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We derive the imaginary part of the potential nonrelativistic QERNRQCD Hamiltonian up to order t*,
when the typical momentum transfer between the heavy quarks is of the ordej-gfor greater, and the
binding energye much smaller thar op. We use this result to calculate the inclusive decay widths into light
hadrons, photons and lepton pairs, u;iﬁ‘t(mve’x(AéCDlmz,E/m)) andO(mv°®) times a short-distance coef-
ficient, for S- and P-wave heavy quarkonium states, respectively. We achieve a large reduction in the number
of unknown nonperturbative parameters and, therefore, we obtain new model-independent QCD predictions.
All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the
origin and six universal nonperturbative parameters. The wave-function dependence factorizes and drops out in
the ratio of hadronic and electromagnetic decay widths. The universal nonperturbative parameters are ex-
pressed in terms of gluonic field-strength correlators, which may be fixed by experimental data or, alternatively,
by lattice simulations. Our expressions are expected to hold for most of the charmonium and bottomonium
states below threshold. The calculations and methodology are explained in detail so that the evaluation of
higher order NRQCD matrix elements in this framework should be straightforward. An example is provided.
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[. INTRODUCTION trasoft gluons was not clear once higher-order calculations in
ag were required.

Heavy quarkonium is characterized by the small relative The observation that NRQCD still contains dynamical
velocity v of the heavy quarks in their center-of-mass frame.scales that are not relevant to the kinematical situation of the
This small parameter produces a hierarchy of widely sepalower-lying states in heavy quarkoniutthose with energy
rated scales once multiplied by the massof the heavy scales larger than the ultrasoft sodl¢] (see alsqd5]) paved
particle:m (hard, mv (soft), mv? (ultrasofd, etc. In general, the way toward the resolution of the questions above. Indeed,
we haveE~mu?<p~mu<m, whereE is the binding en- it was realized that further simplifications occur if we inte-
ergy andp the relative three-momentum. grate them out, and the resulting effective field theory was

The use of nonrelativistic QCIINRQCD) [1] allowed a  called potential NRQCD(pNRQCD [4]. The degrees of
factorization of the physics due to the scaidrom that due freedom of pNRQCD depend on the interplay between the
to smaller scales. Moreover, it allowed the description ofcharacteristic scales of the given nonrelativistic system,
heavy quarkonium inclusive decays into light fermions, pho-namely,E, p, and the momentum transfkrand the charac-
tons, and leptons, in terms of matrix elements of local fourteristic scale of nonperturbative physics in QCD, which will
quark operators, in a systematic way. These four-quark opbe denoted by\ ocp. Therefore, how a Schdinger-like for-
erators are of two types: color-singlet and color-octetmulation develops, and thus how the NRQCD four-fermion
operators. The matrix elements of the color-singlet operatorgiatrix elements will show up within this framework, de-
can be related in a rigorous way with quantum field theorypends on the specific kinematic situation considered.
defined quarkonium wave functiofd]. Intuitively, these When the typical momentum transféris much larger
wave functions should be related to the wave functions thathan Aqcp, kK~p>E=Aqcp, the pNRQCD Lagrangian
appear in a Scfidinger-like formulation of the bound-state [4.6] contains not only the singlet field, which is also present
system, namely, two heavy quarks interacting through a pol the Schrdinger-like fo_rmulatlon, but also the octet field,
tential. On the other hand, the color-octet ones were thougtf!rasoft gluons, and light quarks. The maiching from
to have no parallel in that formulation. In either case, ever{\lRQQD to pNRQ_CD(lntegratlon of the So.ft s_ca)Ia?an _be
though there had been a lot of relevant work in obtaining theiON€ N perturbation theory. In nature, this situation is rel-
QCD potential in terms of Wilson loopg2], it was not €vant to theY (1S) andt-t pro_ducti_on near threshold_. Ifin
known how to obtain the systematic connection betweer@dditionE>Aqcp, we are entirely in the weak-coupling re-
NRQCD and a Schidinger-like formulation in the nonper- gime (E~maZ, p~k~mag where nonperturbative ef-
turbative case, or even whether it existed and, if so, undefiects can be parametrized by local condensgtgsin this
which circumstances. Even in the perturbative case, foregime pNRQCD has been used to obtain the complete set of
which expressions for the potential existed at lower orders iogarithmic corrections to the QCD static potential at three
the past[3], a clean and simple derivation of such aloops[8], the complete set of logarithmic corrections to the
Schralinger-like formulation incorporating perturbative ul- very heavy quarkonium spectrum é](mag) [9] (see also
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[10]), the resummation of logs at the same orfiet, 12,  gime. We will call this EFT pNRQCD?! The octet and “ul-
and, very recently, théalmos} complete spectrum of very trasoft” gluon fields are eventually integrated out by the
heavy quarkonium a@(mag) [13]. We can still use the (nonperturbativematching to pNRQCL6].
same pPNRQCD Lagrangian for systems wi® A qcp. In either case, it remained to be seen how the matrix
Then, however, some of the calculations in PNRQCD cannogjements of the four-fermion operators are encoded in this
be carried out perturbatively and the nonperturbative effectgyrmulation. This was especially needed for the octet ones
can no longer be parametrized by local condens&ie®  since, as mentioned before, it was thought that they could not
[7,6D). . be accommodated in a Schiinger-like formulation. How-
When the typical momentum transfee A ocp and the ever, in[16], we have shown that, by using pNRQCD, it is

binding energy is small, namelf<Aqcp, the degrees of indeed possible to relate the matrix elements of the color-
freedom of pNRQCD are the singlet field and pseudo Gold-I POss X

. X . octet operator with the wave function at the origin and addi-
stone bosongpions, if hybrids and other degrees of freedom _. . .
. ! ) . ._tional bound-state independent nonperturbative parameters.
associated with heavy—light meson pair threshold productio

develop a mass gap @(Aqcp), as is assumed in Refs. This was done for the specific case Rfwave quarkonium

[14,15,§ and in what follows. If we ignore Goldstone decays. Here, we will apply the same method to express all

bosons, which play a negligible role in the present analysisthe NRQCD matrix elements relevant to inclusigevave

we recover the celebrated Sctioger-like picture of quark quarkonium decays into light hadrons, photons, and lepton
i i i i airs atO(c(ag(m))mo3x (A2 o/m?,E/m)) [c(agm)) be-
and antiquark interacting through a potential. Therefore, thé S QC ' B
pNRQCD Lagrangian readd4,6| ing a function of ay(m) computable within perturbation
theory]. This reduces the number of unknown parameters for
. the total decay widths of charmonium and bottomonium
Lonrgen= TS (1do—h) S}, (1) states below threshold by roughly a factor of 2, which allows
us, in turn, to formulate several new model-independent pre-

. . . . dictions. Particularly important is the fact that our formalism
whereh is the pNRQCD Hamiltonian, to be determined by allows the physicsydue{ato the solution of the Scfnoer

matching to NRQCD. In general, one should be able to ob- . . . X .
. o . . equation, which appears entirely in the wave function, to be
tain the binding energies and the total decay widths from th%isentangled not only from the short-distance physics at

real and imaginary parts of the complex poles of the propa- ; o ]
gator. At the accuracy we are aiming at in this paper the tota?Cales ol(m), but also from the gluonic excitations with an

. 4 : energy of O(Aqcp). As a consequence, the wave-function
:gﬁ%dw;(ith of the singlet heavy quarkonium state may b%ependence drops out in the ratio of hadronic and electro-

magnetic decay widths. For this class of observables the re-
duction in the number of nonperturbative parameters in go-
I'=-21Im(n,l,s,jlhn,l,s,j), (2)  ing from NRQCD to pNRQCD is even more dramatic, since
only the (six) nonperturbative universal parameters appear-
ing at this order in pPNRQCD are needed.
where|n,l,s,j) are the eigenstates of the real part of the Finally, we would like to mention the dynamical situation
Hamiltonianh. when the binding energy is positive and of the same order of
In this paper we will be concerned with this situation andmagnitude as the momentum transternamely, whenE
will consider in full detail not only the calculation in the =Agcp~K. In this case degrees of freedom with energy
general caséA) Aqcp<k (Sec. I, but also the particular ~ Aqcp cannot be integrated out. States close to and beyond
situation(B) Aqcp<k (Sec. V: the heavy—light meson pair threshold are expected to be in
(A) Aqcp is smaller than or of the order &f In this case, this situation. The results of this paper do not apply, in prin-
the (nonperturbative matching to pNRQCD has to be done ciple, to this case.
in a single step. This case has been developed in a systematic The paper is arranged as follows. Section Il reviews some
way in Refs[14,15. As a consequence, the complete set ofaspects of NRQCD that are relevant to the rest of the paper.
potentials up to order @ could finally be calculated Section Il provides a detailed description of the computation
[14,15, including a 1/ potential, which had been missed so of the “spectrum” of NRQCD, in particular the ground state,
far, and completingand in some cases correctjnifpe pre- in the 1/Mm expansion in the general case. It is meant for the
vious expressions obtained in the literat{i?¢ for the 1m?  reader interested in learning the techniques involved in this
potential. Most of the charmonium and bottomonium stategype of computation. The description of pPNRQCD, its power
below threshold are expected to be in this situation. counting, and the relation between the computation of Sec.
(B) Agcp is much smaller than the typical momentum Il and the Hamiltonian in pNRQCD are given in Sec. IV.
transferk. In this case, the degrees of freedom with energySection V provides a detailed description of the matching
larger than or similar td can still be integrated out pertur- between pNRQCD and NRQCD in the particular cdse
batively. This leads to an intermediate effective field theory<Agcp<k. This section may help the reader who is not
(EFT) that contains, in addition to the singlet, also octetwilling to go through the general case in Sec. Ill, but still
fields and “ultrasoft” gluons(meaning gluons with energies
=<Aqcp herg as dynamical degrees of freeddm6]; it has
the same Lagrangian as pNRQCD in the weak coupling re- 'Note the change of name with respect to Sec. Foof
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wants to get a flavor of the kind of calculation we are per-mass Im. Powers ofagfm) are encoded into the Wilson
forming. Section VI summarizes our results. The reader wh@uefficients of NRQCD.

is only interested in our final results and wants to skip any | this paper, we aim at a description of heavy quarko-
computational detail may jump directly to this section. Sec-njym inclusive decays into light hadrons and electromagnetic
tion VII displays some model-independent predictions thaTdecays, whose appearance is due to the imaginary terms of
follow from our results. We finally draw our conclusions in the NRQCD Lagrangian. It is convenient, then, to split the

Sec. VIII. A number of appendixes complement the main_agrangian into the Hermitiatrea) and the anti-Hermitian
body of the paper. Appendix A recalls the four-fermion (imaginary parts:

NRQCD operators af(1/m*). Appendix B gives the gen-
er.al formula relatiljg an arbitrary NRQCD r_natrix .element Lnrocp= ReLyrocpt i IM Lyracps (4)
with the computation in pNRQCD. Appendix C gives the
leading-log renormalization group running of the imaginarywhere
parts of the four-fermion NRQCD operator matching coeffi-
cients. Appendix D shows how to deal with ill-defined prod- ReLnroep= Lyt Liignt+ Lot ReLy ¢ 6)
ucts of distributions within dimensional regularization. Ap-
pendix E shows how unitary transformations can relateand
different forms of the pPNRQCD Hamiltonian.
Im Lyroep=IM Ly (6)
Il NRQCD The operators responsible for heavy quarkonium decays are
NRQCD is obtained from QCD by integrating out the the NRQCD four-fermion operators whose matching coeffi-
heavy quark mass scate[1]. The NRQCD Lagrangian can cients carry an imaginary part. For our purposes, it is suffi-
be written as follows: cient to consider either dimension 6 or dimension 8 four-
fermion operators:

Lnroeo™ Lyt LightT Lo+ L4, ©)
, , , , IM Lyroco=1M L4 =1m L= +1m £57976+1m £§=7
where L, involves only gluon fields Cjgpn; involves light-
quark and gluon fields, and,,_; are the terms in the La- +1m £EMm4=8, (7)
grangian with 2 heavy quark fields.

The NRQCD Lagrangian can be organized as a serie®Vith the superscript e.m., we indicate operators responsible
expansion inag(m) and in the inverse of the heavy-quark for the electromagnetic decays. More explicitly, we have

. Imfy(isy) Imf,(3S;) Im fg(1Sy) Im fg(3S;)
Im £§=P= ———"=0,(Sg) + ——5——0,(3S) + —————0g( Sp) + ————0g(’Sy), ®
m m m
Im ! f
Im £579 0= e"’z'( 2 0 m(15) "‘2( Y 0 m(?S)), ©)
gg M (*Py) Imf (°Py) | Imf (°Py) | Imf,(°Py) . Img;('Sy)
ImLy—f=—"7—01CP)+ —7—0:1CPg)+ ——F——0:1CP)+ ———0,(P) + ——P1("S)
m m m
lmgl(gsl) 3 lmgl(gsla 3Dl) 3 3
+TP1( Sl)+TP1( S1,°D1) +[01—04g,P1—Pg.f1—1f5,0:—0sl, (10)
Im fo (1P Im fo (3P Im fo (3P Im fo (3P
m cgmd-o= Mlem( P o ap ) M Ten(P) o apgy s Men(PU o opyy s Meml P2 o ap)
m m m m
Im ge.m.(lso) 1 Imge.m.(ssl) 3 Imge.m.(3817 SDl) 3 3
+—4Pe.m.( SO)+—4Pe.m.( Sl)+ 4 Pe.m.( Si, D:L)- (11)
m m m
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The definitions of the hadronic operators can be fourfdjn  1ll. THE NRQCD "SPECTRUM” IN THE 1 /m EXPANSION
For ease of reference, we recall them in Appendix A, where

we also give the definitions of the electromagnetic operators,[heV\r/:a?shsilr’:mfowil SSC'B Lh;nﬁgfﬁgmg%%i?: d Ivr:li:,f\:ihr:C: er-
The distinction between hadronic and electromagnetic op- gtop P P

erators is somewhat artificial. In general the four-fermionturbat've expansion inrs. Nevertheless, it can be done by

operators listed in EqA1)—(A18) are all the dimension 6 assuming an expansion inni/ within the Hamiltonian for-

and 8 operators needed to describe decays into light hadroﬁ'%a"sm .0f[14’15|’ to which_we refer for further details. We
may divide the procedure into three steps.

and/or hard electromagnetic particles. The information s
needed in order to describe decays into hard electromagnetic (1) The spectrum Of. the NRQCD Hamiltonian, made of
arkonium and gluonic excitations between heavy quarks,

particles is encoded into the electromagnetic contributions g4 . . )
the matching coefficients. The electromagnetic operators dé? e\(aluatgd ord_er by order in np/startmg from the static
fined in[1] arise from singling out the operators accompa_conﬁguranon. This will be done n Sec_s. A-IIE.

nying the matching coefficients whose imaginary parts cor- (2) Th.e quantum-mechgnlqal matrix eIementg aré ex-
respond to pure electromagnetic decays and inserting int ress&_ad in terms of gluonic field correlators. This will be
them the QCD vacuum|yady(vad). This insertion guaran- “°N¢ N Sec. Il F. 2 o

tees that, when calculating with these operators in NRQCD (3) The excitations of ordemy* are |dent|f|ed as the de-.
no contamination from soft strong interactions will occur. grees of freedom of pPNRQCD. The matching to pNRQCD is

Hence, the electromagnetic operators encode all the relevafifriormed by Integrating out th? excitations of ordegep
information needed in order to calculate the quarkonium to@"dmv. This will be done and discussed in Sec. IV.
tal decay width to electromagnetic particles only. However,

one might also be interested in the decays to hard electro- A. The NRQCD Hamiltonian

magnetic particles and soft light hadrons. In this case, the
complement to the above projector, namely5|!1ac><\_/ad, . been worked out up t@(1/m) in Ref. [14] and up to
should be considered. In this paper, however, we will restric

i (1/m?) in Ref. [15], to which we refer for the explicit
our attention to the processes, and therefore to the operators . . . . ) .
- X . expressions. In the following we will consider the inclusion
originally considered if1].

