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Abstract: An improvement in the estimation of distance and distance modulus cannot be
achieved by only an enhancement of the precision of the trigonometric parallax, but with the correct
statistical treatment of the parallaxes to derive these parameters. We aim to provide a recommen-
dation regarding the distance estimators to be used for Gaia DR2 and onwards, as well as to rise
awareness about the practice of unquestioningly inverting the parallax. We test the performance of
two Bayesian and a frequentist methods over a simulated sample of 107 Gaia DR2 stars, using a
specifically developed Python software. We conclude that the use of the Bayesian method with the
Exponentially Decreasing Space Density Prior improves the estimation of distance, since it has a
good behavior for high relative error parallaxes, with a much smaller bias and dispersion than the
rest of estimates.

I. INTRODUCTION

The Gaia mission, launched on December 19th 2013,
aims to create a three dimensional map of our Galaxy,
with full astrometric (position, distance and motion) and
photometric (brightness and color) parameters of 1% of
its whole population, which amounts to about 100 billion
objects. Last year, the first data release (DR1) was de-
livered with more than 1.1 billion cataloged sources [1].
Today, Gaia continues observing the sky and will produce
more data releases in the coming years, continuing with
the second Gaia Data Release (DR2), that is expected to
be published on April 2018.

Although Gaia measures the trigonometric parallax,
that is, the apparent angular displacement of a stellar
object with respect to two opposite points of Earth’s
orbit, up to a precision of microarcseconds, it cannot
directly measure quantities such as the distance or the
distance modulus, thus they have to be computed after-
wards using the measured parallaxes. The correct way
to estimate distances from parallaxes has been addressed
by several authors, since the method traditionally used
to compute the distance, i.e., inverting the parallax and
computing its formal error as the first order Taylor ex-
pansion σr = σ

$2 (with σ the parallax uncertainty and
$ the observed parallax), has been demonstrated not to
be appropriate enough. The main complication arises
from the fact that the measured parallax is an stochastic
variable with an associated error, a noisy measurement
of the true parallax. In fact, these observational errors
can lead to undesired effects when estimating the dis-
tance to the stars as 1

$ . On the one hand, the error
can cause a measured negative parallax, and this a phys-
ically meaningless negative value of r = 1

$ . Removing
these values from the sample in order to leave only pos-
itive parallaxes will make it biased, as shown in [2] and

∗Electronic address: aribesme8@alumnes.ub.edu

[3]. More in general, the statistical behavior of r = 1
$

has undesired properties, including an asymmetric error
distribution and a bias. The need of improvement is thus
mandatory, so alternative methods, both frequentist and
Bayesian, have been suggested by several authors.

The main goal of the present study is twofold. On the
one hand, we aim to explore the performance of three
distance estimators (the Bayesian method with Uniform
Distance and Exponentially Decreasing Space Density
Priors Eqs. (3) and (4), and the Transformation Method
Eq. (6)), following the recommendation of the members
the Gaia DPAC (Data Processing & Analysis Consor-
tium), after the Sitges meeting of 01/2017 [4]. Conse-
quently, our intention is to provide a recommendation
about a better method of estimating distances for the
next Gaia’s data release. On the other hand, we also have
an educational purpose, so through the development of
several tools we aim to rise awareness about the practice
of unquestioningly inverting the parallax [5].

In the second section, the theoretical basis of the two
Bayesian Methods suggested by Coryn A. L. Bailer-Jones
and the frequentist one described by Haywood Smith are
discussed. In the third one, the results of the perfor-
mance of the different distance estimators are detailed.
Although the full study has been developed for both dis-
tance and distance modulus, we will only present the
whole development and results for the estimation of dis-
tances for the sake of briefness. The whole development
for the case of the distance modulus can be found in the
tutorial Distance and Distance Modulus Estimator Tool
which will be included in the documentation of the Gaia
Archive DR21.

1 Gaia Archive: https://gea.esac.esa.int/archive/
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II. THEORETICAL BASIS

The trigonometric parallax $ is a measured variable, a
noisy measurement of the true parallax $true, that con-
sequently, has an associated formal error σ. The mea-
sured parallax does not need to coincide with the true
one, which satisfies $true = 1

r , being r the true distance
of the object.

In this section we will present the recommended
methods [4] used in order to estimate the distance r and
the distance modulus µ using the trigonometric parallax
$.

