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The equivalence between the covariant and the noncovariant versions of a constrained system is
shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the
cases of electromagnetism and Yang-Mills fields and sheds light on some aspects of the Faddeev-Popov
method, for both the covariant and noncovariant approaches, which have not been fully clarified in the

literature.
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I. INTRODUCTION

In a recent paper [1] the Becchi-Rouet-Stora-Tyutin
(BRST) quantization of a class of constrained dynamical
systems was performed in the framework of the Batalin-
Vilkovisky (BV) formalism [2]. These systems were
specified by a Lagrangian which is quadratic in the veloc-
ities and such that only primary first-class constraints,
linear in the momenta, appear in its Hamiltonian
analysis. After solving the classical master equation,
which is straightforward due to its closed algebra struc-
ture, the problem of the ambiguity inherent to the resolu-
tion of the full quantum master equation was addressed.
It is well known [2] that this ambiguity, which can be
drawn to the problem of defining the measure for the
path integral, has no solution within the BV formalism by
itself and one has to rely on other formulations, the
operator formalism, for instance, to get the correct
answer. In this sense our result was promising: the phys-
ical requirement of making contact with the reduced path
integral quantization procedure, which is very close to
ensuring unitarity, is equivalent to the internal require-
ment (i.e., without departing from the BV formalism) of
choosing the solution of the quantum master equation
that makes the path integral reparametrization invariant.

But a wide class of constrained systems do not fit
within the theories just considered. Many relevant physi-
cal examples, such as electromagnetism (EM) and Yang-
Mills (YM) fields, exhibit secondary as well as primary
first-class Hamiltonian constraints. There is an impor-
tant physical reason for the appearance of secondary con-
straints in these theories, and it is related to the way the
Hamiltonian formalism, which is manifestly noncovari-
ant, is able to provide us with gauge transformations
which are Lorentz covariant. Consider, for instance, the
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case of EM. The infinitesimal gauge transformation
84,=0A/3x" shows how to get a vector dA /dx* from a
scalar A: just by taking the gradient. The appearance of
a time derivative of the arbitrary function A forces the
Hamiltonian generator of the gauge transformation to
have two pieces, one with the first time derivative of A
and the other one without a time derivative. Let us be
more specific; we know on theoretical grounds [3] that a
generator of gauge transformations, acting through Pois-
son brackets, must have the form

N
G=T Gy_; A",
k=0

(1.1)

A® being the kth time derivative of A and G, an s-
generation first-class constraint. In the case of EM, G is
the sum of two pieces, coming from one primary and one
secondary constraint (two generations). In fact, from the
Lagrangian L= —LF, F* we get a canonical Hamil-
tonian H, = fdx[%(':rz-FBz)-Hr-VAo] and a primary
constraint (coming just from the definition of the momen-
ta) my=~0. The stability of this constraint under the Ham-
iltonian dynamics leads to the secondary constraint
iro={mp,H,} =V-m=0. No more constraints arise. Both
the primary and the secondary constraints are first class
and allow us to write the gauge generator (1.1) in this
case as

G= [ dx[A(x,)m(x,0)+ A(x,0)V-m(x,1)]

=fdx

where A is an infinitesimal arbitrary function. The gauge
transformation of the gauge field is then
84,={A4,,G}=0A/0x". We see therefore that a pri-
mary and a secondary constraint are necessary to get the
gauge field 4, transformed covariantly.

So, in principle, we are faced with the problem that the
class of theories studied in [1], which exhibit only pri-
mary constraints, seems to exclude the important physi-

oA "
dxH
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cal case of covariant theories. In fact this is not true, as
we will see that our primary constraint theories can be
conveniently covariantized simply by promoting the La-
grangian multipliers associated with the primary con-
straints to the status of dynamical variables, covering this
way the cases of EM and YM fields [4]. With this covari-
ant theory at hand we can proceed to study the new
features that arise in this case and that were absent in the
class of systems studied in [1], for instance the possibility
of having an open gauge algebra. This process of covari-
antization and the study of the Hamiltonian and La-
grangian gauge algebra will be the topics of the next sec-
tion. In Sec. III we perform the BV quantization of the
covariant theory by solving explicitly the quantum mas-
ter equation and, after that, implementing several gauge
fixings. In this fashion we show the equivalence between
this covariant quantization and the noncovariant ap-
proach used in [1]. Section IV is devoted to conclusions.
Finally, an Appendix is introduced to show how the co-
variantization procedure described in Sec. II works in the
YM case.