" . . of light fermions.
The Hermitian piece of the NRQCD Lagrangian can also The inclusion of light fermions produces new terms in the

be writien in a Ith expansion: Hamiltonian of pure gluodynamics. In the static limit, we

The NRQCD Hamiltonian without light fermions has

1 1 have
ReL=LO+ Ec<1>+ WReU?M e (12) ny
H(0)=H(°)(nf=0)—jzl dxqjiD-yg;. (14
At order 1im the different pieces of Eq5) read
D2 B The next corrections in the Hamiltonian, due to light fermi-
Lo =y iDo+—+CF9—]¢ ons, appear a®(1/m?) and have been considered in Ref.
2m 2m [18]. We will not need their explicit expressions in this paper.
D2 o B We will only need the expressions of the Hermitian part of
+x'1iDg om CF9%m }X, the NRQCD Hamiltonian up to orderrh/
1 H® 1 3yt D2
Y ReH=—=——de D°+gcro-B
L= 7 G5,G%", (13 m ~ 2m) SV (DroceeBlY
1 2
ny tom d*xx"(D*+gceo-B)y, (15
ﬁnght:;l q;iDq;,
and of the imaginary part of the NRQCD Hamiltonian up to
Rel, =0, order 1m*:
whereys is the Pauli spinor field that annihilates the fermion IMH®  1mH®
and y is the Pauli spinor field that creates the antifermion, ImH=——> YO (16)
iD°=ig,—gA®, iD=iV+gA, B'=—¢€kG2; for later m m
use, we also define'=Gy; and[D-,E]=D-E—E-D. The
chromomagnetic matching coefficieat is known at next- where IlTH@=I1mH®,;, ImH®=1mH{Y,, and
to-leading order and its value can be foundi]. Concern-
ing the explicit expression of th€(1/m?) Lagrangian, see H
Ref.[15] for the operators without light quarks and Rief8] 4: = _f d3x(L3=8+ £omd=6) 17)
for the operators including light fermions. m
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J’d3x(£ £md=8). (18) H|E;xl,x2>=f d3x1d3x§|g;x1,x§>En(xi,xé;pi,pé)
X 8P (] —%1) 8®(x5—Xy). 21
The Gauss law, constraining the physical stipbys, reads (31 7%) 70 %)) @D
D. Halphys):g(wTTa¢+XTTaX+EyOTaq)|phys} With n we indicate a generic set of conserved quantum num-

bers. Note that the heavy quark positionsandx, are con-
served quantities only with respect to the zeroth order Hamil-
whereIl? is the canonical momentum conjugatedAd. In  tonianHg. The State$D;X1,X2> are normalized according to
Ref.[19], general details about Hamiltonian quantization can
be found and in Refd.14,15 details specific to our case. (MiXg, %o NY1,Y2) = 8nmd (X1 —y1) 83 (xo—ys),
a N (22)
B. The NRQCD spectrum atO(1/m?®)

Let us callH=H®+H, the NRQCD HamiltonianH(®
being its static part and

and we define

N%(Yl \Y2:P1,P2) 5(3)()’1_ X1) 5(3)()/2_ X7)

T 20 =y, ol ). @
The above three equatiof1)—(23) may be used in order to

We call |n;x;,x,)(© the eigenstates of H Eﬁo) the corre-  determine the three unknown quantitiesx, ,x,), E,, and

sponding eigenvaluefy;x; ,X,) the eigenstates ¢, andE,, Nh(Y1,Y2:P1,P,) recursively using quantum-mechanical

the corresponding eigenvalues within a strict expansion iperturbation theory around the static solution. For this pur-

1/m. This means that they satisfy the analogue of the Schropose a convenient way to rewrite EQq$21)— (23)

dinger equation: [En(X;P)=En(X1,X2;P1,P2) andEQ(X)=E(X1,%0)]:2

Nn(Y1,Y2;P1,P2) 83(y1—x1) 83y, —%,)

iz fdg (niy1,y2|m;zy,2,)(©
1

=5 (v —x) 8@ (v,—x,) —
(Y1=X1) 8" (Y2—X2) EST?)(Z)_E&O)(X)

X f d3x3 f d®x3 O(m;zy, z|nixg, X5) [ En(X'5p") = EQ(X) 183 (x] —x1) 83 (x5 —X,)

_(o)<m§21122|H||DJX1:X2>]1 (24)

Q;Xl,X2>:f d321f d322|ﬂ§21,Zz>(0)Nﬁ/2(21,Zz;pl,p2)5(3)(21_xl)5(3)(22_X2)

|m 21122>( )
E(O)(Z) E(O)(X)

+ g d3zlf d’z, [f fdg (0)<m Z1,22|n X1 X[ En(X"5p")

—EP(x)]18P0¢ = %) 895 = xp) = (O)<m?21 Zo|Hi[nxg ,X2>] , (25)

f dx; f AN (Y1,Y2:P1.P2) 89(y1 = x0) ¥y =) Bn(X'3p") 604 = x1) 690 =)

= EQ(YINYAY1.Y2:P1,P2) 83(y1 = x1) 8D (y2—%o) + Oy Yo Hi [ nixg o). (26)

2A slightly different set of equations can be found in Réf5].
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By means of the above equations it is formally possible to obtain, within the framework af expfansion, the “energies
and the “states” of any excitation of the NRQCD Hamiltonian.
Up to O(H?), the energy of a generic state labeteés given by

En(y;p) 5(3)()/1_ X1) 5(3)()’2_ X)
=E(n°>(y> 8y —x1) 83 (y2 = Xp) + O iy yo|Hynixy , %,) ©)

1 1

d321d322(0)<n y1.Y2|H |k 21722>(0) (O)<k 21,25|H, |n X11X2> +
23] 2 -EPy)  EP@)-EPx)

2 (I J’ d3zl 3ZZJ’ d3§1 362(0)<n;y1,y2|| |||k;21122>(0) (0)<k§21,22|| I,|n;§1,§2)(0) (0)<n;§1 §2| |n Xl,X2>(O)
n H
XE : - > d3z,d%z dsf dsf (O)<n Y1.Y |H |n >(0)
(ko)(Z) Ego)(X) E(ko)(Z)—Ego)(g) 2 kén 1 22 14762 1,Y2 &.6

1 1
X On;&), &|Hilkizy,25)( k21,25 Hi[nixy %) ©
- - - - EC(2)-ERX(y) (2 -EP(®)

1
vy 2| dudy J A0 y1 Yol HilK' 81,6) @ OXK &1, &l Hilkiz1,22) ) i z1 25| Hilnix o)
k,k' #n

1 1 N 1
E () —EPAy) EQ(H)—EP(y)

4
EO - E000 ED e EP0) 20

The expansion up t&(H,) was considered ifl4] in order - 1

to obtain the Ih potential. The®(H?) term was obtained in =[niXy 1:%2) O+ _|” x1,%2) )+ |n X1,%2)?
[15]. The O(H?) expression is new. A detailed derivation of

Eq. (27) will be given in Sec. Il D.

+on (29

A n n fE it hol h
C. The NRQCD states at®(1/m?) s a consequence of ER9), it holds that
The states can also be formally expanded im:1/ (O)@;Xl'XZ@yl’y?): 8®(x,—y1) 53 (x,—y,) (30)
(0) 1 (1) 1 (2) . . . . . .
IN5Xq,X2) = [N5Xq, X2) +E|D;X1,X2> +W|D;X1,Xz> or equivalently(this equation will become crucial in later

sections to simplify some calculations
+.e (29
O¢n:xy ,%o[Niy1,y) =0 Vv i#0. (31
It is convenient to write the above states in terms of some -
new statedn:x;,x,), defined recursively atsee also Ref. At O(1/m), we obtain
[15]) B

|D?X1’X2>(1):|§JX1’X2>(1):—g fd321d322||§21122>(0)
1 n

~. _ . (0) -

(0)<|§21122|H(l)|D§X11X2>(0) (32)
EQ(2)-EP(x)

X 2 x;d3x; |m;xi,xé>(°) ©Om;x; x5
- At O(1/m?), we obtain
. { HI|E;X1’X2>_ f d3xid3xé|ﬂ;x1,xé) |niX1:X2>(2): |ﬁ;X1-X2>(2)+ |n;X1:X2>$1%)rm’ (33

X O M i, )| where
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Ok; 21,20 H P ;% ,5)

EQ(2)-EQ(x)

|ﬁ;x1,x2>(2)=—§, fd3zld322|k;zl,22>(°) +§ fd3zld3zz|k;zl,zz>(°)
— k#n - k#n -

(0)<E; 21,2, H(1)|[‘;§1 £)© (0)@;51 &l H(l)|n;xl X))
[EQ(2)-EQ)IEL(2) - EQ(6)]

(O)<|§ 2,7 H(1)|1; &.6)° (0)@ &,8)| H(l)|[‘;x1 X2)(©
[EQ(2)-EPOIE (6 -EP(x)]

x( - f o2,

+2 | d*6d, (34)
j#n
and the second term, due to the normalization of the state, featisthatNy=1+ NE,Z)/mZvL .-+ is Hermitian

1 ~
[MiX1 %) (ot~ 5 f A3 %[ 05x1, %) ONE (1. X357, P2) 8P (x4 = X0) 825 = %5)

On;zy, 2o HDk; &1, £) @ OUk; &1, &[HD nixg , xp) )
[EQ(&)-EQMIEL (&) -EP(2)]

:_f d321d322|ﬂ§21,22>(0)k§ fd3§1d3§2
n

(39

By using Eq.(15 and the identities obtained in Refd4,15, explicit expressions for the above E¢32) and (33) can be
worked out. In particular, at orderr/we obtain(the spin-independent part was first obtainedid]):

1 Ok D,-,gE n)© O)NKIGE4]1}(®. O |aE.|In})(© OV Kk|gE,|n)(©®
)= (_5 < |[(0§ 9(01)]|2> * : |(g) 1lJ(>0) 2 ch»|g 1(|o)> +2(V,EP)- <(o|)g 1|(0)>3
n & (EQ—E() 7 (ED-EP)EQ-EO) (EO_ED)
O(KIGEIM© oo ©/klgB.Iny©
1.—<(0|)g 1|(0)>2 ?Fal.—< ((L? 1|(0>) k;xl,x2>(0).;_[gE1
(En _Ek ) Er-| _Ek -
——gE},9B;——9B},00—0,,V1—V,,D;—D ], (36)

where [n)(©) is a shorthand notation fgm;x;,x,)(?), the  the Hermitian part of the NRQCD Hamiltonidihe reason
state that encodes the gluonic content of the $tatg,x,)(®)  is that the only imaginary contribution to the states up to
and is normalized a&(n|m)(©= 5, [for a precise defini- ©O(1/m?) comes from the first line of Eq34) and this term
tion, see Eq(53) and the following discussignWe will use  is zero forn=0 because of the subsequent Egp).

expression(36) in the subsequent sections. The imaginary terms in the NRQCD Lagrangian only ap-
pear in the matching coefficients of the four-fermion opera-

tors, i.e., in £L,_;. Therefore, the imaginary part of the
NRQCD Hamiltonian has the structure of EG6). Profiting
from this structure of the imaginary terms and since the it-
eration of the leading imaginary terms gives zeroHgcan

be computed from

D. Im E, with relative accuracy O(1/m?): Structure
of the calculation

In this paper, we are interested in computingEm(actu- 3) " «3) N A o,
ally ImEg) with relative accuracy®(1/m?). We will now M Eod™(xq 1) (%2 XZ)_<9’X1'X2||mH|9’X1’X(2§'7)
explain in detail how the different terms of E7) appear
within the quantum-mechanical calculation. Expanding in Ith the states and Id, we can identify the

Equations(24)—(26), as well as the analogous equationsdifferent terms of InE, in the 1/m expansion:
in Ref.[15], implicitly assume that the Hamiltonian is Her-

mitian. This is not true at arbitrary orders and the iteration of
imaginary-dependent terms may lead to problems. Neverthe-
less, at the relativé)(1/m?) accuracy we are aiming at in (39
this paper for the imaginary terms and for the=0 state,

such effects are zero. Therefore, effectively, we have to conm=———

pute only the expectation value of the imaginary part of the However, a systematic method to work with unstable particles
NRQCD Hamiltonian in terms of thé@(1/m?) eigenstates of should be worked out if a higher precision is warranted.

1 1 1
= (2) 4 (C)NT— Wy ...
ImEg =) Im Eg e ImEj rn4Im Ep .
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©O¢n|T§e T12(0)(©. (46)

In order to deal with this second expression, we note that the

=(°)<9;x1,x2| Im H(Z)IQ;XLX@(O), (39) lowest excitation, in the limik;— X5, has no gluonic content
and behaves lik¢0;x; ,x,)?=1./\N.|vad), so that
Im ES 6B (x, — x}) 6@ (x,— x5)
=0(0;x1 %o IMH®)]0;x7, %) ‘°><n|Ti‘®TZa|0><°>6<3><xl—x2)=cf5noa<3><x1—x2>& )
. 4
+040;x, %,/ IMm H@[0;x7,x5) ), (40)
whereC;= (Ng— 1)/(2N.). The above expressions may ap-
Im ESY 83 (x, —x7) 6 (x,— x5) pear problematic since they involve the behavior of the state
in the limit x;—X, and some regularization could be re-
—0)0- ®)]0:x! %)) 17%2
(0%, %[ IMH™0:x7 , %5) quired in this case. However, we actually only need a weaker
+M0:xq X IM H@]0:x] , x5) D conditiop to ensure that E¢44) is zero. What we have is an
- - expression like
+@(0;x1, %[ Im H®[0;x7,x5)
+©(0;%;, %,/ IM HP[0; x5, x5)
- - , ©(0]0a|m)®(- - ) UK Ti&T3?0)
+ (0%, %o IMHP|0;%7 X)) o N0 kto
o X 5(3) X1—X5), 48
o 03X X IMH@| 00 x) @, (4D) (a=xz) (49
After an explicit calculation, we have
P whereQO; is some unspecified operator. Following Rédf4],
this expression is the spectral decomposition of the Wilson
ImE®=0, (42)  loop (for the definition of a Wilson loop with a numberof
operator insertions, see R¢L5)):
since
~ dty- - dt,((O1(t) (- ) TERTI(t) )8 (X1 —Xy),
(1)<0;X1’X2||mH(2)|O;X:/L’Xé>(0) f 1 n<< l( l)( ) 1 2 ( n)>>c ( 1 2)
- - (49
= O(0:x; X IMH@(0;x;  x3)®
=0. (43 where({O)) stays for the insertion of the operatéron a
static Wilson loop of spatial extension —X,. In the pres-
Moreover, we have ence of more operators, the symi@t - - )). indicates the
connected partsee in particular the erratum of Refl5)).
@)/ DlAev v (0) One can see that the operat@®9) is zero in the limitx;
(051, %] IMH0:x1 ,%5) —X,. In order to obtain this result, it is very important that
the delta acts directly on the stafel this situation, and in
=00 @0 x! x'\(2) ,
(0x1 ol IMH@[0:x1 x)) the limit x,—Xx,, one can see that the disconnected piece of
=0. (44)  the Wilson loop cancels with the connected piece, proving

Eq. (44).

These results follow from Eq(31), supplemented by the For the other terms, we have
following argument. The color structure of Iff?) is such

that, at the gluonic level, the following matrix elements are
produced within the total expression: “We may have situations where the Wilson loop operator has the

structure

f dty- - dt [ V1 ((Os(t) (- - ) TIR TRt IN IV —%,).  (50)

In this case the argument does not apply since the delta does not act
directly on the Wilson loop.