The distance modulus is defined as:

µ = m−M = 5(log10 r − 1) (1)

with m the apparent magnitude, M the absolute mag-
nitude and r = 1/$true the true distance in parsecs.
The distance modulus is widely used for the calculation
of absolute magnitudes from parallaxes. In neither the
case of the distance nor the distance modulus, the rela-
tion r = 1

$ (with $ the observed parallax) can be used
unquestioningly.

The theoretical development in the distance modulus
case can be found in the Jupyter Notebook tutorial Dis-
tance and Distance Modulus Estimator Tool which is in-
cluded in the documentation of the Gaia archive DR21.

A. Bayesian methods

Bayesian methods allow us to infer the distance of an
object through a model error (consequence of the dis-
tribution of photons in the detectors, calibration errors,
processing errors, etc.) and a priori assumption, the
prior. In the case of Gaia parallaxes the model error be-
haves approximately as a Gaussian distribution of mean
1/r and a formal error σ as a standard deviation of the
distribution [6]. Thus, we can write the pdf of the error
distribution as

P ($|r, σ) =
1√
2πσ

exp

(
− 1

2σ2

(
$ − 1

r

)2
)

(2)

where P ($|r, σ) expresses the probability of observing a
parallax $ with an associated formal error σ given a true
parallax 1/r.

Since we dispose of the observed parallax but not of the
true distance, we infer the probability distribution func-
tion (pdf) of the real distance through the application
of Bayes Theorem P (r|$,σ) = P (r)P ($|r, σ), where
P (r|$,σ) expresses the probability of finding a true dis-
tance r given the observed parallax $ and its associated
error σ, and P (r) is an a priori assumption about the
true distance distribution of the sample. We implement
two simple, uninformative and unnormalized priors (Eq.

(3) and Eq. (4)), described by Coryn A. L. Bailer-Jones
in [6] for stellar objects in our galaxy.

The Uniform Distance Prior (UDP)

PUD(r) =

{
1

rlim
for 0 < r ≤ rlim

0 otherwise
(3)

assumes that the probability of finding a stellar object is
constant until a certain distance limit and drops to 0 for
more distant objects. It also imposes that there are not
negative distances.

The Exponentially Decreasing Space Density Prior
(EDSDP)

PEDSD(r) =

{
1

2L3 r
2e−

r
L for r > 0

0 otherwise
(4)

assumes a spherical star distribution where the proba-
bility of finding a star decreases exponentially with the
distance.

Based on the resulting pdfs (obtained from applying
the Bayes theorem using these priors) we will define two
estimators of the distance: The mode and the median of
the pdfs. The mode of the distribution is the maximum
probability value, derived at [6] for the two resulting pdfs.
The median is the 50% quantile, i.e., the distance value
separating the higher and the lower half of the probability
distribution. We also compute it as a distance estimator,
although in Bayesian methods we are usually interested
in the performance of the mode. In addition to the esti-
mation of distance, we also need to provide an associated
finite uncertainty interval that does not include negative
distances. In order to do this, we have chosen a 90%
uncertainty interval following the lead of Coryn A. L.
Bailer-Jones [6], which is given computing the 5% and
the 95% percentiles. The median, and the 5% and 95%
quantiles are computed solving the implicit equation on
x

1

N

∫ x

r0

drP (r)P ($|r, σ)− p = 0 (5)

where N is the normalization factor, P (r) refers to both
the described priors (Eqs. (3) and (4)), P ($|r, σ) stands
for the error distribution Eq. (2) and p = 0.05, 0.5, 0.95
to the normalized percentiles. The lower integration
limit r0 = 0.001 kpc has been chosen to be superior to 0
to avoid numerical divergences.

With respect to the distance modulus µ Eq. (1), we
have applied the translation to the distance modulus
space of the priors Eqs. (3) and (4) defined in distance
space, using the Jacobian of the transformation in order
to derive the pdf of the distance modulus and be able to
extract the expression of the mode, the median and the
90% uncertainty interval.
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B. Transformation Method

The Transformation Method is a frequentist method
described by Haywood Smith in [7] and [8], which tries to
find a transformation of the observed parallax that, once
inverted, approaches better the true distance and cor-
rects the problematic issues of the definition r = 1

$ , i.e.,
the divergence of the distance for small $ (the observed
parallax) and the existence of negative distances. It is a
completely frequentist method, since it tries to optimize
several parameters in order to obtain a transformation
that provides better results over a given sample of stars.