II. GAUGE ALGEBRA AND
COVARIANTIZATION OF THE ACTION

A. General setting

The noncovariant Lagrangians' L, (g,g) of interest to
us are those for which the tangent space is free from any
constraints, yet L is still a singular Lagrangian. As is
proven in [5] this is equivalent to having in phase space
only primary first-class constraints. In this case, the
canonical Hamiltonian Hy(g,p) and the constraints
T,(g,p),a=1,...,r, satisfy

{To Tg}=—Clg(q,p)T,, {ToHo}=—V5q,p)Ty.
2.1)

Let us now have a quick look at the issue of “covari-
antization.” There is a simple way to get, from a canoni-
cal theory with only primary first-class constraints, a
classically equivalent theory with primary and secondary
first-class constraints. This can be done by promoting the
Lagrangian multipliers A%, associated with the original
constraints, to the status of dynamical variables and to
assume as the new primary constraints its canonical con-
jugate momenta 7,. Under such conditions the extended
Hamiltonian will read

H(q,p;M)=Hy(q,p)+AT,(q,p) ,

and the stability of the new primary constraints 7,~0
will lead to the, now, secondary constraints

IFor the sake of simplicity we are going to use throughout this
paper the language of discrete degrees of freedom. The switch
to field theory language can be done, at least formally, by using
DeWitt’s condensed notation. Also for the same reason of sim-
plicity we will restrict ourselves to the case of classical bosonic
variables, €(q)=0.
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o= {TewH}=—T,(g,p)=~0,
whose stability gives no new information:
T,={T,H}=—VET3—ClzAPT, ~0 .

Using the well known algorithms briefly described in
the Introduction [3] it is straightforward to construct the
gauge generator for this case,

G =&, +e [Ty, —(VE+CE N)mp],

and, consequently, the Hamiltonian gauge transforma-
tions for the coordinates g #4,A%:

8uq ={q",G}={q" To)e"— (g, (VE+CE A ))emy

(2.2)
SyA*={A% G} =¢"—V3eP—Ch AP,

where € is an infinitesimal arbitrary function of time (or
space-time, in the case of field theory).

As is well known, to perform the covariant quantiza-
tion of a gauge theory within the framework of the field-
antifield formalism, knowledge of the gauge structure of
the classical Lagrangian theory is of fundamental impor-
tance. Since for the systems under consideration much of
this information is already contained in the Hamiltonian
gauge structure, in what follows we briefly describe the
derivation of quantities and relations defining this struc-
ture at the Hamiltonian level.

To begin with, let us derive some relations involving
the quantities Vg,CE},, the constraints 7, and the canon-
ical Hamiltonian H,, which appear as consequences of
some Jacobi identities. Consider, for instance, the follow-
ing Jacobi identity involving the constraints T',:

{To,{Tp,T,}}+cyclic perm. of (a,B,7)=0 .
Using (2.1) we get
[Ch,Cos—{Chs, T, } +cyclic perm. of (a,B,7)]T,=0 .
The general solution of this equation,
[CL,Cap—{Chg, T, } +cyclic perm. of (a,B,7)]
=B’;’,§,,(q,p)Tp ,  (2.3)

leads to the existence of a new function Bif, antisym-
metric in its upper indices.

In much the same way, from the Jacobi identity among
the constraints and the canonical Hamiltonian,

{Ta’{TB’HO}}+{HO’{Ta’TB}}+{TB’{HO’Ta}}:0’
a new relation is obtained,
[— ;BVZ+C‘;(1V}§+CZBV‘;
+{Vg’TB]—{Vg’Ta}_{ gB’HO}]:Dg#(qJ’)Tp»
(2.4)

yielding the appearance of a new structure function D g,
antisymmetric in its upper and lower indices.

Continuing this procedure, that is, taking an increasing
number of Poisson brackets among the constraints and
the canonical Hamiltonian and antisymmetrizing them in
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a convenient fashion, new quantities and new relations
among the functions previously obtained are found. All
these objects are the so-called structure functions and the
relations among them determine the structure of the
Hamiltonian gauge algebra. For a more exhaustive study
of this Hamiltonian gauge structure we refer the reader
to Ref. [6].

