing the expansion of Treg cells [43]. Therefore, the increase of 77 

CD103+ cells in the CD4+ and CD8+ PPL subsets could also contribute to the tolerogenic effect of the 78 

cocoa diet. As a marker of lymph node homing, CD62L is constitutively expressed in naive lymphocytes 79 

and is downregulated after cell activation [44,45]. CD62Llow Treg cells found in secondary lymphoid 80 

tissues guide T cells to migrate to non-lymphoid tissues in order to maintain immune homeostasis [46]. 81 

Our results suggest that a cocoa diet induced more cell activation and, consequently, more effector 82 

cells were retained in the intestinal compartment with the potential to enhance the tolerogenic 83 

response. Taking all these results into consideration, we suggest that a cocoa diet induces the 84 

activation of tolerogenic cells migrating to the intestinal PP compartment, thereby avoiding oral 85 

sensitization. 86 

Another modification found here was the downregulation of IL-10 gene expression in intestinal tissue 87 

both in orally sensitized animals and in cocoa-fed rats. IL-10 has been shown to induce Treg cells mostly 88 

of the Tr1 type [47] which agrees with lower IL-10 gene expression in sensitized animals, thereby 89 

promoting the loss of oral tolerance as reported in a murine model of food allergy [48]. However, 90 

cocoa-fed animals also downregulated IL-10 gene expression. Despite these contradictory data, our 91 

results are in line with those reported for flavonoids such as quercitrin, flavones and those found in an 92 

apple extract in orally sensitized mice [49–51]. Therefore, it might be concluded that flavonoids 93 

modulated immune response without enhancing IL-10 tolerogenic effects. 94 

In the current study, several markers of healthy immune status of GALT were considered. 95 

Unexpectedly, in the applied experimental design, not so many changes were seen due to the oral 96 

sensitization procedure used, although it was able to induce the production of Th2-antibodies, as 97 

previously described [19]. This could be due to the implication of other mechanisms such as specific 98 

dendritic cells at intestinal level that would enhance antigen presentation, the up-regulation of some 99 

makers in the lymphocytes enhancing either the antigen presentation or the activation of plasma cells, 100 
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among others. Moreover, the time point in which of these biomarkers were studied could be too late 101 

to observe their alterations. 102 

In conclusion, the data presented here showed that consumption of a diet containing 10% of cocoa for 103 

four weeks either in healthy conditions or in a rat oral sensitization model was associated with similar 104 

substantial changes in small intestinal lymphocyte subsets located in Peyer’s patches, epithelium and 105 

lamina propria. A cocoa-enriched diet induces a rise in the proportion of TCRγδ+ cells and NK PPL and 106 

IEL, suggesting a contribution to the prevention of oral sensitization. In line with this, the nutritional 107 

intervention with cocoa induces an increase of CD25+, CD103+ and CD62L- cells in PP and reduces 108 

CD11b, CD11c and IL-10 gene expression, together with a lower number of IgA+ LP cells. In summary, 109 

these changes might contribute to enhancing oral tolerance, thereby underlining the role of cocoa in 110 

preventing oral sensitization. 111 
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