We have used the estimate r∗ described in [8]

r∗ =
1

$∗
(6)

with $∗ = βσφgφ, φ = 1
0.8 ln(1 + e

0.8$
σ ) and gφ = 1 if

$ > 0 and gφ = e−0.605
$2

σ2 for $ ≤ 0, with β = 1.01.
In order to estimate an associated uncertainty interval

to this quantity we compute $∗($ + 2σ) as the inferior
bound and $∗($− 2σ) as the superior bound. The per-
formance of this uncertainty interval has also been tested.

We also apply the Transformation Method in the case
of the distance modulus µ∗,

µ∗ = m− M̂ = −(5 log($̂) + 5) (7)

that we define using the expression of the transformed
absolute magnitude M̂ and of the transformed parallax
$̂, provided by Haywood in [7] and being m the apparent
magnitude.

III. RESULTS AND DISCUSSION

In order to estimate the distance and the distance
modulus with their uncertainty intervals, using the
methods described in section II, we have developed
a Python module named pyrallaxes, a Tkinter GUI
called DistanceEstimatorApplication which estimates
the distance and distance modulus for a single star and
provides the plots of the pdfs, a tool that computes
the distance given an input file DistanceEstimatorTool
and an interactive Jupyter Notebook tutorial, Distance
and Distance Modulus Estimator Tool. We validated
the produced tools using the Gaia mock catalog of Red
Clump stars [9], comparing the results on the sample
with the Java implementation produced independently
by Tri L. Astraatmadja and Coryn A.L. Bailer-Jones
[6] and adapted for our usage by E. Utrilla. Both
implementations match up to the thousandth of parsecs.

We have estimated the mode, the median and the 90%
uncertainty interval of the distance and the distance
modulus of the UD and EDSD Bayesian methods, as
well as the estimates r∗ and µ∗ with their associated

uncertainty intervals, using the described tools over a
sample of about 107 randomly chosen objects over a
simulation of Gaia DR2, that will be available in the
article [10]. We have also computed the distance and
distance modulus resulting of inverting the parallax
rinv = 1

$ , with $ the observed parallax and uncertainty
interval [rinv − 2σ, rinv + 2σ]. The true fractional
parallax error ftrue = σ

$ of the sample ranges between

16 · 10−4 and 94.

We compare the performance of the different estima-
tors computing the dimensionless quantity

xi =
ri − rtrue,i
rtrue,i

(8)

that provides the bias ratio of the estimate ri with re-
spect to the true distance rtrue,i for every element of the
sample. We divide the whole sample in M bins of ftrue
in which we compute the mean bias per bin x̄j as

x̄j =
1

nj

∑
∀i∈j

xi (9)

the root mean square (r.m.s.) per bin x̄2
1/2

j as

x̄2
1/2

j =

√
1

nj

∑
∀i∈j

x2i (10)

and the standard deviation per bin σx,j

σx,j =

√
1

nj − 1

∑
∀i∈j

(xi − x̄j)2 (11)

that indicates the dispersion of the quantities xi around
the mean bias of the bin j, x̄j . In all three expressions,
nj is the number of elements in bin j and j ranges from
0 to M , with M the total number of bins.

The mode and the median of the Uniform Distance
(UD) and of the Exponentially Decreasing Space Den-
sity (EDSD) Bayesian methods, as well as the inverse of
the observed parallax (INV) 1/$ and the Transforma-
tion method (TM) estimate r∗ are shown in Fig. 1. In
Figs. 1.a and 1.b the bias ratio with M = 500 bins in
the range of ftrue ∈ [0, 100] and ftrue ∈ [0, 1] are repre-
sented, in Fig. 1.c the bias ratio with M = 300 bins for
ftrue ∈ [0, 0.3] is plotted.

Computing the bias ratio Eq. (9), the root mean
square Eq. (10) and the standard deviation (Std. Dev.)
Eq. (11) of the whole sample Table I (for i = j = N ,
with N the total number of samples) or a given subsam-
ple of ftrue Tables II and III for ftrue ≤ 1 and ftrue ≤ 0.3
respectively, allow us to compare the global goodness of
the estimators.