B. The model: Quadratic Lagrangians

So far we have established the most general setting for
theories we are interested in. Now we will apply this
framework to the case of noncovariant quadratic La-
grangians of the type [1]

L.(g,4)=144G 5(9)¢®—V(q), A4,B=1,...,N,

2.5)
where G 45(q) is a singular metric such that its null vec-
tors UZ(q), G ,3UB=0, a=1, ...k, are Killing vectors
for it, i.e.,

(L,G) y5=GC 45cUS+G 4cUS g +GpcUS ,=0, (2.6)

and keep the potential ¥ unchanged
49V _
a aq A
In (2.6), L, stands for the Lie derivative in the 0, direc-
tion. These last two conditions enforce the nonexistence
of Lagrangian constraints [1].

The primary Hamiltonian constraints for this system
are easily found,

Ta:U:pA ’

U 0.

(2.7)

and its first-class character, which is guaranteed by re-
quirement (2.6), yields the commutation relations defining
the structure functions Clg,

UipUE—UppUg=—U/Cly , 2.8)

which in the present case depend only on the coordinates

On the other hand, the canonical Hamiltonian H as-
sociated with (2.5) is

Hy(g,p)=1p M*B(q)ps+V(q), 2.9

where the metric M 2 is a symmetric nonsingular matrix
satisfying

MG ,Gpp=G¢p - (2.10)

Let us notice that the metric M “® defined through
(2.10) displays a certain degree of arbitrariness. This cor-
responds to the fact that the canonical Hamiltonian is
only unambiguously defined on the primary constraint
surface.?

2As is proven in [5] and [7], this arbitrariness has no effect
when a reduced (classical elimination of the gauge degrees of
freedom) quantization is performed.
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Taking into account (2.10) and the fact that the vector
fields 0,=U28/3¢* are Killing vectors for the metric
G, (2.6), we immediately obtain

(L oM)*BG 4 Gpp =0 .
This result leads to the following form for (L M):

(LM B=UFMPE(q)+UEME(q) . @2.11)
Notice that the choice of M54(q) is again ambiguous. In
fact there is a family of such possible objects, related to
each other by

MEA L MPBA=MEALGEYUL (2.12)
G2 being an arbitrary array of coefficients antisymmetric
in its upper indices. In the next subsection we will take
advantage of this arbitrariness.

From the above results the form of the structure func-
tions Vg is easily worked out. Indeed, taking into ac-
count its definition, the form of the constraints 7, (2.7)
and the Hamiltonian H (2.9), we have

{Ta!HO} = —%pA("LaM)ABpB = VgTB ’

where use of the relation (2.1) allows us to factorize the
constraints and write the structure functions V2 as

VE(q,p)=ME4(q)p , . (2.13)

Finally, let us write down the consequences of the
Jacobi identities for the constraints and the canonical
Hamiltonian in our particular model. From relation (2.3)
we obtain

Ck,CSs—Chp (U +cyclic perm. of (a,B,7)=0,

the structure functions B4%, vanishing in this case, due to
the fact that Clz and U/ depend only on ¢# On the
other hand (2.4) turns out to be

[—CogVL+CVE+CLgVe
H{Ve T} = (V5 To} —Clp aM *Ppp]=DYT, ,
(2.14)

where now the structure functions D J5 can be chosen to
depend only on g4, as it is seen if the linear dependence
of the constraints T, and the structure functions V5 on
D 4 is taken into account.

This analysis could be carried on to determine the
higher order structure functions. Nevertheless, since
these quantities will not appear in the situation we will
consider, we do not pursue this direction any further.
Rather, in what follows, we are going to undertake the
study of the Lagrangian gauge structure using as back-
ground the above results.

C. Covariantization and Lagrangian gauge structure

Having studied the Hamiltonian gauge algebra we are
ready for ‘“‘covariantization.” Using the Lagrangian mul-
tipliers as new variables, the extended Hamiltonian reads,
in our particular case,
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=Hy(q,p)+A°T,(q,p)
=1p M B(qpy+V(g)+A"Ulp, .