On]1:0 1,]0) = (0} = 5 (45)
(by definition and
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1
(1)<Q;x1,x2|lmH(2)|Q;Xi,xé>(1)=§ % d3zld3zzf d3§1d3§2(0)<9;y1,y2|H(1)|I§’;§1,§2)(0)
kk'£0

X (O)<|f'i§1,§2||m ngjf|5§21122>(0) (0)(5;21,22|H(1)|Q;x1,x2>(°)

1 1 1 1
X +
( EQ(2)-EQ(y) EQ6-EQ(y)  EP(2)-EP(x) EQ(6)—EP(x)
(51)
(°)<9;x1,x2|lm H(2)|9;X11X2>§1%)rm+ Ew?rm(o Xq,Xo|Im H(2)|0 Xq,X >(0)
= 2.4, f d321d322f d3§1d3§(0)<9§)’1'y2|H(l)||§ z;,2,) (0)<|§ 2,2,|HM|0; £, )
X(0)<O;§l,§2|lm ngjf|0;xl,x2)(0) ! !
- - EX(2)-EP(x) EP(2)~EP(E)
1
3 ZJO d3zld3zzf d3&d3E,0(05y,,y,[Im HEtz—)f|9?§11§2>(0) (0)<9?§1=§2|H(1)|E§ z;,2)
1 1
x O(k; 21,2 HP[ 031 , %)) : (52

EQ(2)-EP(y) EQ(2)—EP(¢)

Indeed, the last two equations hold as well for an arbitrary which has been used in R¢fl5]. The quantum-mechanical
and not only for the state=0, for which we have explicitly operators, which naturally appear in this way, &g, o7 ,,
displayed them. It can be easily checked that the imaginargnd they represent the operators acting on either the particle
part of Eq.(27) for n=0 coincides with the above expression 1 or 2 (in this case we have always a particle interpretation
(38) supplemented by Eq$39)—(41), (43), (44), (51), and  Analogous definitions can be made for the operators acting
(52). on the color subspace. This representation appears to be
more convenient for the calculations of the quantum-

) ) ~ . ) mechanical matching. In principle, one could also write the

E. Im E, with relative accuracy O(Ym?): Explicit expressions 4| four_fermion operators in a basis convenient for these
in terms of gluonic fields states by using Fierz transformatiof29].

The expressions obtained in the previous section can be In both cases, we assume the state to be properly normal-
rearranged in terms of the pure gluonic contésde Refs. ized in the spin sector. Depending on the calculation, one
[14,15). In order to achieve this we have to make the quarkdefinition turns out to be more useful than the other. In any
field content of the states explicit and use the Wick theoremcase, at the end, we are interested in writing the quantum-
There is some freedom in choosing the specific realization ofnechanical Hamiltonian relevant to the Satirmer equa-
the quark fields under spin transformations[14], the fol-  tion. A way of avoiding ambiguities is to write everything in
lowing state was chosen: terms of a definite set of spin operators. We will adopt the

operatorsS and 1 acting on a generic 1621/2 spin space
|D;X1axz>(0)5¢T(X1)X(X2)|nixlaxz>(0) V X1,%2. (53)  and defined as

| I
In the basis of four-fermion operators that we are using in g:ﬂ®12+ 11®_2
this paper(see Appendix A and in the above basis, the 2 2
guantum-mechanical operators that naturally appearlare
®1l ando'®@a!, wherely(o') is the identity(sigma ma- It is possible to transform them into the operatihy® 15 and
trix) in spin space acting either on the final or the initial spino'® &’ by using the identities
quark-antiquark state. Analogous definitions can be made for 4 _ 5 .
the operators acting on the color subspace. XS Slxe=x'0'® 0 x,x(21-5) xc= x"Ls® Lex.

Another possibility is the state

(56)

Let us now compute the different matrix elements that ap-
%) OV X, x,, pear in Eq.(41). The contribution due to the dimension 8
(54) four-fermion operators reads

[nixg %) Q=" (x0) x¢
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©0;x1, %, IMHEY|0;y1,y,)© =6, (63)
_ 2S+1 ij vi s(3) i . O
Calm f;(571P) TL VW6V 043s,,°Dy) =59 - %Sz, (64)
C s
+ Pimg,(251s) il Vivie ey 5C)(r) 1
2 3 7—:_ 1 (65)
S 3 SS-

Te 25+1 i (3) (3)
+ ?Imfg( Py)Ts£16(r) | 8P —y1) Equations(58)—(61) and (65) provide the explicit expres-

sions of the operatords and 74, first used in Ref[16]. The

3
X 8(x2=ya), (57 nonperturbative consta#d (as well as all the other constants
(2) (2,) (2,norm) ; : B ;
whereCp=N., V=V, r=x,—X,, and (Zs will be used in 53_|’| El' g3f, ' 53’, , andey ; appearing I?lthlsl section
Sec. ) will be defined in Sec. Il F. If we consider the electromag-

) netic contribution due té1(", , we obtain(in this case there
T 4= 6;(21-9°), (58  are no octet operators

1 ©40:x; , %[ IMH*E™ 05y, ,y,) (@
Ti= §S‘SJ, (59 (05%1 2| 4-f 1_ Y1.Y2)

=| Calm fom(**" P TV 631V

o1 .

Ti= Efki(’ekje’sese ) (60) c
| + 5 m ge_mfzs*lsﬂngJ[V‘Vj
| _(5iks“+ 5S¢ 8o
12— 2 3 O
| + 36009 | 890 =y1) 89— y,). (66)
8, S'+ 68,8 Sisy
X - , (61 I
2 3 In order to calculate the contribution due to thenldorrec-
. ) tion to the state, we need to knowa 1 is understood where
0= 6j(21-5°), (62)  no spin-operator is displaygd
©Onixg o[ HP|m3yy,y,)©
_ ( L Onl[D, GBI g OB - O IGEIM© _ o HngEIm)©
== - —(V, R L
2 EX-ED 7o (EP-EDED-E) " (EP-ER)?

O(n|gEm)@

VT EO_EO 2 01 (0)(n|gBl|m>(°)) 83X, —y1) 83 (X~ y,)
n m

+[gE;— —0E},9B;——0Bj,01—0,,V,—V,,D;—D,] V n#m, (67)

+

Omixy ol Im HEZ ([ miyy y,) @)= - ( [2( Im f1(*So) - %Im fo(1So) |+ Im F1(°S) —Im f1(*Sp) + %Um fa(*So)
—Im f8<381>]) 82} S(r)(n|1e® Le|m) +{2 Im fo(*So) +[Im Fo(°Sy)

—Im fg(*Sp) 157} 6N T Sam( (1= y1) 8¥ (%2 = y2), (68)

whereF;=F(x;), F being a generic gluonic operator. In particular, from the last equation it follows that

O nixy X IMHE(|0:y1,y2)@=0 ¥V n#0. (69)
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It is this equation that guarantees that, for the0 quarkonium state, no imaginary contribution is carried by the ¢tatethe
discussion at the beginning of Sec. Il.0Finally, from the above equations it follows that the contributions due to tme 1/
correction to the state read

%&,v (V{4 Imfg(tSy) — 28 Im fg(1Sy) — Im fg(3S)) 1} + 2Trc2B,6°)(r)

{0; %1, %5/ IMH@[0;y; ,y,) M=

X Imf8(381)+%82[lmf8(180)—3 Imfg(3Sy)]|+ %5g2>5<3>(r){4 Im f5(*Sp)

— 287 Im fg(*Sp) —Im f5(3Sy) ]} - %(55”—822'“)6“)(0{4 Im f1(18p) — 287 Im f1(*So)

—Im fl(ssl)]}> S®(x;—y1) 8 (x—y,). (70

For the electromagnetic contribution we have the intermediate vacuum, which does not allow an intermediate emission of
gluons. This means that

1(0;%1,%5[Im H(e?r%]Q;Y1,Y2>(1)=0- (71)

The contributions due to the normalization of the state read
©2(0;x1, %[ IM HP|0;y1,y2) ht G 031, Xo| IMH P05y, ,y )

norm ° norm

2
= _gCA53{V215(3)(r)}[Imfl(lSO)"_SE[Imfl(ssl)_lmfl(lso)]}

s C
—chcéBlzs“)(r){ Im f1(Sp) + 5 [Im f1(°S;) -3 lmh(l%)]} — 5 (€89

+ELM™) 53(r){4 Imf1(*Sp) — 257 Im f1(*Sp) —Im f1(3sl>]}) 8 x=y1) 8 (%= o). (72)
|
Exactly the same contribution is obtained from the electro- 31

(2¢
magnetic terms if we change the subscript 1 in the matchlnés = 4
coefficients to e.m.

y {<0|gE1|r>-<r|gE1|n><n|gE1|s>'<s|gEl|o>
F. Gluonic correlators n,r,s40 (EE)O)_ Ego))(E(()O)_ EE\?))‘l(EgO)_ Ego))
The nonperturbative constanfs, 53,, £%, ££9, and (0lgBs|r)-(rlgBz[n)(n|gEs[s) - (slgE3|0)

£@M™  which appeared in the previous section, are pure (EQ—EONEP -ED*EP-ED)
gluonic quantities, since the fermionic fields have been inte- T T
grated out. Within the quantum-mechanical matching, they (O[gEy|r)-(r[gEy/n)(nlgE;|s)-(s|gE;|0)
are first obtained in terms of gluonic states. For instance, we (EQ—EO)EL - EO)4ED-ED)
obtain the expressions

(0|gEZ|r)-(r|gE3|n)(n|gE|s)-(s|gE,|0)

: . + ,
5 ntiny S (0lgE'Ik)(k|gE'|0) 23 (EQ—EOYEL -E)4ED-ED)
- kZo (EQ—g)n*tt (73
(79
i : For the first two equations, there is no need to specify
| J
5__ Hntine > (OlgB'[k)(klgB |0>, whether the gluonic fields are inserted on the particle or on
"3 kZo (EQ—-E)n+t the antiparticle line since they give the same contribution.

(74 We do not give here the complete list of expressions at the
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quantum-mechanical level, since this section does this iexpresss,, B,, €2, €29, and £Z™™ in terms of the
terms of Wilson loop operators. The former may be derivednore familiar gluonic field correlators. We obtajmaces as

straightforwardly from the latter by spectral decomposition.
Using the techniques of Ref§l4,15, it is possible to

well as suitable Schwinger lines connecting the gluon fields
are understood if not explicitly displaygd

1 * n
5n=N—JO dtt"(gE(t)-gE(0)), (76)
— 1 ocd n
B | “ateignct) g0, )
1 (= t t
09— |t [ ", [ Mottt 0B - gE OB GEO, 79
5 1 o ty ty
5(3 nom)— 4Nc[ fo dtlfo dtzfo dtg{[(t,—t3)3+ (t1—t3)*|({QE(t1) - ,GE(t2) HOE(ts) - ,gE(0)})¢
+(t3—t2)3({gE'(t1),9E! (t2) HOE'(t3),9E! (0)})+ 4(t1— t) (gE'(t1) gE) (t2) gE) (t3) gE'(0) )}
~2 [ at, | att - ) LGB (D G 1 1)9B(0)+{gE (1) 9B 1D gE10)
) ) ) ) o0 ) ) ) ) 1 1
+(9E (1) [1D) GBIt 9B 0} + | duti(gE! () [1D! (iDL GEITKO) | + Z6ofit 6265, 79
1 [ t t
eP= o[ ot [ ot | "at (-1 (9B GECCHoE() - GEO)C
4
- N—C<Tr[gE<tl>-gE<t2>]Tr[gE<t3>.gE<0>]>c], (80)

where
({9E(t1) -, 9E(t) HOE(t3) - gE(0)})¢
=({gE(ty)-9E(t) {gE(t3)-gE(0)})

1
— N (9E(t) - 9E(t2))(gE(ty) -gE(0)), (8D

couple from the ground staten{0), which is identified as
the only degree of freedom of pNRQCD. It corresponds to
the singlet stat&in the pPNRQCD Lagrangiafl). Moreover,
the above expansion acquires a dynamical meaning, becom-
ing an expansion iM ocp/m and v in the effective field
theory.

The above assumption is the same as was made in Refs.
[14,19 in the situation without massless fermions. In this

and similarly for the other structures with four chromoelec-WOrk, we are including light fermions. Nevertheless, at least

tric fields that appear in Eq$79) and (80).

For further use, we also define

ggz,t):5(32)+g(32,norm), (82)
ggz,e.m.):5(32,c)+5(32,n0rm). (83)
IV. pNRQCD

A. Matching to pNRQCD

Expressiong27) and alike are no more than formal ex-
pansions irH,, i.e., in 1M, until some dynamical assump-
tion is made. We will assume a mass gap of ordejp

in this paper, we will assume that this does not change the
structure of the leading order soluti¢ihis was also assumed

in Ref.[16]). In other words, we will assume that the size of
the typical splittings between the ground stateeavy
guarkonium and the gluonic excitationéhybridg is much
larger than the typical splittings produced by the solutions of
the Schrdinger equation for the heavy quarkonium. This is,
indeed, supported by lattice simulations where the plots of
the static potentials for the heavy quarkonium and hybrids
show the same pattern after the inclusion of light fermions
[21]. Nevertheless, in principle, a new problem may arise.
Once light fermions have been incorporated into the spec-
trum, new gauge-invariant states appear in addition to the

>mu? between the lowest-lying excitation and the higher SNote that the quantit used in Ref[16] corresponds here to

ones. Under this assumption all the excitations-Q) de-

Ne&s.
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heavy quarkonium, hybrids, and glueballs. On the one hand, (2) Soft light fermions, a term that denotes, in a generic
we have the states with no heavy quark content. Because @fay, all the fermions that are incorporated in the potentials;
chiral symmetry, there is a mass gap (A ,), between the it is expected that their main effects can be simulated by a
Goldstone bosons, which are massless in the chiral limit, andariation of the value of the parameters in the potentials.

the rest of the spectrum. We will consider that the Goldstone (3) Ultrasoft light fermions: these are the ones that will
bosons are ultrasoft degrees of freedom and thgt become pions and, since they are also ultrasoft degrees of
~ Aqcp. So that the rest of the spectrum should be integrateffeedom, they should be incorporated in the effective La-
out. In addition to these, we also have bound states made gfangian together with the heavy quarkonium. However, we
one heavy quark and light quarks. In practice, we are conwill not consider them in the present paper, even if we do not
sidering theQq-Qq system. The energy of this system is, €xpect to find conceptual problems in an eventual incorpora-

according to the heavy quark effective the@dQET) count-  tioN. _ _ -
ing rules[22]: In conclusion, the matching condition to pNRQCD for the

real part reads

Mggt+ Mgq=2mM+2A. (84) ) NORRYe,

\Y

o —Reh=— —+VO4 4
Therefore, since\ ~Aqcp, we will assume that they also ReBo=Reh=— - +Vit+ -+ m2 e (89)
have to be integrated out. Problems may appear if we try to
study the heavy quarkonium near threshold. In this case thest O(1/m) the matching has been performed in Rf4]
is no mass gap between the heavy quarkonium and the crand atO(1/m?) in Ref.[15] (for the case without light fer-
ation of aQE—Eq pair. Thus, if we want to study the heavy mions. We refer to thoge articles fo_r further detgils about the
quarkonium near threshold, we should include these degresructure of the potentials. For the imaginary piece, we have
of freedom in the spectruifor a model-dependent approach the analogous matching condition:
to this situation see, for instand&3]). We will not do so in ImE-=Imh (86)
this paper. It may happen, however, that the mixing between 0 '
the heavy quarkonium and ti@g-Qq is small. Indeed, such Using the results of the previous sections, we can now write
a mixing is suppressed in the larbe counting. the first two terms in the id expansion of Inh (the P-wave-

Summarizing, light fermions contribute within this picture dependent terms were obtained in Hd©]):
in three ways.