H(g,p;\)

To obtain the associated Lagrangian we should eliminate
the momenta p , in terms of the velocities ¢ 4. Use of the
equations of motion yields

JoH
SA_
q ==

dp 4

and since M 42 is invertible, we have

PG M)=M 5(¢°— UL,

with M ,, MB¢=59.
The corresponding ‘“‘covariant” Lagrangian L is

Lc(g,q;M)=LgA = UZA* )M 15(g)gB—~UEAP)—V (q) .
2.15)

=MPpp+UFAY,

In the Appendix we show that in the case of Yang-Mills
theories (2.15) is the standard covariant Lagrangian for
these systems.

This Lagrangian L(q,4;A) will be the starting point of
our analysis. First we can check that the pullback of the
transformations (2.2), given by

8g 1=U(q)e"

(2.16)
A =¢£*—MGp ,(q,4;M)eP—

Cg, (@ATeP,
are indeed, as was expected, gauge transformations for
LC:

6L-=0.

As we have said, the structure of the algebra of the La-
grangian gauge transformations plays a crucial role in
solving the master equation in the field-antifield ap-
proach, which is the subject of the next section. In our
case, for 6,;:=8[¢,], §,:=5[ ¢, ], we obtain

[81,82]4 =8[C}, 55251 $lg?,
and, after a lengthy calculation,

[8,,8,]A%= 8[C? zefe] A"

+{ (MM zM3® — ()]
dL.
+Dg7} € eueh 2.17)
V%4

where Dg7 are the (pullback of the) Hamiltonian struc-

ture functions defined through relation (2.14) and
OL . /3A® the equations of motion for the fields A* derived
from the covariant Lagrangian L. (2.15), given by

aLc
e

In the study of this gauge algebra we meet for the first
time the new features introduced in the theory by the
process of covariantization. Indeed, observe that the
structure of (2.17) is, in general, that of an open algebra.
This fact makes the computation of the proper solution

=—UZM 3(g5—UEAP) . (2.18)

of the master equation rather cumbersome and we will
try to circumvent this problem. To this end we will use a
result from Ref. [8], to wit: any open algebra of gauge
transformations may be closed by the addition of the ap-
propriate antisymmetric combinations® of the equations of
motion. In our specific case, since the openness of the
algebra only concerns the A sector and, moreover, its
open algebra part [see (2.17)] only exhibits the equations
of motion for the A’s, [Lc]kl,,:aLc /0A%, (2.18), it seems
to be very plausible that we can get the closed algebra
structure just by leaving 8¢ 4 unchanged and modifying
8A% (2.16) as follows:

oL
6)»“—»8’7»“=8)»“+F‘;E gv,
AP
with an appropriate F ‘;,‘B antisymmetric in its upper in-
dices. Using (2.16) and the explicit expression for the
equations of motion of A, (2.18), this can also be written
as

SA ="~ M "p 4(g,4;M)eP —Cf (@ATEP ,
with
MgA=M3*+FgU! .

This last expression simply displays the freedom in the
choice of MB4 we discovered in (2.12). We can therefore
conclude that it is plausible that the freedom described by
(2.12) allows for a choice of 'A% which satisfies the closed
algebra structure. Strictly speaking we have not proven
this, although it is very plausible, as we have argued.

Actually we may have considered from the beginning a
more restrictive case: the assumption [9], for instance,
that the regular metric tensor M 4% be such that the ac-
tion of the gauge group leads to ‘isometries, i.e.,
(L M)4E=0, a=1,...,k. In fact, this Killing condi-
tion implies that the vector fields 0 form a Lie algebra
(Clg=const). Indeed, Egs. (2.8) w1th Clg=const are the
integrability conditions for (L M)48=0, a=1, , k.
In that case, the treatment of the system greatly
simplifies: from (2.11) we see that the quantities MZ?
and, as a consequence, the structure functions Vg of
(2.13) can be chosen to be zero. Then Dgf defined in
(2.14) can be put to zero as well. All these results togeth-
er lead to the closure of the gauge algebra of (2.17) in this
particular case. Note that the important cases of EM and
YM, for which the structure functions C}; are constants,
fall into this last category and have a closed gauge alge-
bra.

From now on, whatever the case we are dealing with,
we will assume that we have met the conditions to get the
gauge algebra in the closed form

[6,,8,1(g 4,A%) S[C”Bezel]q ,A%)

This assumption greatly simplifies the determination of
the solutions of the classical and quantum master equa-

31t should be noted that in a general case with both bosons and
fermions, these combinations will have a graded antisymmetry.
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tions, which we are going to undertake in the next sec-
tion.

III. BV QUANTIZATION OF
THE COVARIANT ACTION

In the case of an irreducible closed algebra of gauge
transformations, the field-antifield formalism starts by en-
larging the original configuration space with the intro-
duction of a ghost ¢ for each gauge parameter €%, of op-
posite parity. These ghosts, together with the classical
fields {¢°] ={q“,A%}, form the minimal sector of fields
{¢'}. A new set of “antifields,” {g%,A%,c*]={¢F}, with
parities opposite to those of its associated fields, is intro-
duced as well. Then, in the space of functionals of the
fields and their antifields, some new structures, the anti-
brackets

9,4 90B 93,4 9B
3¢ agr  der a9
and the BRST “Laplacian”

_ 9, 9

o¢’ gt
are defined (sum over continuous indices is understood in
both structures). The quantum master equation is then

formulated as an equation for a functional W, the full
quantum action:

(W, W)—2ihAW =0 .

(A,B)

b

(3.1

The usual way to solve the above equation consists in
expanding the quantum action W in powers of #:

w=s+ S #W, ,

m=1
so that (3.1) splits into the classical master equation
(S,8)=0, (3.2)
and the equations for the “quantum corrections”

(W,,8)=IiAS ,
Lp=1 (3.3)
(Wp,S)=iAWp,,—E EI(W W,_4)» p=2.
o=
For an irreducible, closed gauge algebra the classical
master equation (3.2) has the well known (minimal) prop-
er solution

S =S,(¢)+ 2R+ LctTg c?ch,

where S,, RZ, and Tgy are the classical action, the gen-
erators of the gauge transformations and the structure
functions of the gauge algebra, respectively. In our case,
taking into account the results obtained in the preceding
section and assuming to have met the conditions to get
the algebra in closed form, we obtain the following ex-
pression for the proper solution:

S=ScgM)+q}Udee

+A5(e¢*—VgeP—Cj, A cP)—LexCqc7cP,

where now S is the classical action associated with the
covariant Lagrangian (2.15), U;‘(q) the gauge generators
for the fields ¢4 and V5,Cpg, the pullback of the corre-
sponding Hamiltonian structure functions (2.8) and
(2.13).

Let us consider now the equations for the quantum
corrections (3.3). Since for the type of theories we are
analyzing the proper solution is linear in the antifields,
the quantity AS does not depend on them. As a conse-
quence, the term W, can be chosen to be a function of
the classical fields only and Egs. (3.3) are immediately
solved by taking W, =0 for p =2. Therefore, no higher
order terms in # appear apart from the W, term.

To compute the first quantum correction W, we need
the explicit expression of AS. In our case it is easily seen
that

AS=(UZ ;,+MBAM ,,UB)ce .

Use of the Lie derivative of M“4® in the U, direction
(2.11) together with the symmetry property of this metric
allows us to write the last term of the above expression as

(MBAM 4,y U )c*=[1M 45(L M)*P]c
=[—IMBLM) 4p]c”
=—(UMBM 5 USHUZ ),

where in the last equation use has been made of the
definition of (L,M) 45. Therefore, after these manipula-
tions, AS can be written in the more useful form

AS=[—10,(trInM 45)c?]
=[—10,(IndetM 5)c?]

= —[In(detM ,5)'/%,S] . (3.4)

Notice that the trace over continuous indices imply, in
our -case of a local gauge theory, that AS is proportional
to 86(0). Therefore, in order to make sense out of this
construction, some scheme to regularize the above ex-
pression must be considered.

Expression (3.4) is already spelling out the formal solu-
tion for W,. Indeed, we can simply take

W,=—iln(detM ,5)'/*+BRST-invariant terms , (3.5)

where “BRST-invariant terms” we mean terms with van-
ishing antibrackets with S. As we have said, the above
ambiguity in W, is inherent to the field-antifield formal-
ism. In the present case we solve this ambiguity just by
dropping the second term in the left-hand side (LHS) of
(3.5). As will be shown below, this is the correct choice
that makes contact with the reduced path integral for-
malism.