(1) Hard light fermions: they are encoded into the match- Imh®  Imh)
ing coefficients of the NRQCD Lagrangian and obtained Imh= m2 + m? T (87)
from the computation of perturbative Feynman diagrams at
the scalem. where

Im h®)=— % SAr{4 Imfy(*Sp) —2S°[Im f1(*Sp) —Im F1(3S)) ]+ 4 Im Fe 1 (*Sp) — 257 [IM f o (*Sp) — Im fe i (PSp) T},
(88)

L ) Cr . R
IMh®=C,Td V' 6@ ) VI[Imf (357 Py) +Imf oy (35T1Py) ]+ 7AQISI,J[ V'vi+ %51,5(3)(")) [Img,(*5*1S;y)
T . T
+IMge m(2571S)) 1+ ?FTISI, 189(r) Im fg(2571Py) + ?F53V SB(r) V{4 Imfg(tSp) — 27 Im fg(1Sy)

+ %Sé%“)(r){zl Im f5(*Sp)

—Im f8(381)]}+2TFC|23815(3)(r)[ Im f8(381)+%82[lm fg(1Sp) —3 Imfg(3S))]
—2[Im fg(1S) —Imfg(3S;) ]} — %59’05(3)(”{4 Imf(1Se) — 257 Im f1(1Sy) —Im £,(3S) 1}

2 <
—CA§€3{V2,6(3)(r)}( Im f1(*Sp) +1Im e m(*Sp) + - [Iim f1(3S) —Im f1(*Sp) +Im o 1, (3S;) —Im fe.m.(lso)]]

2
—2CAC;2:315(3’(F){ Im f(*Sp) +1m fe m(*So) + Sg[lm f1(°S) =3 Imfy(*Sp) +Im fe (°S;) —3 |mfe.m.(150)])

- %ng*e-m%“)(r)m IM f o.m(*Sg) = 287[IM fo.m(*So) = 1M o m(*S) T} (89)
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The above expressions have been given in four dimensionsjon in Aqcp/m, independent of the details of the bound
Therefore, they should be generalizeditdimensions if we  state. In the most conservative situatiohgop~mo), it
want to work in an modified-minimal-subtractiorM@)-like  would correspond to having the power countingcp/m
scheme in order to use the same scheme as for the NRQCBy. We can also find derivatives of the wave function di-
matching coefficient computation. This becomes relevanvided bym. They typically scale like&//m~uv. On the other
when logarithmic ultraviolet divergences appear in the nonhand, the normalization condition of the wave function sets
perturbative constants. Hence, eventual lattice calculationghe scaling |Ryjs|>~(mv)®. This means that a formal
must be converted to tHdS scheme in this case. Neverthe- O(mv®) accuracy[leaving aside possible(m) suppres-
less, in several situations, it is not necessary to workSa  sions due to the NRQCD maitching coefficignits achieved
scheme if we only want to obtain the nonperturbative objectavith Eg. (90). At the same order of accuracy, the decay width
from experiment, since the scheme dependence simply go@§ P-wave gquarkonium has the structure

into a redefinition of the nonperturbative constants. Finally,

note also that in addition to the divergences in the nonper- 2
turbative constants, which are due to large momentum trans- T~Im Cgi§m+ -
fersk, at some point there will also be ultraviolet divergences m*

arising in quantum-mechanical perturbation theory, which

are due to large relative momenga These must also be
regulated in dimensional regularization al$ subtracted,
along the lines worked out in Ref24].

(93

In the above discussion, we have only considered the
leading order power counting of the wave function at the
origin ~(mw)3. This accuracy is sufficient for the-wave
B. Power counting in pNRQCD function of Eq.(93), as well as for the wave functions mul-

. . 2 2 . .

With the above results, we are in a position to computdiPlYing Agc/m® terms or with twoV in Eq. (90) but not
the inclusive decays of heavy quarkonium into light particles/or the leading order term. In this case, one has to take into
by using Eq.(2). Before doing so, we have to specify some @ccount that the wave function at the origin also has sublead-

’ ; bt P 2 3 2
power-counting rules in order to estimate the importance ofd contributions inv: |Ry;s(0)|*~(mv)*(1+av +buv
the different terms of the pNRQCD Hamiltonian. Previous T - - -). Therefore, we have to further specify the solution of

discussions on this subject, some of which we will repeafd: (91), for which we have to set the power counting of the
here, can be found in Reffl4,15. potentials in the Schobnger equation. Since we do not

With the results of Sec. IV A and using E@®), the decay know the specific dynamics of the different potentials, the
width of Swave quarkonium has schematically the following ONly thing we can do is to require consistency of the theory

structure: and allow, in principle, the most conservative counting. This
would correspond to setting the counting by the largest scale
_|Rns0s(0)]2 Aéco that has been integrated out, i.e., the potentials would scale
I'~Imc§=? . R REE like (mv)9, d being their dimensiofi.For definiteness, we
m m will also assumer{(m)~v9 with q>1.

Ry s 0)[ V2R, 0u(0)] __Leading order Cons.ist_ency of the theory requires _the
+Imcd=? ns0s ns0s virial theorem to be satisfied. In other words, the potential at
m* leading order needs to satisfy
+—|R“S°S(0)|2Aéw+"')+~- (90) p?
= | NS0~ B+ vio | ) ~E s,
wherec,_; stands for the NRQCD four-fermion matching (94)
coefficients andR, s is the Swave radial component of the
solution of the real piece of the Scliinger equation: with the power counting
(Reh) énjis(r) =Enjisénjis(r), (91
ISt s p2/m~V, o~ EC)~mu2. (95)

with the normalization |®5pin denotes the normalized spin
component

It follows thatV(®)~mu? (even if, using the most conserva-
tive power counting, we would have obtain&d®~mo).

1
Pnsos(r) = Rnws(r)\/ﬁ|s>spin- (92

®Notice that our power-counting rules are different from those of
Although Eyj;s coincides with the binding energy of the sys- [1 25| whereas ours are meant to apply in the situatiogep
tem at the order we are working at, it will no longer be so>my2, the power-counting rules in Reffl,25] rather follow the
when iterations of imaginary parts start playing a role. countingA ocp~Mo?. Indeed, if we take\ gcp~mo? in our results
From Eq.(90), we can see how the power counting has towe obtain a similar power counting for the NRQCD matrix ele-
be organized. On the one hand, we have an explicit exparnments.
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Moreover, in our power counting we haxé"/m~mu?."  where P,=I-[n0)(n0| and (r[njls)=g{}(r) [(r|n0)
Therefore, in the most conservative situation, we would have= 4(%(r)7].
© v If the spin-dependent potenti&l00) is O(mv?3), it just
Vie=V"+ m (96) provides the leading order spin-dependent correction to the

Swave function at the origin and one can use the difference
The important point here is that, at this order, the potential ibetween vector and pseudoscalar decays to fix the value of
spin-independentE),=E(} and R(%),=R{). Therefore, the correction. If the spin-dependent potentiabligmv?), it
the leading-ordeP-wave function reads provides a correction to th&wave function squared at the
(1) =RO(r)(ljs), (97)  origin, which is of the same order as ti¥v?) corrections
to the decay width that we have already evaluated. There-
where |f) is the normalized eigenstate of the position andfore, in this last situation, Eq102 would account for the
|js) stand forJ (total angular momentuyrand S eigenstates full difference between the vector and pseudoscalar wave
such that functions at the origin at relative ordé}v?), which is the
(F1j0)y=Y["(P)[O)spin (j=1=1), <f|j1>:yjlm(f), precision we are aiming at in this work. This last counting
98) seems to be supported by the size of the spin-dependent
splittings in the bottomonium and charmonium spectra.
wherem denotes the third component of the angular momen-  For the spin-independent contributions, we will make no
tum and detailed expressions fy;,(7) can be found in Ref.  assumption at this or higher orders, as their effects will be
[26], Appendix B. encoded into the wave functions, which will be left unevalu-

H 2 : . .
Next-to-leading orderThe O(1/m?) potential scales at  ated. Our results allow for the most conservative counting
the most a§/®/m?~mu3. Therefore, in the most conserva- \yhere v(/m~my?2 and V®)(spin-independentin?~ mo 3.

tive situation, we would have We note that, in this power counting, potentials with imagi-

v(@) nary part arise in the pNRQCD Hamiltonian at order
VNLO:F- 99 magm)2® [where the powers ine(m) come from the
imaginary part of the four-fermion matching coefficients in
At this order, spin-dependent contributions start to appear. INRQCD]. Therefore, corrections due to the iteration of

particular, the spin-dependent potential contributing to thémaginary terms, which could affect the validity of E@),

Swave function at the origin reads are far beyond the accuracy of this paper. In fact, the general
factorization formula put forward ifil] may not hold beyond
SV = S S Rev&Y(r), (100 @ certain order.
m? In any case, we do not rule out that a different power

counting may also lead to consistent equations in the nonper-

where[15] turbative regime for some specific ratios &fcp versusm
@y, 2c§_ % and versug andk. This point deserves further investigation
ReVg ™ (r) = —~i fo dt{gB.(t)-gB,(0)) and may lead to a different implementation of the matching
procedure. We recall that the issue of assessing the power
+2CA[Ref 1(1Sy) — Ref 1(35,)16G)(r). counting in the nonperturbative situation has been addressed

(101) before by Benek¢27] and by Fleminget al. [28]. In both
cases, the authors have given some freedom to the possible
This potential produces the following correction to the size of the NRQCD matrix elements by introducing a param-

Swave function: eter A that interpolates between the power counting in the
(0) perturbative limit and other possible power countings ac-
RnsOs(O) Rn0 (0) 3 . . .
= + | s(s+1)— = |(r=0| cording to the value ok. In this respect, our formalism may
Vi Vam  2m 2 shed more light to clarify this problem, since it incorporates

the factorization between the soft and the ultrasoft scales,
P, ReV(Slz’l)|nO), (102 allowing us to W_rite the NRQQ[) matrix elements in terms of
the wave function at the origin and of some bound-state-
independent constants. Another point of concern is whether
there are nonperturbative effects that are not accounted for in
As a consequence, if the potentif® is nonperturbative, we the 1M matching.
have no general argument to considéM/m subleading with re- We conclude this section by giving a useful equality, valid
spect toV(®. A lattice simulation or some model-dependent studiesin dimensional regularization,
are, therefore, highly desirable to discern the issue. Whereas it is
difficult to obtain this information from the spectrum structure, the
study of the decays may perhaps shed some light on this problem. RE,?)(O)[VZRE?)(O)] |R§f,))(0)|2 Eff,))
Finally, we note that, in the perturbative situatid®fi®) has an extra 2 - > m '
aﬁ suppression. Further discussions can be found in [Réf.

X—
0
EQ—h(©

(103

m m
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which follows from the fact that we know the behavior of the where the traces are over color space only. S and O are
potential and the wave functiofup to a constantat short chosen here to transform as a &/P/2 representation in spin
distances and thgsee Appendix D spacehenceo;— 0,=0,®1,—1,® 0,); hgandh, read as
follows (again we only display terms eventually required in

(n,j,1,s|VO|r=0y=(n,j,I,s|V®|r=0) the calculatioit

=0 (in dim. regularizatiop.

(104 _ V2 ag G
r 2 m2

{41Imfy(*Sp)

With this we have discussed the relative importance of the
different terms that will appear in our evaluation of the decay
widths. The results can be found in Sec. VI.

—287[Im f1(*Sp) —Im f1(3Sy) ]+ 4 Im o (1Sp)

- 282[|m f e.m.(lSO) —Im fe.m.(ssl)]}

V. THE MATCHING IN THE CASE MV>A ocp>MV?2 C Ql
QcD . L
. | . +i— VIV, (1)} [Im gy (2571sy)

Although it is not clear whether quarkonia states satisfy- 2 m
ing mu> A gcp>mo? exist in nature v ~k~p and mo?

~E will always be understood in the present secjchis +Imgem(*S71Sy)], (106
situation is worth investigating for several reasons. First of
all, the calculation in the general case of Sec. Il is nonstand- ) 3)
ard and, hence, any independent check of it, even ifitisina | _ _ V_+ &—C ) as_ Te 07(r) 1
: : o o= f ! {4 Imfg(*Sp)
particular case, is welcome. Secondly, the calculation in this m 2 r 2 m?
case can be divided into two steps. The first step can be
carried out by a perturbative calculation in,, which in- —28°[Im f(*Sp) — Im f5(3S) 1}
volves far more familiar techniques. The second step, even if 53(r)
it is nonperturbative invg, admits a diagrammatic represen- ; ij vi j 2S+1
tation, which makes thescalculation somewhat more intuitive. FITeTSV m* Viim sl Pa)- (107

Third, the more detailed information on the potential allows

us to make important tests on how the terms in the potential

can be consistently reshuffled by means of unitary transforThe Feynman rules associated with this Lagrangian are dis-
mations[14], as is illustrated in the example provided in Played in Fig. 1.

Appendix E.

B. Matching pNRQCD to pNRQCD’

. ) A pNRQCD_ The matching of pPNRQCDto pNRQCD can no longer
As mentioned in the Introductl_on, we shall use the nameye done perturbatively ir, but it can indeed be done per-
PNRQCD for the EFT for energies beloww. Sincemv  tyrhatively in the following ratios of scalesocp/mov (mul-
>AQCP, the integration of the energy scate, namely, t_he tipole expansion A ocp/m, and mUZ/AQCD- The diagrams
matching between NRQCD and pNRQGCDxan be carried  contributing to the calculation are displayed in Figs. 2—9.
out perturbatively inas. This is done following Refd4,6]. We have focused on contributions tBwave states
A tree-level matching is sufficient, but higher orders in theinvolving imaginary parts. Since the imaginary parts,
multipole expansion will be needed. We only display belowyhich are inherited from NRQCD, sit on local
the terms eventually required in the calculation: [5@)(r), V&B)N(r)V, etc] terms in the pNRQCD La-

grangian, they tend to cancel when multiplied by the

Lonraen = Tr{S'(idy—hg) S+ 0O'(iDy—h,) O}

oTr-gEo+oT0r-gE
2 2

+Tr{ O'r-gE S+H.c.+
+gTr{oTr'rJgD'EJo—oTOr'rlgD'EJ}

1 o
+ ﬂTr{oTr'rJrng' DEKS+H.c}

Cr
+ %Tr{OT(o-l— 0,)-gBS+H.c}

_ }Ga GHva,

2G5 (105

arising from the multipole expansion. Hence, for an imagi-
nary part to contribute, it is necessary to have a sufficient
number of derivativegusually arising from themvzlAQCD
expansioh as to kill all ther’s. Since derivatives are always
accompanied by powers ofri/ it implies that at a given
order of 1m, only a finite number of terms in the multipole
expansion contribute. In our case a fourth order in the mul-
tipole expansion is sufficient. The natural way to organize
the calculation in our case would be to assign a sizé to
Agcp, 1<p<2 andv to a5, 1<q<2, and to carry out
the calculation at the desired orderin However, our main
goal here is not the phenomenological relevance of the situ-
ationmu> A gcp> mv 2, but providing an independent calcu-
lation to support the results of Sec. IV A. Hence, irrespective
of whatp andg may be, we will only be interested in fishing
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a) b) a) b)
c) d)
E ) d)
a b a b 2 2 g
e)
b
0= mxﬁ[TbE] 0= NTmeka[TbDDEk] g
© = T [{T°, T”}E] 1 ® = FheatelTr [T, TV D, B}
1gCr (1 —C 5
+ = Al (1202 1y [7¢B]
FIG. 1. The interaction vertices in pNRQCmvhich are needed ij Imfs(25+1P)) j
in order to calculate the decay width up tarif/ *:= -Tgy 1, smi?";s(v 8 )(r)v
I S
+=-Ty_ T m fa( 1-5) 5(3) (r)
up the imaginary pieces that contributeSgvave states up to $=-Tg N, Imf1(25+1ss) 56 (r)
order 1m*. .
The two diagrams in Fig. 2 correspond to the leading A= [—Zv—
contribution in theA gcp/mv and A gep/m expansion, re- mg1(25+1ss) 1 2 (3) 2
spectively. Figure 3 displays the evaluation of each of them =N ((ﬁ +90 (r)ﬁ )

in the mvzlAQCD expansion. The diagrams in Fig. 4 corre- ) d by those in Fi d
spond to the next-to-leading order contributions in the _F'C-3- Diagrams generated by those in Figia.correspond to