Now, to proceed to fix the gauge within the field-
antifield approach, some auxiliary fields, {¢% B“}, and its
corresponding antifields, {¢%,B} }, are introduced. After
that, the minimal proper solution S is modified by the ad-
dition of an extra term in these new fields as

Snm=S +¢*B< .
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Then, if we call ® the whole set of fields, a “gauge fer-
mion” ¥ will eliminate the antifields through the require-
ment

opr=3Y
L
The Batalin-Vilkovisky path integral is then defined as
Zq,=f[Dq][Dk][DE][Dc][DB]exp éWE ) (3.6)

where Wy stands for W(®,0*=9¥ /9®). It should be
noted that, in our case, as W, does not have any depen-
dence on the antifields ®*, its expression will not depend
on the choice of the gauge fixing. Therefore, we will have

. OV

@, +AW (D) .

Now, a customary lattice regularization for &(0),
8(0)—1/¢, e—0, allows us to write part of the exponen-
tial in (3.6) as

exp{in } :H (detMAB )1/2 )
t
so that Z, becomes
Z\,,=f[Dq][Dk][DE][Dc][DB](detMAB)l/zexp [és2 .

(3.7)

Therefore, from the above expression for Z, it is evident
that while the gauge fixed proper solution of the classical
master equation (3.2) represents the classical effective ac-
tion of the theory, the W, term stands for quantum
corrections to the naive measure. In this way, the deter-
minant (detM ,5)!/? modifies the naive measure
[Dgq] - - - [DB] yielding a BRST-invariant measure.

At this point, different choices of the gauge-fixing fer-
mion are possible. The physical equivalence of the
different gauges, i.e., the invariance of the path integral
(3.6) under deformations of the gauge-fixing fermion, is a
well known result in the context of the field-antifield for-
malism, and has been proven by Batalin and Vilkovisky
in [2]. In fact, what they do in this reference is to prove
the theorem for gauges that differ infinitesimally. More
suited to our purposes, a direct proof of this invariance
under arbitrary deformations of W for the case of theories
with closed, irreducible gauge algebras, can be found in
Ref. [10] and will not be repeated here. From now on, we
will take for granted this invariance of the path integral
(3.6) under changes of the gauge-fixing fermion.*

One of the main purposes of this paper is to make con-
tact with the noncovariant path integral quantization
presented in [1]. To this end, we will use a gauge-fixing
fermion implementing unitary or, more generally, nonco-

4This will be true as long as the theory is free from gauge
anomalies. We assume that this is the case in this paper. See,
however, Ref. [11].
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variant gauge-fixing conditions. However, other types of
gauge-fixing conditions, for instance ‘“‘covariant” gauges,
can be chosen as well. In what follows, we are going to
work out the form of the Batalin-Vilkovisky path integral
in both classes of gauges.

Unitary or noncovariant gauge conditions are neces-
sary in order to make contact with the reduced path in-
tegral quantization. In this formulation, unitarity is obvi-
ous once the usual assumptions about the positivity of the
spectrum of the reduced theory are made. Gauge-fixing
fermions which implement these gauges are taken to be of
the form ¥,=¢,F%q), where the gauge-fixing conditions
F%(q) do not involve the Lagrange multipliers A%. For
such gauge-fixing fermions S 3, becomes

a

_ dF
Sz, =Sc+eu

cP+B F,
where 3F*/3eP=0 s(F%) measures the rate of change of
F® under the action of the gauge generators U g After
this, straightforward integration of ¢,¢ and B in (3.7)
yields

JF“

Zy = [ [Dgl[DA](detM )"/ *det w:

X 8(F%)exp ;ésc } . (3.8)

The noncovariant formulation is recovered by integrat-
ing out the Lagrange multipliers A, which appear qua-
dratically in S. Once this is done we get

(detM 5)'"? a
Z, :f (D ABI/Z oF
! (det,5) deP

X 8(F*)exp és;, ) (3.9)

where 6,5 is defined by
0up=U M 3 Uf
and the new classical action S| is
So= fdt{ 16M 454"
— G M 4 cUSNO™ ) B(gEM, UR)+V ()} .

It can be shown that the metric defining the kinetic term
of S is nothing but the one which appears in the original
quadratic noncovariant Lagrangian (2.5), i.e.,

GAB=MAB_MACU§(6_1)aBMBDUg .