- . oA . . _aP wave octet correctior(p) and(c) give rise to a chromomagnetic
AQCD/mU expansion, and Figs. 5-9 display their evaluatlontwo-field correlator accompanying a spin-flip/octet and a non-flip/

singlet imaginary coefficient, respectivelfd) produces the term
a) proportional to€; times the binding energyg) shows the structure
introduced by the Ing,(?S*1Sg)-proportional contact interaction.

in the mv /AQCD expansion. It is then clear that the basic
skeleton of the calculation consists of thec(AQCD/mv)
andy= (AQCD/m)2 expansions, which suggests writing the
pNRQCD Hamiltonian as

h=hg+hy+hpgthy+- - (108)

b) The interpolating fields of pNRQCDand pNRQCD will be
related by

S| pNRQCD — Zl/zS|pNRQCD
=(1+Z+ 2+ 2Zy+ - ')1/28|pNRQCD

FIG. 2. Diagrams corresponding to the leading contributions in 1
(Aqcp/mu)? (8) and (Agcp/m)? (b). All corrections not contained =1+ 5 Z,+Zy+2,— ZZf( + -+ |S|pnracD-
in &2V and&£?) arise from them after expanding the internal propa-
gators. This generates all terms exhibited in Fig. 3. (109
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a) a)
4§=i ‘éuA'.A..L
b) b)
é g g A-NE-A
A= [—iVi ]
: prol
c) 25+1
W= N, TACTS) L([5®@r), ]+ ,6®()])
FIG. 5. Diagrams stemming from Figsatand 4b). They arise
from terms of the form[ ,(hs—E)](1/2}{[(hs—E), 1+[ ,(hs
—E)1}H (hs—E), ] upon expansion of the octet propagators.
! + ! h,+h,,+h !
E—hg E—hs( x T2 V)E—hs
d)
1 gy 2\ 1 1 1
+ | ZH 2o+ 2y — — | =——+ =
2|7 T 4 JE-hg E—hg2
gy 2"z, 1 ZX)T
ettt a7 Tl Eon 2
FIG. 4. Diagrams corresponding to the next-to-leading contribu-
tions in the Q\QCD/mv)zexpansion.After expansion of the internal n 1 1 h 1 n é 1
propagators, as explained in the text, they produce the series of E—hy *E—hg *E—hg 2 ) E—hg
graphs presented in Figs. 5—9, which originate the terms propor- "
tional to £V and 9. <h 1 " 1 h 1 ZX) (111)
*E—hy E—hg *E—hg| 2

Hence, once we have made sure that, up to contact terms, the

The matching calculation reads left-hand side of Eq(110 has exactly this structure, we can

a)
fx dte*‘E‘f d3R(vad T{S(R,x,t)
- a0a
XS(O1X,1O)}|V‘3C>|pNRQCD'
:fx dte’iE‘f d*RZY%vad T{S(R,x,t)
o A= [—i%z,
X S(0,x',0)}|[vagpnroeeZ - 110 O:= —L (TpImfs (>t Ss) — NeImfi (3511Ss)) 64 (r)

FIG. 6. Diagram generated by Fig(ch after picking up in the
The right-hand side of the matching calculation has the folexpansion of the middle octet propagator the term of the form
lowing structure(up to a global factor, which is dropped [,(he—E)ILVE(r) —V(r)][(hs—E), 1.
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a) a)
ama ) - . €) ama.
b) b)
oma D O - ama -
c) c)
sm (D cn o
d) d)
a()ma 2 @) ma
A==, ] A= =%, |

.:=_Nc%zm%([5(3)(r), 1+ ,69@)]) .:Z_Nc%w%([(g(m(r), 1+ ,6®@)])

FIG. 7. All remaining diagrams generated by Fi¢c)4Here the FIG. 8. Diagrams generated by Figd#after projecting out the
expansion of the octet propagators keeps the sequgnéeg vacuum insertion and upon expanding both singlet and octet propa-
—E)](1/2){[(hs—E), 1+[ ,(hs—E)1}[(hs—E), ] with suitable gators. As seen, gluonic vertices are conveniently inserted in a
gluonic vertices inserted in each case. propagator sequence of the forfn,(hs—E)](1/2){[(hs—E), ]

+[ . (hs—BE) ) (hs—E), ].

easily identify the contributions to the pNRQCD Hamil-

tonian from the second term of the expressitii). ing the exponential. This guarantees that we will eventually

get the usual, energy-independent, potentials.
The first contributions arise dD(mvzlAQCD) from the
Let us then proceed to the calculation of the left-hand side)(1/m*) P-wave[Fig. 3(a] and Swave[Fig. 3e)] terms in
of Eq. (110 [in order to match Eq.111) a globali factor will  the octet potential of Eq107):
also be dropped
Diagram(a) of Fig. 2 gives

C. Calculation

1 i (= 1 @ i TeTgImfg(*S"1P))
— ir. —ithe=Btjp. - ) ==

E—h. cho di(ir-gE(t)e ir gE(O))E_hS. E—h, 3N,m"

(112

o 5(3)(r)
X fo dtt(gE(t)-gE(O)) E_h,' (113

The fact thalrnuzlAQCD is small is implemented by expand-
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a) b) SN B S L
re+rlr, S]EThS+EThS[ S’r]r+EThS[ s:f]
X[r,h —1 116
- ABA o o o o - AN A o o . A [r’ S]E_hS' ( )
which does not produce any imaginary part. However, an
equally acceptable expression is
)

S PR S N
r §[f,[r, S]]E——hs E——hsz[[ s:F1r]

d)
1 1 1
+eh I hl bl e (119
. A A H o - AW H o

which does produce an imaginary part. This apparent para-
dox only reflects the fact that expressi@tlb) by itself (as

well as some of the expressions we will find bejaloes not
determine uniquely its contribution to the potentials. This

I Vi : :
A= —igs expression always leads to contact terms, wave-function nor-
= N, mACTHSs) 53) (r) malization and potential, as is apparent in Ef16 and
1= _i(;L” — E) (117, but depending on how we decide to organize the cal-
L 8

culation, the terms associated with each of these pieces
FIG. 9. Diagrams contributing to the potential generated by thechange. For instance, when matched to @41), Eq. (116)
vacuum insertion in Fig. @). (a) causes the structu®,&, to ap-  gIves
pear. The four of them are responsible for #y,; term. The op-
erators/A and M act through suitable commutations, which are not hy=[hs,r][r,hs],Z,=r[r,h], (118
reflected in the figures, on the verticd$. must be taken left and

right according to the prescription given in the text. whereas Eq(117) gives

1 1
i 7—S|mgl(28+lss) hXZE{[[r!hS]ihs]’r}! szi[r,[r,hs]]. (119)

(e) E—h, -

This should not be a surprise. It has already been discussed
" 53)r) in Ref. [14] that this ambiguity exactly corresponds to the
XJ dtt(gE(t)-gE(0)) , (114 freedom of making unitary transformations in a quantum-
0 E-hs mechanical Hamiltonian, and does not affect physical ob-
servables. This is discussed in detail in Appendix E for the
decay widths of th&swave states we are concerned with. In
whereTgJ are defined in Eqg58)—(61) and7Zg in Eqg.(65).  order to fix the contribution to the potential of any term once
At @(mZU‘l/AéCD) and higher, it is convenient to write forever, we will use the following prescription. If we have an
E—hy=E—hg+(V,—V,). ll-defined expressions arise in €xpression with singlet propagators BA hs) only in the
the calculation, from products of distributiottsoth products ~ €xtérnal legs, and an even number of powerstof fis), we
of two delta functions and products of delta functions with Wil take the one closest to the left propagator to the left and
nonlocal potentials, which explode gs-0). It is most con- the one closest to the right propagator to the right, and repeat

venient to use dimensional regularization in this case, Whicrllmt'l. NO POWET IS left except in contact terms. Accordingly, in
sets all these terms to zero. This is shown in Appendix Dthe intermediate steps, when terms with a single external leg

where the relation to other regularizations is also discusse&s'.a(fj dhts;kaenghzggerii/vpe?;vigivgz(_tr?égi(rﬁ )p rlzdujggl‘ r?ge
Having this in mind, it is clear that, at the order we are P s) 1€0

. ; VR - B power is left except in contact terms. If the number of pow-
interested in, Im{, V.S)_O and Im /s —Vg)r=0. Hence, ers of E—hy) is odd, we use the same prescription until a
we only have to consider

single power is left. We then writeE—hg)=(E—hg)/2

+(E—hg)/2 and take one-half to the right and one-half to

the left. Expressions with an internal singlet propagator also

r(E—hg)2r 1 _ (115 appear, which require a more careful treatment as will be

¥ E-h discussed after E128) below. Note that this prescription to

organize the calculation need not coincide with the prescrip-
tion for fixing the wave-function normalization in Sec. IV A.

If we decide to take one poweE( hg) to the right and one Hence, we only expect to agree with the results of that sec-

to the left we have tion up to a unitary transformation. Anyway, with this pre-

E—h,
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scription, Eq.(115) gives rise to the potential obtained in Eq.

(116) and hence to no imaginary part.
At O(mPv®/Adcp) only the following two terms in

(E_ho)3:(E_hs)3+(E_hs)(vs_vo)(E_hs)+ -+ con-
tribute, giving rise to
1 3
5[(E—hs)r2+rz(E—hs)]+§([hs,r]r+r[r,hs])
1/ 1 1 )
+5(EThS[hs,[hs.r]]rJfr[[r.hs]yhs]EThs
1 1 1
+E([f[f,hs]-hs]E_—hs+EThS[hs-[hs'r]f] +[hs,r]

1 1
X[r,hS]E_—hS+ E——hs[hs’r][r’hS]

1 1
t5 EThs[hS’[hS’r]][r’hS]E——hs

1 1
g s TR helg = |+ (Ve Vor
_1 1
+ E—hs[hs’r](vs_v‘))r+r(VS_V°)[r'hs]EThS

1 1
+ E_—hs[hs,r](Vs—Vo)[f.hS]EThS-

It is the term in the fifth line and the first in the sixth line that

renders the contribution depicted in FigdB

i1 7§|mf1(25+153)j°0
0

E-h.o = dtt*(gE(t)- gE(0))

(d)

2
x[ 5<3)(r),v—] E_lh . (120

m2

At (’)(m“vslAgCD) and higher, only imaginary parts beyond

1/m* are produced.
Consider next the diagram Fig(l8. Since the chromo-
magnetic moment already provides two powers of,16nly

the linear term in the expansion of the exponential contribfrom (E—hg)3=(E—hg)3+ - - -

utes[Figs. 3b) and 3c)]. This gives

1 Tsimfy(*5*tsg)
E—hg 12m*

PHYSICAL REVIEW D67, 034018(2003
i TecE Tlmfg(325S, )
E_hs Nc 3Sm4

o 5(3)(r)
X fo dtt(gB(t)-gB(O))EThs,

(b)

i
E—h,

CETsImf,(*5*1Sy)

35m?*

(c

59)(r)
E—hg’

X f:dtt(gB(t)-gB(O» (121)

Consider next Fig. @). Because of the four’s in the ex-
pression, only the following term in the expansiok (
—ho)3=(E—hg)3+ - - contributes. We obtain

TsIm f,(*°"'Sg)

E—h, — (6ij 01+ ik S,
3 e i 1K oE! (r)
+6iI5jk)f dtt*(gE'(t)[D’,[D*,gE (0)]]>E_h :
0 s
(122
For the symmetric diagram, we have
—i TsImf (*571Sy)
E_h, ot (8ij 61+ Sk I
3R TRi aEk | ()
+5iI5jk)f dtt*([D',[ D', gE*(t)]1gE'(0)) ECn.
0 S
(123

In fact both contributions are the same, adding ugsee
formula (i) above Eq(15) of Ref.[14]]:

i Tglmfy(?S
E_hs 121’14

+1 -
SS)f dtt([D,-gE(1)]
0

5®)(r)
E-hg’

X[D,-gE(0)]) (124

Consider next Fig. ). The only contributions come

in one octet propagator and
1 in the other. We obtaifFig. 5(b)]

5(3)(r)

. t ) _
(3ij Ok ik 6y + By Sj) Jo dtljoldtz[(tl—t2)3+t§](gE'(tl)[DJ,gEk](tz)gE'(O)>ﬁ.

(125

Then consider Fig.@). From here we get several contributions. Because of therfswre need a total of three powers of
(E—h,). When all the powers come from the octet propagator in the middle, we get contributions Erer,(>=(E
—hg)3+(E—hg)(Vs— Vo) (E—hy)+---. The ones from the second term redily. 6)
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i 7 © t t
E_Ihs ﬁ[TF Im fg(*5"Sg) =N Im f1(25+155)]f0 dtlfoldtzjozdts(tz_%)s{ ({9E(t1),-9E(t) HOE(t3),-gE(0)})

4 (r 28
— N (TOE(ty) - gE(t2) ITHgE(ts) - gE(O)]>] h (126

When a power of E—h,) does not come from the octet propagator in the middle, all the powers can be substituted by (
—hy). If we put these contributions together with the first term before(Eg6), we obtain(Fig. 7)

i 1 o ty ty
— T Imf(?ST1S fdtf dtf dtaf (t;—t5)3+13
E_hS 1Zn4 S l( S)[ o 1 0 2 0 3[( 1 3) 2]

o ty t
+f dtlf dtzf dtg[ (t;—15)3+13]
0 0 0

. , 4 , . . .
X{gE'(ts),gE (0)}) — {TOE (t)gE () THGE (ts) gE/(0) ) | +

({9E(ty)-,9E(t,) HOE(t3)-,gE(0)})

4 : :
— N (TL9E(ty) - 9E(t) 1 T gE(ts) - gE(0) ]) [<{9E'(t1),gE'(tz)}

({9E'(t1),gE/(t) HOE (t5) gE'(0)})

@) (r
——<Tf[9E(t )E!(to) ITHgE! (t) gE(O)Dm (h) (127)

Consider next Fig. @&l). Clearly this diagram contains the —j .
iteration of lower-order potentials, which must be isolated £ ;- f dt(ir-gE(t)e ("o~ Blir.gE(0))
This is achieved by adding and subtracting the projection

operator into the gluonic ground state={1—|0)(0|) 1 1
+]0)(0|. The piece (+|0)(0|) contains new contributions “E~h. dt (ir-gE(t")e Mo B r. gE( N e—n
to the potential only, whereas the pig€s(0| contains both hs
the iteration of lower-order potentials and new contributions (129

to the potential. Consider first the piece<{10)(0]). It is
identical to Fig. 4c) by taking V,— Vs in the expression . _
before Eq.(126) and changing the chromoelectric field cor- The exponentials ofE—h,) will be expanded. In order to

relators accordingly. We then haygig. 8) be consistent with the calculation of the lower-order poten-
tials and subtract only their iteration, we must treat the pow-

i 1 o t ty ers of E—h,) at each side of the internal singlet propagator
o 3N lsm f,(2S* 155){ f dtlf dtzf dts[(ty exactly as we did in the calculation of the lower-order poten-
sTe tials. Let us illustrate how it works when we have two pow-

—t) 3+ 3 (T gE(t+) - gE(t5)] T  gE(t2) - gE(O ers of E—h,) on each side. The only contributions occur
3+ LIL(TOE()- 0B(t) T gE(t) - gE(O)D when E—h,)~(E—hy). If we write the propagator in the