Therefore, we conclude that Sy is equal to S,, the action
for the noncovariant Lagrangian (2.5), and that expres-
sion (3.9) for Z v, in noncovariant gauges is in complete

agreement with the one obtained in [1]. This result
proves that the equivalence between the noncovariant
(with variables g only) and the covariant (with variables g
and A) formulations, which is easily seen at the classical
level, still holds after quantization of the theory within
the framework of the field-antifield formalism when a
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noncovariant gauge fixing is imposed.
At this point it is worth comparing the two versions,
(3.8) and (3.9), of the path integral Z‘l‘x' In fact, they are

two different, although equivalent, Faddeev-Popov (FP)
formulas. On the one hand, expression (3.8) for the co-
variant theory corresponds to the standard FP formula as
used in the literature (with two extensions: the presence
of a nontrivial determinant in the measure and also the
fact that we are dealing with the so-called quasigroup
structure [10] rather than a Lie group). On the other
hand, the equivalent expression (3.9) uses a noncovariant
action and corresponds to the correct FP formula for sys-
tems with first-class primary constraints only (strictly
speaking, systems with quadratic kinetic term and con-
straints linear in the momenta), as it was proven in [7].
In this second case, it should be noted the presence of a
new determinant, (deteaﬁ)l/ 2, which makes the path in-
tegral invariant under rescaling of the constraints. In
summary, the above discussion points out that the struc-
ture of the constraints of the theory [primary constraints in
(3.9); primary and secondary in (3.8)] makes a difference
with regard to the final form of the FP formula.

In connection with the measure of our path integral
(3.7) another comment is in order. As we have said in the
preceding section, there is a certain amount of arbitrari-
ness in the selection of the metric M ,p satisfying (2.10).
One may then wonder how this arbitrariness affects the
path integral (3.7). In fact, using expression (3.9) of Z
in a noncovariant gauge, one can see that it does not
affect it at all. This expression was obtained in [7] start-
ing from the reduced path integral quantization, in which
this kind of ambiguity was not present.” Therefore, in
spite of this apparent dependence of (3.7) on the particu-
lar choice of M 45, the measure and the action depend on
it in such a way that (3.7), in the end, does not suffer from
this arbitrariness. In the measure, this feature is neatly
displayed as a cancellation of the dependence on the
gauge part of (detM ,5)'/%, namely, (detM,5)'/?, and the
similar dependence in (det6,)'/? [in [7] it was shown that
(detM ,5)'/? factorizes into a physical piece, dependent
only on gauge invariant degrees of freedom, times
(detM aB)l/ 2, This was achieved in the so-called adapted
coordinates; the gauge-dependent piece of (det@aﬁ)” Zis
also explicitly displayed this way].

To conclude, for the sake of completeness, let us study
the form of Zy (3.7) in covariant gauges. As is well
known, covariant gauge fixings are more convenient in
obtaining Feynman rules which describe the perturbative
sector of the quantum theory. This class of gauges is
constructed so that all the fields become propagating.
Gauge-fixing fermions enforcing covariant gauges are
usually of the form

W, =C[A°+F(q)+10™B,],

where the maximum rank metric ©®? is usually taken to

5See footnote 2 in relation with the effects of this arbitrariness
at the quantum level.
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be independent of the fields. The gauge fixed action S22
reads in this case

_ _ OoF°¢

SZZ_ Sc+ca asﬁ

cP—2 (e*—VgcP—Cg ATcP)
+B,[A*+F(g)+10*Bg] .

The auxiliary fields B, can be integrated out of the path
integral or, equivalently, eliminated algebraically in terms
of their equations of motion

oLy,
3B

=A"+F(q)+w™By

=0=—B,= —aw.A+FFq)],

where o, is the inverse of the metric B, yielding in this
way a gauge fixed action of the form

_ OF°¢ =
Sy, = SC+cavcﬂ——ca(C"—— Vch—ngUcB)

+ 1A%+ FUq) o g AP+ FF(q)] ,

in which the kinetic terms of all the fields are invertible,
so that they become propagating. This is an important
feature which distinguishes the covariant formulation
(i.e., with variables A) from the noncovariant one.

Finally, the partition function in covariant gauges is
written as

Zy,= [[Dg)[DA][DZ][Del(detM 45)' Zexp [észz ] ,

this expression being the starting point in the construc-
tion of covariant Feynman rules.