—(9E(ty) - gE(t2))(gE(t3)-gE(0))] middle as 1/E—hg)=[1/(E—hg) ][(E—hg)[1/(E—hg)] we
. ty t, can use Eqs(115 and(116) in order to obtain

+f dtlj dtzf dtg[ (t,—tp)3+13]
0 0 0

X([(Tr[QE'(t;)gE!(t)] T gE' (t3)gE!(0)])
—(gE'(t1)gE!(t,))(gE'(t3)gE!(0))] .
+[(TrgE'(t)gE! (t2)] T GE!(ta)gE' (0)]) X[f'hs]E_—hs)ﬁ—hs)

(3)( r)

241[r,h ! + ! he,r]r+ ! h
r r[rl S]E_hs E_hs[ S!r]r E_hs[ Slr]

r2+r[r,h !
r[r S]E h hs

—(9E'(t1)gE/(t2))(gE/(t3)gE'(0))]) . (128 X[hg,r]r+ ﬁ[hs,r][r,hs]ﬁ). (130

Consider next the contribution frof®)(0|. The vacuum in-
sertion leads to an internal singlet propagator. To be specifia)Me can easily identify the contributions that match the fol-
we have lowing terms in Eq.(111):
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z\ 1 (z\" 1 1 1 4i Imfy(3St1sg) T s
(?)E—hs(7) T Eh “E—h,™E—h, (D 57, lm4 hs—SEUo dtt*(gE(t)-gE(0))
* ¢! ! 5(3)(r)
fo dt’t’(gE(t )-gE(0)>> hE

+zx 1h 1+1h 1 [Z,\T
2)E—hg XE—hy E—-hg E—hgl 2/ " X

(131

We also see that, apart from the terms above, there are addi-
tional terms in Eq(130 that may(and dg eventually lead to

new contributions to the potentigione of them with imagi- Combining all the above calculations we obtain the same
nary parts for this exampleFor them we use the same pre- roq it as in Sec. IV A, except for the terms proportional to
scription as stated at the beginning of the section. The co m(251Sy). With the mere replacement

tributions to the imaginary parts come from the following

terms in the expansion onlyi) an (E—h,)* from an octet

propagator and a 1 from the other aifég. 9, first diagran

and (i) an (E—h,)® from an octet propagator and af ( 5(32'0—)332'01
—h,) from the other onéFig. 9, all of then). They read

D. Results

9_Nc m* hs—

7 Imfy(*°TiSg) T
I E o

” 4
[ <gE<t>'gE(0>>) g@em_gzem) (132

5(3)(r)

X JO dt’<9E(t’)'9E(0)>) h—E

where we have defined

21)
g(s )= _

£ ty t 4
(f dtlf dtzf 2dt3[(t1—t3)3+t§] ({9E(ty) -, gE(t) HgE(t3)-,gE(0)}) — N_<9E(t1)'9E(t2)>
0 0 0 c

e ty ta
+f dtlf dtzf dtg[ (t;—tp)3+13]
0 0 0

1
8N,

X(gE(ts)-gE(0)) [<{gE‘(tl>,gEi(t2>}{gE‘(t3),gE"<0)}>

+

4 ) . ) ) ) . ) ) 4 ) )
- N—C<gE'(t1)gEJ(t2)><gE'(t3)gEJ(O)} ({9E'(t1),9E (1)) HOE!(t3),gE'(0)}) — N_C<9E'(t1)gE'(t2)>

) ) © t ) .
X(QEJ(ts)gE'(O»D —i(8j 6t 5ik5jl+5il5jk)fo dtljoldtz[(tl—t2)3+t§]<gE'(t1)[DJ,gEk](tz)gE'(O)>
2

+ f “dte([D- ,gE()][D- gE(0)])+ gs4so+ 95351’ (133
0

and

1 o t t
gomi - ZNZ{ |t ot | "at 6,10+ BI1(TGE () -0 (t) THGE () 0B(0) ) —(E(ty) - 0E(t)

o ty ty ; ; i i
X(QE(ts)'gE(o»]"‘J’o dtljo dtzjo dts[ (t;—t)3+1t3] (<{9E'(t1):gEJ(tz)}{gE'(ts),QEJ(O)}>

J’_

4 . ) ) ) ) ) ) ) 4 ) )
- N—C<gE'(t1)gEJ(t2))<gE'(t3)gEJ(O)> ({9E'(ty),9E (1)) HOE (t5),gE'(0)}) — N—C<gE'(t1)gEJ(t2)>

) ) ® ty ) )
X<gE](t3)gEl(0)>)}_i(éijékl_l' 5ik5j|+5i|5jk)Jo dtljo dty[ (t;—t2)3+t31(gE' (t,)[ D), gEX](t,) gE'(0))

2

+ tht3<[D. ,9E()][D-,gE(0)])+ %5450+ 55351} (1349
0
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the same expressions apply. in either way are related by local field redefinitipnIhe

As mentioned before, the difference is due to the differenimatching between pNRQCDand pNRQCD is done in the
prescription for fixing the wave-function normalization in Agcp/mu, Agcp/m, and mvzlAQCD expansions. The ap-
Sec. llIB. In Appendix E we show that there exists an uni-proaches taken in these two steps are quite different from the
tary transformation such that our results can be taken in thstrict 1/m expansion of Sec. Ill, and the coincidence of the
form of Sec. IVA, and hence they are equivalent for allresults strongly supports their correctness.
purposes.

In fact, it is somewhat surprising that the two calculations VI. RESULTS
lead to identical resultéup to a unitary transformationOn _ ) ) )
general grounds, one could only expect that the result in this In this section we list our expressions fBwave decays
section would be a particular case of the general results ofP to O(c(ag(m))mv®x (Adc/m? E/m)) and for P-wave
Sec. Ill. In fact the real parts of the potentialshimre indeed  decays up ta?(c(ag(m))mv®). The P-wave decay widths
particular cases of the potentials[ib5]. However, since we were first obtained ifi16] and are given here for complete-
did not need their specific form at any stage we have not lostess. TheSwave decay widths are new. In order to help the
generality in our final expressions. More surprising is thereader and for further convenience, we will start by recalling,
fact that the matching coefficients of the terms in the multi-at the same level of accuracy, the expressions for the decay
pole expansion in pPNRQCD(105 were only calculated at widths as they are known from pNRQCD. In the following
tree level here, whereas the expressions in Sec. lll correwe define the radial part of the vect&wave function as
spond to an all-loop result. This indicates that there must b, ,,= RxozRg%)[lJrO(v)] and the radial part of the pseu-
a symmetry _protecting these terms against higher-loop ColdoscalarSwave function asR,go= REO: Rg%)[lJr O@)].
eclons, ach maor 1 10 e an extenson of 6 The quaniy R’ 1 the dervate of the eading order

P-wave function. The symbol¥ and P stand for the vector

8
[3O|]ﬁ summary, we have presented in this section an alternaa}nd pseudoscal@wave heavy quarkonium and the symbol
. S . x for the generid®>-wave quarkoniunfthe stateg/(n10) and
tive derivation of Eqs(141)—(146), which does not rely so (nJ1) are usually callech((n—1)P) and y,((n—1)P)
heavily on the Ith expansion. The matching from NRQCD ?(es ectively y X9 '
to pNRQCD, which can be done perturbatively i, can P '
indeed be implemented in theni/expansion, as originally . :
proposed 4], but it can also be done entirely in the frame- A. Decay widths in NRQCD

work of the threshold expansidi31,13, where the kinetic Including up to the NRQCD four-fermion operators of
term is kept in the denominator for potential loop contribu-dimension 8, the inclusive decays of heavy quarkonia are
tions and the on-shell condition is uséte results obtained given by

2
F(Vo(nS—LH)= e Im £1(3S;)(Va(n9)]01(3S))|Vo(nS)) +Im fg(3S)(Vo(nS)|0g(3S1) [Vo(nS)) +Im f4(1S;)

(Vo(n9)|P1(3S))|Vo(nS))
2

X(Vo(n9)|0g(*Sp)|Vo(nS)) +1m g (3S,)

m
3 3
im f8(3po)<VQ(nS)|085n50)|VQ(nS)> I f8(3P1)<VQ(nS)|08£n51)|VQ(nS)>
3
+|mfg(3P2)<VQ(nS)|OS;ZPZNVQ(”S))), 135

2
['(Po(nS—LH)=-7| Im f1(*S)(Po(n9)[01(*Sp)[P(nS)) +1m f5(*So)(Po(nS)[Og(*S)[Po(nS)) +Im fg(°Sy)

(Po(nS)|P1(*Sy)|Po(nS))
m2

X(Pqo(nS)|0g(3Sy)|Po(nS)) +Im g, (1Sy)

)<PQ(nS)|O8(lP1)| Pa(n9))
1

+Imfg(*P — , (136)

8For the leading order term, the nonrenormalization was verified at one lodjin
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2 nJ9|0,(>" P nJ
[(xo(nIS—LH)= (lmn(ZS“P xenI9[0i g VXl S>+f8<25+1ss><xQ<nJS>|og<1so>|xq<nm>)-
(137
At the same order the electromagnetic decays are given by
2 Vo(NS)|Pem(3S1)|[Vo(nS)
I'(Vg(nS)—e'e” )=z lmfee(381)<VQ(nS)IOe.m.(351)|Vq(nS)>+Imgee(381)< o(nS) 'n:Z ) Vo(n9) :
(138
2 Po(NS)| Pem(1Sy)|Po(nS
I(Po(nS)—yy)= 12 lm1‘w(150)(F’Q(nS)IOe.m.(lso)lF’Q(nS)>+lmgw(lso)< o3| .n:280| on3) ,
(139
I(x(NI1)—yy)=21Im f (3P <XQ(nJ1)|Oem(APJ)|XQ(nJ1)> for J=0,2. (140

m

B. Decay widths in pNRQCD

Up to O(c(ag(m))mu3x (A cy/m?,E/m)) for the Swave andO(c(ag(m))mu®) for the P wave, the inclusive decays of
heavy quarkonia are given in pPNRQCD by

EQ 2¢, 25<32¢>+c361
m 9 3y 3m

Ca [RW(0) 2(Cpl2—Cp)EP

2

['(Vo(nS)—LH)=

—Imfg(3S))

Im f,(3S
z 1( 1)( am
(Cal2—Cy)C2B g©@
e T imgy sy 2 - 2
3m m

—Imfg(1Sy) —[Imfg(3Py)+3 Imfg(3Py)

(Cal2—Cy)é&y

+5Imfy(*Py)l——5— : (141)
Ca [R(0)]? EQ 253 25<20 céB L. 2(Cpl2=CpEY)
I'(Po(n§—LH)=— T f1(*So) 5 am + 7| T Im sl SO)T
(Cal2— Cf) 81 EW (Cal2—Cy)E
—Im fg(38)—————+Img;(*Sy) ——12 ~Imfg(*P 1>A—2—1 (142)
Ca RO 2 2T¢
T (xo(nI9—LH)= A% Imf1(25+1PJ)+flmf (25“33)53}. (143
At the same order the electromagnetic decays are given by
CA| 0)[? 3 EQ 265 288%™ ciB E(%) &
I'(Vo(n§—e'e)= T Im fe(°Sy) —— —+ - + 3’ +Imged3S;) /|
(144
CoRWOP| o ER2 2efo™ o) L EQ g
I'(Po(nS)—yy)=— —2 Mty (1So)| 1= S0 g+ o+ | +Imgy,(So| T 1| (49
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Ca IR (0 >|2

I'(xq(nJl)—yy)=3— T 2 (°P)

for J=0,2. (146)

C. NRQCD matrix elements

PHYSICAL REVIEW D67, 034018 (2003

(Vo(n9)|0g(3S))|V(n9))
=(Po(nS)|0g(*Sp)|Po(nS))

1
By comparing the decay widths in NRQCD and pNRQCD<VQ(nS)|08( So)IVe(n9)

we obtain the followingdictionary between the matrix ele-

ments of NRQCD and the nonperturbative constants of pN- = 3

RQCD, valid up to (once normalized tom) O(v?
x(AZCD/m ,E/m)) for the Swave matrix elements and up
to O(v5) for the P-wave matrix elements:

<VQ(nS)|Ol(3sl)|VQ(nS)>

IRY,(0)]? EQD2g, 2629 2B,
T T2r (T m 9 e )
(147
(Po(nS)|04('Sp)|Pg(nS))
e |RR,(0)2 EQ 2e, 263Y 2B,
A 2r m 9 3y m |
(148
<VQ(nS)|Oe.m.(331)|VQ(nS)>
e IRY,(0)]? . EQ 2g, 2£pem) 2B,
A 21 m 9 3m2 3m2 !
(149
(Po(n9)[0e m(*So)[Po(nS))
e |RR,(0)2 . EQ 2&; zggz‘e-m-: c2B;
A 2n m 9 ' 3m2 |
(150
(xo(NIY|01(*5*Py)| xo(nIS)
=(xo(nNIS|Oe m(*>"*P;)|xo(nI9)
3Ca v
=5 IRV 00 (15

(Vo(n)|P1(3S1)|Vo(n9) =(Po(nS)| P1(1Sy)|Po(nS))
= <VQ(nS)|Pe.m.(asl)|VQ(nS)>
=(Po(NS)|Pem(*So)|Po(n9))

IR <°>< >|2

—Cp—5——(MEQ—-&y),

(152)

IR®0)[2[ 2(Cal2—CpEP
A 0277' B A3m2f : ! (153)
_<PQ nS)|08(3sl)|PQ (nS))
RO)(0)|2 Cal2—C¢)C2B
A| n0257)| (_( A 3m;)CF 1), (154
<VQ(nS)|08(3PJ)|VQ(nS)>
_<PQ(nS)|OB(1P1)|PQ(nS)>
B 3
RO)(0)2 _
_23+1c, R 2;” ( (CA/ZQCf)gl), (155
|R(0) (0)|2
(xo(nJ9|0g(*Sy) |Xq(n\]3>— 753- (156)

Any other Swave dimension 6 matrix element is O at next-
to-next-to-leading orde(NNLO) and any otheiSwave di-
mension 8 matrix element is 0 at LO.

Equation(152) is worth emphasizing. It is of theinglet
type but, because of the term proportionalso its leading
contribution is not only proportional to what one would ex-
pect from a pure singlet potential model. In RE32] the
authors have also elaborated on Eh2). Within the context
of NRQCD [1], they use the leading equations of motfon,
the power-counting rules dfl,25] and some arguments to
neglect some masslike terms, which could be generated un-
der regularization. They get

| (0) |
<VQ(nS)|P1(351)|VQ(nS)>Ref‘[32]=CATm (%)'
(157)
| (0) |
<PQ(nS)|Pl(lSO)|PQ(nS)>Ref.[32]:CAT mEQ),
(158

where the term proportional 6, is missing. Nevertheless,
this does not necessarily reflect any inconsistency in any of
the derivations since, according to thHperturbativelike
power-counting rules dfl,25], the term due t&; would be
subleading. In any case, it would be very interesting to see
how a term proportional t6; would appear in the derivation

of Ref.[32]. Here, we would only like to point out the pos-
sibility that an&; /m term may show up as a correction to the

We have also used the equations of motion in order to derive Eq.
(103). Nevertheless, we have done so in the context of pPNRQCD.

034018-26



INCLUSIVE DECAYS OF HEAVY QUARKONIUM TO .. .. PHYSICAL REVIEW D67, 034018 (2003

neglected masslike term in R¢82]. Finally, let us note that d ) d 29) d 2

in the dynamical situatiormv~Aqcp, where €1~AéCD Vags :Vags’ :Vags' =0, (164
~m?v?~mEY, both terms on the right-hand side of Eq.

(152 are of the same order and contribute to the decay widtlEquations (147)—(150) are compatible with the evolution
at orderc(agm))mv®. Phenomenologically this is particu- equations(158)—(161) at leading-log accuracy. Note that at
larly relevant to the case of pseudoscalar decays into lighthis order there is n@ dependence in the states, and hence
hadrons and to the electromagnetic decays. In the case @fe derivatives with respect to can be taken out of the
vector decays into light hadrons the contribution comingexpectation values. In Ref16] it was proved that E¢162)
from the operato(Vo(nS)|P1(3S;)|Vo(nS)) may not be so  gives the correct running for the octet operator of Bi6).
important since the matching coefficient &y(3S;) In Appendix C, the reader can find the evolution equations
~ ag(m)? is suppressed by a factag(m) with respect to the and their leading order solutions for the imaginary parts of
others[with the exception of Ini;(3S;) and Imfg(3P,), all the four-fermion matching coefficients needed in this
which are also of ordew(m)3). work.

D. Evolution equations VIl. MODEL-INDEPENDENT PREDICTIONS

In [1] evolution equations for the four-fermion operators
were obtained. If we focus on the states that we are studying,
in this paper, the following evolution equations for the
NRQCD matrix elements are obtained:

The inclusive decays of the heavy quarkoniyaither
dronic or electromagneji@are usually considered up to,
and including, NRQCD matrix elements of four-fermion op-
erators of dimension 8. This means to consider the
d O(1/m?,1/m*) local four-fermion operators of the NRQCD
(VQ(nS)|( vd—01(381)) [Vo(nS)) Lagrangian. With this accuracy, the decay into light hadrons
v of a vectorSwave state is described in NRQCD by the ma-
trix elements of two singlet operatof®,(3S;) andP;] and

_ 8as 3 three octet operatof®g(3S;), Og(1Sy), andOg(P)]. The
3Wm2[<VQ(nS)|08( PO)WQ(nS)) corresponding pseudoscalawave state decay needs, at the

3 same level of accuracy, the additional knowledge of the ma-
+(Vq(n9)|0g(°P1)[Vo(nS)) trix element of the singlet operatd®;('S,). The electro-

3 magnetic decays of the san®states need the additional
+(Vo(n9)|0g(°P,)[Vq(nS)) knowledge of the matrix elements of the singlet electromag-
—C(Vo(n9|P1(3Sy)[Va(nS)H], (159  netic operator©, (3S;) and O, m(1Sy), respectively. The

decay of aP-wave quarkonium state into light hadrons and
d 1 the corresponding electromagnetic decay are described in
(Po(n9)| Vaol( So) ||Po(nS)) NRQCD with the above accuracy by the matrix element of a
singlet[O,(P)] and an octefOg(1S,) ] operator. If we con-
8as sider that in the bottomonium system in principle $4and
= 2[(P(-L)(nS)|08(1P1)| Pao(nS)) P-wave states lie below threshdld' (nS) and 7,(nS) with
3mm n=1,2,3; hy(nP) and y,;(nP) with n=1,2 andJ=0,1,2]
—Cf(PQ(nS)|P1(1SO)| Po(nS)], (160 and that in the charmonium system this is the case for eight

states [#(nS) and 7(nS with n=1,2; h,(1P) and
d Xci(1P) with J=0,1,2], all the bottomonium and charmo-
<VQ(nS)|( Vaoe.m.(3sl)> [Vo(nS)) nium S- andP-wave decays into light hadrons and into pho-
tons ore*e™ are described in NRQCD up 6(1/m*) by 46
8C. unknown NRQCD matrix elementgl0 for the Swave de-
=t ;(Vq(n3)|7’e_m_(331)|Vq(nS)>. cays and six for th&-wave dgcay); These matrix elements
37m have to be fixed either by lattice simulatidr&3] or by fitting
(161)  the datd34]. Only in the specific case of matrix elements of
q singlet operators does NRQCD allow an interpretation in
_ 1 terms of quarkonium wave functions and one can resort to
<PQ(nS)|( vy Oeml SO)) Po(nS) potential models.
At the same level of accuracg- and P-wave bottomo-
N nium and charmonium decays are described in pNRQCD,
(Po(N9)|Pem(*So)[Po(n9)). under the dynamical assumptiohgcp>mov?, by only 19
(162 nonperturbative parameters. These are the 13 wave functions
(one for each of the teiswave quarkonium states below
Since we have, ab(ag) and leading-log accuracy, threshold, for which we need to distinguish different spin
states, and a total number of three for tavave quarko-
nium statep and six universal nonperturbative parameters,
which do not depend on the flavor and on the stétg €5,

Cias

37m?

d ag
v553=12cf?, (163
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By, €2, €29 andg@em). if all the ten bottomonium and charmoniuBwave states

In the above discussion we have counted NRQCD matripelow threshold belonged to the dynamical regihgcp
elements by their dimensionality only. A more refined discus=Mmv?, then, in the framework of pNRQCD, the ratios of
sion would require that a maybe less conservative powefadronic and electromagnetic decay widths would be de-
counting be assigned to the NRQCD matrix elements as wefcribed by the six nonperturbative universal parameters listed
as that theaym) suppression due to the short-distanceabove only.

NRQCD matching coefficients be taken into account. As we _In pNRQCD, the expression for the ratios betwégnand
have already mentioned throughout the paper, the poweR,F: with different principal quantum number is particularly
counting of the NRQCD matrix elements is an open issue. Teimple. We obtain up to order? (with the countingA gcp
consider all the possibilities and phenomenological conse~my) (M(nS)—2m=EQ[1+O(v)], M(nS) being the
quences goes beyond the scope of the present paper, whaseson mags

aim is to set the theoretical framework. However, we would

like to mention a few things. In the standard NRQCD power RY ( Img;(3S;)  Imged3Sy) | M(nS)—M(mS)
counting [25], the octet matrix elements ar@(v?*) sup- — =1+ — ,
pressed foiSwave decays if compared with the leading or- Rm IMmf,3S))  Imfed3S)) m

der. This is not so within our framework where, assuming the (167)
countingA gcp~mo, they would only be?(v?) suppressed.

This is potentially relevant t' (V— LH) since Imf,(3S,) is Rrﬁ’ ( Img;('Sy) Im gw(lso) M(nS)—M(mS
O(ag(m)) suppressed with respect to fg(S). In other — =1+ - )
words, the octet matrix element effects could potentially be Rm Imfi(*Sy) Imf,(*Sp) m

much more important than usually thought for these decays. (168

It would be interesting to analyze this possibility further. ) o

The dramatic reduction in the number of parameterét is to _be stressed that the octet-type cont_rlbutlons cancel
makes it possible, in the framework of pNRQCD, to formu- [Othérwise they would be &4(m) enhanced in the vector
late several new predictions with respect to NRQCD. In par£asé. This prediction should be compared with the one ex-
ticular, it is possible to relate information gained from decayPected in NRQCD. Within the standargerturbativelike
widths of quarkonium with a specific flavor and principal POWer counting, the same predlgnon is obtained in NRQCD.
quantum number to decay widths of quarkonium with differ-However, if one countst(m)~v* as was done i32], the
ent flavor and/or principal quantum number. Following thiscontribution due to the octet m_atnx elements is pf the same
strategy in[16] the nonperturbative parametés has been ©Order as the corrections obtained above and it should be
fixed from the charmoniunP-wave decay data and used to taken into account in the vector case. Therefore, in principle,
predict ratios ofP-wave decay widths for the bottomonium ©n€ is able to check the theory and/or the power counting. As
system(in this case and at leading order there is no ambigu@n example, takingn,=5 GeV we get for the\\([(ZYS) and
ity in the relative size between the singlet and the octet conY (3S) states of the bottomonium systeiR;/R;=1.3,
tributions. Here we will concentrate on some exact model-which is close(within 10% accuracyto the experimental
independent relations valid f@&wave decays. central value of about 1.4 that one can get fri88]. Let us

Let us consider the ratios of hadronic and electromagnetiglso  notice  that,  since Iy (*So)/Im f1(*Sp)
decay widths for states with the same principal quantunImg,.(*Sp)/Im f..(1Sp) = O(ag(m)), up to corrections of

number: orderv® we find thatRY , i.e., the ratio between hadronic and
electromagnetic decay widths for pseudoscalar quarkonium,
v_ I'(Vo(nS—LH) 16 is the same for all radial excitations. However, it is not the
" T(Vo(nS—e'e )’ (169 purpose of this work to carry out a comprehensive and de-
tailed phenomenological analysis, which is left to a subse-
L T(Pg(NS—LH) quent publication.

= . (166)
F(Po(nS—=7v7) VIll. CONCLUSIONS
Ten of these ratios exist, ten being the number of bottomo- We have obtained the imaginary part of the pNRQCD
nium and charmonium states below threshold. As we disHamiltonian up to®(1/m?*) in the nonperturbative regime
cussed above, in NRQCD, and if one includes all the(k=Aocp>mu?). The expressions are given in Eq87)—
NRQCD operators up t@(1/m*), these ten ratios are de- (89). As for any guantum-mechanical Hamiltonian, the pN-
scribed by 40 nonperturbative parameters. It is a specifiRQCD Hamiltonian is also defined up to a unitary transfor-
prediction of pNRQCD that, for the states for which the as-mation. An alternative expression, related to the previous one
sumptionA gep> mv? holds, the wave-function dependence by a unitary transformation, can be found in Sec. V D.
drops out from the right-hand side of Eq464) and (165). We have applied our results to calculate the inclusive de-
The residual flavor dependence is encoded in the powers @y widths to light hadrons, photons and leptons up to
1/m, in Eﬁ%), and in the Wilson coefficients, while the re- O(c(as(m))mv3><(AécD/mZ,E/m)) for Swave heavy
sidual dependence on the principal quantum number is erguarkonium and up t@(c(agm))mv®) for P-wave heavy
coded in the leading order binding ener@%’. In principle,  quarkonium. These are given in Eq$41)—(146) and are the
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main result of the paper. An alternative way to present it iselements given in Eq$147)—(150) with the aforementioned
given in Sec. VIC, where all the NRQCD matrix elementsaccuracy, any potential model to be used here must be con-
entering in quarkonium decays up to this order are expresse@istent with the structure of the potential derived from
in terms of the quarkonium wave functions at the origin andNRQCD in terms of Wilson loops in Ref$14,15. In fact,

six nonperturbative gluonic correlators, which are flavor andhe wave functions defined in this paper can also be com-
state independent, and for this reason may be called univePUt€d in a model-independent way without resorting to data
sal. The wave-function dependence factorizes in all thes8tting. This is so because our wave functions correspond to

expressions. It is particularly remarkable that this is also truéhe spluthn of a Schinger gquatlon where.the potentla[s
for the octet matrix elements. are given in terms of expectation values of Wilson loops with

We derived our expressions in two different ways: in SeC.swtable field insertions. Therefore, once lattice simulations

. . are provided for the potential88], the wave function can be
Il under the general assumptlanQCDsk and n Sec. V' yhtained unambiguously without any model dependence.
under the particular assumptide® A qcp. In the first case,

X ) _ Since our method reduces the number of unknown param-
we matched NRQCD directly to pNRQCD in an entirely gierg with respect to NRQCD, we expect it to become in-

nonperturbative one-step procedure, based on the Hamilyeasingly relevant as the number of needed NRQCD matrix
tonian formulation of NRQCD. In the second case, Weelements increases. This seems to be necessary in the calcu-
matched NRQCD to pNRQCD in a two-step procedure, th@ation of charmonium decay widths, where the nonrelativistic
first perturbative, the second nonperturbative, but still with dexpansion converges slowly. Indeed, higher-order operators
clear diagrammatic interpretation based on the multipole exhave been considered recently in R¢89,40. In Appendix
pansion. The fact that these two completely different ways oB, we give the general matching formula for the NRQCD
deriving the pNRQCD Hamiltonian give the same answer ugmatrix elements to the pNRQCD results without going
to a unitary transformation can be considered a stringent teshrough the whole matching procedure outlined in the main
on the correctness of the result. In Sec. VI D we also checketody of the paper.
that the evolution equations of our universal parameters are We also addressed, mainly in Sec. IV B, the issue of the
consistent at leading-log accuracy with the known evolutiompower counting in NRQCD in the nonperturbative case. We
equations of the NRQCD matrix elements. believe that our formalism provides a suitable theoretical
In Sec. VII we considered the phenomenological implica-framework to study it. The power counting of NRQCD is not
tions of our results. There exist 14 charmonium and bottoknowna priori in the nonperturbative regime and it could, in
monium states below threshold. We expect our results to bprinciple, be different, depending on each dynamical system.
applicable to most of these states. The exceptions are, on théis is particularly transparent in pPNRQCD. There, the po-
one hand, the¥'(1S), which is commonly understood as a tentials are functions af and Aqcp. Therefore, as the typi-
weak-coupling statéi.e., k>E=Aqcp), and, on the other cal value ofr changes from system to system, one should
hand, states that are too close to B threshold for char- ~accordingly assign a different size to each given potential.
monium or to theB-B threshold for bottomonium, like, Moreover, having expressed the NRQCD matrix elements in

maybe, they(2S). Going from NRQCD to pNRQCD re- terms of wave functions and universal correlators, we disen-
duces the number of nonperturbative parameters needed @ngled tr;e SOf:] scale, now entering in the Wavef functr:(_)n
calculate the inclusive decay widths associated with theséq”ar:ed rom thé ocp/m andE/m (;O”eCt'O”_S- In fact, this
states by about a factor of 2. The situation is even better iTShW y r\1Nde< o(l:an cgnstru%t ratios o _ch_onvenlent decay r_ate;
we consider ratios of hadronic and electromagnetic decayf"€'e the dependence drops, providing a more constraine

widths. Since the wave-function dependence factorizes, i et of relations. For these ratigs the fixing of the power
drops out in the ratios. It follows that only six universal counting reduces to the evaluation of the correlators, while

parameters, which depend only on the light degrees of fred@King into accqunt possiple enhancement effects due to the
dom of QCD, are needed. The already known data will bd VRQCD matching coefficients. .
sufficient to fix all these parameters, to allow checks and to  Finally, although in the present paper we focused on in-
make new predictions. Moreover, suitable combinations of'USive decays to light hadrons, there should be no concep-
ratios give rise to novel parameter-free, model-independe al problem,a priori, In considering thg NRQCD matrix
predictions. We considered some of them in Sec. VII. elements that appear in heavy quarkonium production. We
The nonperturbative universal parameters that we hav8!SC €xpect there a significant reduction in the number of
introduced do not necessarily need to be fitted to the experfiOnPerturbative parameters. In particular, our formalism may
mental data. We provided expressions for them in terms ofhed some light on th_e power-counting problems that appear
correlators of gluonic fields. This allows for an eventualn the heavy quarkonium polarization d4@s].
evaluation on the lattice. These parameters may also be ob-
tained from QCD vacuum mode|86]. We note that, once
they become fixed, our results make the evaluation of D.E., A.P., and J.S. are supported by MCyT and Feder
NRQCD octet matrix elements possible from properties of(Spain, FPA2001-3598, and by CIRIT (Catalonia,
the wave functions at the origin. Hence, any potential modeP001SGR-00065. They thank the Benasque Center of Sci-
that leads to definite wave functiofi87] will provide defi-  ence for hospitality while this work was being written up.
nite results for these matrix elements. Nevertheless, it should.V. is supported by the European Community through the
be pointed out that, if we wish to obtain the NRQCD matrix Marie-Curie Contract No. HPMF-CT-2000-00733.
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APPENDIX A: FOUR-FERMION OPERATORS

Here we list the relevant four-fermion operators of dimen-

sion 6 and 8, as taken from Ré¢f],

01(*So)=o"x x", (A1)
0,(°S)=¢'ox-x" o, (A2)
Og(*So) = ' Toxx T2y, (A3)
05(°Sy) =y aTox- xT0 Ty, (A4)
ol<1P1)=w*( —%B)x-x*( —%B)w, (AS)

o -8 L5

2

Y+H.Cl, (A9)

1 o
Pi(1Sp) = z[ l/fTXXT( - ED

1] P2
P8 = 5 szaX.X*a( - ED) P+ H.c.},
) (A10)

il . N AT
7)1(331,3D1)=E wTU'XXTa'J(—E) D<'DJ>¢+H.C},
) (A11)

Og(*Py) = w*( - %B)TaX‘XT( - %B) T3y,
(A12)

1 i o o
Og(®Py) = §¢T< - ED' 0’) TaXXT( - ED' 0’) T2y,
(A13)

i
TaX-X*< — —Dx 0') T3y,

3 1.0 iq
Og("P1)=5¢'| —5DX o 5
(Al4)

2

PR PR
Og(*P2) = w*( -5D <'cr'>)Taxx*( -5D <'ol>)Taw,
(A15)

1 i) 2
Py(*Sy) = E[ t//TTaXXT( — §D> T2+ H.C},
(A16)

PHYSICAL REVIEW D67, 034018 (2003

1| io)?
Pe(’S1) = 5| ¥ 0T x"o| —5D| Ty+H.c.,
) (A17)

i . N AV
Pe(*S;,°Dy)= 5 lﬂTG'TaXXT(TJ(—E) D(DIT2Y

+H.cl, (A18)

where we use the conventional notati®fl)=(T'+T!")/2
—Tkk§'1/3. The electromagnetic operators are defined as fol-
lows:

Oe.m(*So) = ¢ x|vag(vadx'y, (A19)
Oem(*Sy) = ¢ ox|vag(vad x oy, (A20)
i o io
Oem(*Py)= 'pT( - ED x|vag- (VadXT - §D> v,
(A21)
1 i o io
Oem(®Po)= 5‘//T( - zD' o X|VaC><VadXT< - ED' 0') b,
(A22)
1 [ = i <
Oem(®Py)= Ew*( - I§D>< o) x|vag - (vadx'| — I§D>< oy,
(A23)
Oem(*P2)= 1,0*( - IEB (gd | y|vad(vad x| — IEB (‘aj)) o,
(A24)
1 r .
Pem(*So)= > t/ﬁxlvacxva% X' - '§D2> b+ H.c},
' (A25)
1 r .
Pem(*S1)=3 tb*ﬂXlVﬁC)(va% XTa( - IEDZ Y+ H.c},
' (A26)

1 , ‘ i\ 2
Pe.m.(ssb 3D1) = E{ lﬁTO'IX|V3C><VadXT0']( — IE)

xD DD y+H.c.|, (A27)

where|vag is the vacuum state of QCD.