IV. CONCLUSIONS

In this paper we have extended to Yang-Mills-type sys-
tems some previous work on the quantization of con-
strained systems which exhibited, in the canonical for-
malism, only primary first-class constraints linear in the
momenta. This extension can be understood as the co-
variantization of the original system by introducing new
degrees of freedom to it. At this point it is worth notic-
ing that the marriage of covariance (for a constrained sys-
tem such as YM, for instance) with the Hamiltonian for-
malism immediately implies the appearance of secondary
constraints. Because of this fact, there are some
differences in the application of the Batalin-Vilkovisky
formalism to both the noncovariant and the covariant
case which deserve some specific comments. The main
difference is perhaps that the algebra of gauge transfor-
mations will be generally open in the covariant case, even
though it was closed in the noncovariant one. In this pa-
per we have dealt with this eventuality by arguing that it
is possible to set up the covariant formalism in such a
way that the algebra is still closed, and this is in fact the
only case we have studied and where the equivalence with
the noncovariant formulation has been shown.

Another difference, which can be traced to the different
structure of the constraints in both cases, is the following:
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in the noncovariant case (which in our terminology corre-
sponds to a system without Lagrangian constraints or, in
other words [5], with only primary first-class Hamiltoni-
an constraints), there appears [7] in the Faddeev-Popov
formula a new determinant, unrelated to the gauge-fixing
procedure, that keeps the path integral invariant under
rescaling of the constraints (which we emphasize are
linear in the momenta). Instead, in the covariant case
(which is achieved by promoting the old Lagrangian mul-
tipliers to the status of dynamical variables, thus creating
two generations, primary and secondary, of constraints),
the new determinant is absorbed in the definition of the
covariant Lagrangian, and the usual Faddeev-Popov for-
mula is obtained. Our result, however, is an extension of
the Faddeev-Popov formula because now the generators
of the gauge group do not span a Lie algebra. The struc-
ture defined by these generators, whose commutation re-
lations give rise to structure functions, unlike the struc-
ture constants that appear in a Lie algebra, has been
called a quasigroup [10].

In conclusion, our results establish the equivalence, at
the quantum level, of the noncovariant and the covariant
version of a constrained dynamical system of Yang-Mills
type. This equivalence is a fundamental issue because, in
terms of path integrals, unitarity is best checked in the
reduced quantization (classical elimination of the gauge
degrees of freedom). This reduced quantization corre-
sponds, as it is proven in [7], to the quantization of the
noncovariant version of the system.

During the preparation stages of this manuscript we
received a paper by Epp et al. [12], which deals with
some of the topics raised here, as well as with other work
by some of us. We completely agree with their results.
The crucial point first raised in [7], and clarified to some
extent in [12] using scalar QED as an example, is the
need to distinguish between different forms of the
Faddeev-Popov ansatz when both primary and secondary
constraints are present classically (i.e., before the
Lagrange multipliers are integrated out) and when only
primary constraints are present (i.e., after the Lagrange
multipliers are integrated out). Thus for example the
usual, covariant form of the Faddeev-Popov ansatz [and
consequently formula (3.31) of [13]] is correct only when
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secondary constraints are present. Reference [7] dealt
specifically with primary constraints only, while the
present work extends the results to the case in which
secondary constraints are also present.
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APPENDIX

Here we derive the standard covariant Yang-Mills La-
grangian from its noncovariant version as an example of
the procedure of “covariantizing” (2.5) to get (2.15). Ac-
tually we can directly start from the Hamiltonian H, of
(2.9) which for Yang-Mills takes the form

Hy,=Lnkak+ LFUFJ
We hence identify, in the notation of Sec. II,
M 3 =8(x—y)8,,, V(A;,)=LFIFJ,
and, from Egs. (2.16)
8Af=0,e"—foP ALeb=DP%eb=Ule",
8 AZ=0ye’+ fb A 5eP =Dl |

where we have used the notation A= A§ for the
Lagrange multipliers, and taken into account that now
Vg(p,q), (2.13), can be chosen to be zero.

Then, we have, for (2.15),

L(A;, Ay, Ag)= [dx [ LA =D AL (A —DP 4f)
—3FJF/1,
and since (4?—D% 48)=F¢,, we finally get
JLax°=— [d*x[2F§F®+ LFIF]]
= [d*[—1F, F"],

that is, the covariant action for Yang-Mills theories.
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