APPENDIX B: DIRECT MATCHING TO pNRQCD
OF NRQCD MATRIX ELEMENTS

In principle, it is possible to match directly to pPNRQCD
matrix elements of NRQCD that involve operators different
from the HamiltonianH. In this way NRQCD matrix ele-
ments can be expressed in terms of nonlocal correlators with-
out going through the full matching procedure outlined in the
main body of the paper. This is useful if no iteration of these
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NRQCD operators is necessary in the matching calculatiorwhere r=x;—X,, r’'=x;—x;, R=(X;+x,)/2, and
In order to do this it is necessary to have an explicit expresg: = (x,+x1)/2 (note that(R'|P=0)=1 and(P=0|P=0)
sion for the stat¢0;X;,%,). Up to O(1/m) it can be found in =[d3x). As an example, let us consider here the NRQCD
Eq. (36). This way of proceeding will be particularly useful .\ o+iv element
in order to work out higher-order operators that will appear
in going beyondO(mv®) in the expansion of the heavy
quarkonium decay width. Higher-order operators appear to (Xo(N0D)| Fo m(®Po) | xo(NOL)) (B2)
be necessary for charmonium decays, where the nonrelativ-
istic expansion converges slowly, assumi_@vo.&

The master equation, wher¢d) represents a generic
heavy quarkonium state at re§t=0, with quantum num-
bersn, j, I, ands as defined in Refl1], is

of the dimension 9 operator

1
1 Fom(3Po)= gl/lTO"gEX|VaC><VadXT0" Dy+H.c.,
<H|O|H>:mf dsl’f d3r’f d°R (B3)

(0;%1%) which is relevant to describing the electromagnetic decay
- Xco— vy at ordermv’ accuracy. Owing to spin symmetry,
the same matrix element enters into thg,— vy decay.
(R'|P=0)(r"|njls), These contributions have recently been consider¢@dh In
the Hamiltonian formalism of Sec. Ill the matrix element
(B1) (B2) is written as

X f d®R’(P=0|R){njls|r)

x [ weosloxxp

1
<XQ(nOl)|]-"e_m_(3P0)|XQ(n01)>=m2f d3rf d3r'f d3Rf d®R’(P=0|R)(n011r)

Yo gEx|vag(vadx'o- Dy

| [ a0 ? ; (810:x0x) ('[n01(R[P=0), (B4)

where|n011) is the Schrdinger wave function of the statey(n01). Now we expand the sta(@;x1x2| according to Sec.
[11 C. The first nonvanishing contribution comes from thenldorrection given in Eq(36). Inserting that expression into Eq.
(B4) and keeping in mind that only the term with the derivative projects ontgrtd&1) state, we obtain

1 1
<XQ(n01)|fe,m_(3P0)|XQ(n01)>=m2J d3rf d3r’f d3Rf d3R’(P=O|R>E<n01Jlr>

V- O(0lgEL k) @+ V- 40| gEL|K)®

x ©O)(k; x,x
kzé:o (Ego)—E(ko))Z <_ 1%
y'o-gEx|vag(vadx' oDy o ,
dea‘f 5 (8)0:x;x3)r'[n011)(R'|P=0)

2 ©)(0|gE*’ |k)(©® O)k|gE!|vac(vad0)©® ,
< |g | > < |g | >< d > <n011l0'(V€ 5(3)(r)0'-V|n01]>.

(B5)
|
In the second equality we have made use of (88 and of  or equivalently, using Eq.152),
the Wick theorem. Finally, from the fact tha®)(r)|0)©
=604)(r)1./N|vag and from Eq.(73) we get (x@(N0D)| Fe m(*Po) [ xq(n0D) 28 (B7)

= =

IR (0)2 M(xo(N01)|O¢ m(®Po)| xo(nO1)) 3m
3 —_c,nm

{Xo(nODI Fem(*Po)l xo(nOL) Ca T m’ Similar considerations may in principle also be applied to the

(B6) matrix elements needed at relative or@érfor Swave de-
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cays. For a complete set of these operators and for consider- (¢ Cp\ as
ations concerning their relevance in phenomenological stud-v g Im fg(3Pg)=— 3 Zim f1(3Sy) - _(4Cf 35 ) -
ies, see Refl40].

xImfg(3S)), (C19

APPENDIX C: RUNNING EQUATIONS

OF THE MATCHING COEFFICIENTS and 0 otherwise.

The imaginary pieces of the dimension 6 operator match-
The running equations obtained in Appendix B.3 of Ref.ing coefficients[ f(S)] do not run at leading nonvanishing
[1] for the NRQCD four-fermion operators give us informa- order:
tion on the running of their matching coefficients. The run-

ning equations read as follows: v%lm f(S)=0. (C15
d 8 «a . . .
] 15)==Ci—Imf,(1Sy), (o) Therefore, the above equations can be easily solved in that
" dv e 3w 1°S) (Cy case. We obtain at leading nonvanishing order
d 3 8. as 3 16
Yay MaS)= 3G Im S, €2 ImgS)(1) = gy(*So)(m) = 55-Cm f(Sp)(m)
d 8 g ayv)
Va|mge_m_(lso)=§Cf;|mfe_m_(lso), (C3) X1n agm)|’ (C19
d 3 8 o« 3 16
Yy M OemS) =3 CrIm fen(®Sy), ©4 mgS)(r)=ImaySy(m) = 55-C
d 4 C s agv)
v Im gg(lso)=§(2cf— ?A) %Imfg(lso), (C5) X1Im f1(3Sy)(m)In m} (C17)
9 mgaCss —f(zc —%)a—ﬂ fo(3S (C6) d d 10
de m ga( 1)_3 LR e m fg(°Sy), IMgem.("Sp)(v)=IMge m ( SO)(m)_3,8
a(v)
V%mfl(lpl):gcf(cf—%)%ﬂmfg( So), (C7) XIm fe m (*So) (M)In a(m)}, (C19
3 1 _
%lmfl(spz):gcf(cf_% Smtycsy, (g MIem (S =IMGen((So)m B
a(v)
d 8 Ca| as XImfg m (3S;)(m)In _a(m)} ) (C19
Vam’lfl( P,) §(:f(cf—T)?lmfg(Ssl), (C9
1 B 1 8 Ca
q g Cal o Im g5(*So) (») =1m gy((*So) (M)~ 75| 2C;~
vy, Im f,3Pg) = §Cf( Ci— 7) —Im f5(3S),  (C10 w
><|mf8(1so)(m)|n[ i } (C20
d 1 8 ag 1 4 Cal as a's(m)
V$|mf8( P1)=—§?Imf1( SO)—§<4C]<—37); . .
XIm fo(*Sp), €1 Imgs(°S)(»)=Imgs(°S)(m) — 7 (2cf >
d 5 8 a 4 Ca\ a@s 3 ag(v)
v Imfa( P2)=—§—Imf1( S1)-3|4Ci—3— | — X 1m fg(3S;)(m)In ) | (C21)
xImfg(3S)), (C12
1 B N 16 Ca
d 8 4 Ca @ Imf1(*Py)(v)=Im fy( Pl)(m)_?)ﬂ Ct| Ct— >
vd—lmf8(3P1)=———Imf1( S)— = (4(:f 3= )—5
v ° 2 ayv)
X 1m fg(3S,), (C13 XIm fs(lso)(m)ln[ ad m)}, (C22
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Im f1(°P;) (v) =

Im f4(

Im f1(°Po) ()=

Im fg(

Im fg(

Im fg(

Im fg(°Po)(v) =

where we have chosan as the starting point of the evolu-

*Py)(v)=

Py)(v)=

*Po) ()=

*Py) ()=

3 16 Ca
Im f1(°P2)(m) — z— 35, Cf(cf > )
3 a’s(V)
X Im fg( Sl)(m)ln[m}, (C23
5 16 CA
Im f4( Pl)(m)_3lg Ci| Ci— >
3 ay(v)
X 1m fg(3S;)(m)lIn m} (C29
16 C
Im f1(3Pg) (M) — 5~ 380 Cf(cf 2A>
; [ ayv >}
X 1m fg(3S;)(m)ln (C29

agm)

Im fg(*P1)(m)+| 2 Im f4(*Sp)(m)

+ 4Cf—3%)lmf8(180)(m)}

8 I
= 1In
3Bo

ayv)

. agm)|

(C26)

Im f5(3P,)(m)+| 2 Imf,(3S;)(m)

+ 4cf—3%)|mf8(3sl)(m)}

8 I
= In
3Bo

ayv)

. agm)|

(C27

Im fg(3P;)(m)+| 2 Imf,(3S;)(m)

+ 4cf—3%)|mf8(3sl)(m)}

8
55In
3Bo

ayv)

. agm)|’

(C29

Im f5(3Po)(m)+| 2 Imf,(3S;)(m)

+ 4cf—3%)|mf8(3sl)(m)}

8
55In
3Bo

ayv)

. agm)|’

(C29

tion equation; the matching conditions at this scalé)(adyg)
can be read from Ref1].
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APPENDIX D: REGULARIZING PRODUCTS
OF DISTRIBUTIONS

In the intermediate steps of the calculation we find ill-
defined products of distributions. We first show how dimen-
sional regularizatiorfDR) makes sense out of these expres-
sions by setting them to zero, and next how they amount to
renormalizations of local terms when a cutoff regularization
is used instead.

Consider, first, the product of two delta functions:

521501 = [ ¢ [ 0" | @®pln)(plon)Ip)
X(p'[8(0)p")p"|
=f def de’f d®p"p)(p’]
=0, (D1)

since the integral ovep’ has no scale.
Consider next

1
591 == [ oPp [ dp [ prlp)pl )|

1
x(P'| slp" Pl

JdeJ dD /dep/r|p>

=0, (D2)

const

n|3 S< ”|

since, upon the translatig’ —p’+p”, the integral ovep’
has no scales.

Alternatively, if we use a cutoff regularization, for in-
stance by smoothing the delta in momentum space, like

(p—p)?

(p|8®(n)|py=1—e "2z, (D3)

we obtain

53(r)6®(r)~ WTEA%“)(U - g\/;\[{vz, 53(r)

+2V's®(vil+o

1
K) , (D4)

which can be removed by local counterterms. Hence DR
implements nothing but a suitable subtraction prescription.
Analogously, it is easy to see thab®)(r)/rS for s
=0,1,2 ... reduces to local terms.

APPENDIX E: UNITARY TRANSFORMATIONS

It is well known that quantum-mechanical Hamiltonians,
which are related by unitary transformations, lead to the
same physics. This fact is particularly relevant to quantum-
mechanical Hamiltonians that are derived from a field
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theory, which is our case. It is also well known that the 4V?2 [ 1
quantum-mechanical potentials that are obtained from QED - —f dtt?(gE(t)-gE(0)) =——, (E6)
depend on the gauge one uses in the calculdthua is also E—hs m? Jo E—hs

so for QCD in perturbation theoyybut physical observables

computed with either potential turn out to be the same. It ignd from Eq.(117) a result containing an imaginary part,
perhaps not so well known that the potentials obtained in one

gauge can be related to the ones obtained with a different

gauge by means of a unitary transformation. In fact the arbi- 1 (VVy) o oeig 5C)(r)

trariness in the form of the potentials is not only due to E-n2l T +3if (7 Sg)——

gauge dependence. It depends in general on the way one S m

carries out the matching calculation. Any correct result is o 1

related to any other one by means of a unitary transforma- X fo dtt2<gE(t)-gE(0)>ﬁ. (E7)
S

tion.

We shall use this fact here to prove that the result obtained )
in Sec. VD is equivalent to the one obtained in Sec. IV A. Both results are correct. They are indeed related by the fol-

Consider the following unitary transformation: lowing unitary transformation:
U=egllnpiaim, (E1)
U= ei{r,p}NCEZ /m’
Consider next a delta function in the Hamiltonian:

T5<3>(r) SO(r)y QA
U —U~ T

[{r,p},6®(N], (E2

1(- 2
m 52=N—JO dtt*(gE(t) - gE(0)), (E8)

which onSwave states reduces to ) .
and hence lead to the same decay width. This can even be

SC)(r 5C)(r 6A further confirmed by an explicit calculation in the case of the
L 83(r) (1 2 1 by 2 _ .
TR - s(r). (E3)  Coulomb potential, since the induced terms then retain the
same form as the original ones.

This shows that a suitable unitary transformation may induce  1he unitary transformation, that brings the result of Sec.
terms atO(1/m3) proportional to| $(0)|2. Of course, phys- VA to the one of Sec. VD reads
ics should not change. b(r) is an eigenfunction o, then

$(r)=UTe(r) is an eigenfunction oh=UThU. Then

m? m

U=g i{rpro?m?

B(0)=e T EPTINMGO)[ 1+ O(Ir]) ]| —o=e"*""p(0).
(E4

1
Clearly, 92= 5(5(321) i ggz,e.m.)_gaz,t) _ggz,e.m.))_ (E9)

6A\ ~ 1
mr ﬁ) | b(0)[*~ W|¢(0)|2- (ES  Clearly this transformation also reshufflesnlreal potentials
into 1/m® real potentials. This means that, in the more con-
We will illustrate this issue further with an example. Recall servative counting considered in Sec. IV B, the whole set of
the two different results, namely, Eqd16) and (117, we  potentials up ta?(1/m®), which are formally given in Sec.
obtained from the first diagram of Fig. 2 at second order inlll B, are expected to be relevant to calculate the wave func-
the expansiormvz/AQCD. More explicitly, from Eqg.(116)  tion at the origin with an accuracy that matches the NNLO

we get a real result, terms in Eqs(141)—(146).
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