Globally, we can observe in Fig. 1.a and Table I,
that the best performance over our simulated sample
of Gaia DR2 corresponds to the EDSD method, since
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FIG. 1: The bias ratio as a function of the true fractional
parallax error ftrue. In (a) the whole simulated sample of
Gaia DR2 with 107 stars have been arranged in 500 bins of
ftrue, in (b) around 4.37 · 106 samples with ftrue ≤ 1 have
been arranged in 500 bins and in (c) around 1.9 · 106 samples
with ftrue ≤ 0.3 have been arranged in 300 bins. The given
bias per bin corresponds to the mean of all the samples in the
same bin of ftrue. The bias range has been cut in all three
cases in order to show more relevant information, the bias
ratio goes from -40 to 1540 in (a) case, from -370 to 220 in
the (b) case and from -0.1 to 6 in the last case.

Bias r.m.s Std. Dev

EDSD
mode -0.2144435 0.4676504 0.4155850

median -0.0012707 0.5645264 0.5645250

UD
mode 4.1649385 10.4278158 9.5599497

median 8.3483038 12.1676157 8.8519321

TM r∗ 3.2090449 3233.2025951 3233.2011634

INV 1/$ 1.4505190 9630.4302163 9630.4305861

TABLE I: Around 107 Gaia DR2 simulated samples have been
used.

Bias r.m.s Std. Dev.

EDSD
mode 0.0523262 0.4067274 0.4033475

median 0.2884500 0.6994112 0.6371599

UD
mode 1.5656870 8.2809021 8.1315422

median 7.7665353 14.4385161 12.1717587

TM r∗ 0.1061284 88.5215926 88.5215391

INV 1/$ -0.1867738 1287.9354960 1287.9356297

TABLE II: We have selected a DR2 Gaia subsample of around
4.37 · 106 samples with ftrue ≤ 1.

both the mode and the median present the smallest bias,
standard deviation and root mean square. The EDSD
method tends to systematically underestimate the pre-
dicted distances (negative bias) with small dispersion.
The median EDSD is the less biased estimator, although
it presents higher dispersion than the mode EDSD. We
can also observe that the inverted parallax and the esti-
mate r∗ present the next smaller positive bias, meaning
that these methods tend to overestimate the distance,
but with a huge dispersion. These two methods tend to
strongly overestimate and underestimate the distance for
different ranges of ftrue. Even though the positive and
negative bias can compensate globally in the sample, the
estimated distance can differ with the real one in more
than a 5000%. Finally, both the mode and the median of
the UD method present the highest bias but with smaller
dispersion than both the inverted parallax and Transfor-
mation methods.

In the case of the subsamples with small fractional par-
allax error ftrue, presented in Tables II and III and Figs.
1.b and 1.c, we can observe that in the range ftrue ≤ 1 the
mode EDSD presents the smallest global bias and disper-
sion. It seems really interesting to highlight the change
of behavior of the Transformation Method estimate r∗ in
the range ftrue ∈ [0.1, 0.7], in which it presents the small-
est bias and dispersion, although it increases outside of
this range, even surpassing the bias of the mode UD. In
Fig. 1.c we can observe that for small ftrue, that is, for
very precise parallaxes, all the estimators have a similar
good behavior, as one could expect. For instance, the
global bias of the mode for the UD, EDSD and inverted
parallax methods are around the 4%, for ftrue ≤ 0.15 all
the estimators present a bias inferior to the 10%.
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Bias r.m.s Std. Dev.

EDSD
mode 0.0378425 0.2082295 0.2047621

median 0.1191844 0.3705107 0.3508181

UD
mode 0.0350620 0.4728545 0.4715529

median 0.7533940 4.9125000 4.8543863

TM r∗ 0.0113476 0.1838725 0.1835220

INV 1/$ 0.037587 6.1906233 6.1905108

TABLE III: We have selected a DR2 Gaia subsample of
around 1.9 · 106 samples with ftrue ≤ 0.3.

As it has been explained in section II.B, the Transfor-
mation method is a frequentist method, meaning that the
numerical parameters used for adjusting the estimator r∗

have been chosen according to a specific sample. The
change in the behavior of the Transformation method
indicates that the sample used for defining r∗ can be
similar to the Gaia DR2 simulation sample in the range
ftrue ∈ [0.1, 0.7], but different outside it, so the adjusted
parameters are not longer suitable.

IV. CONCLUSIONS

In this work we have compared the performance of
three different methods, two Bayesian methods and
a frequentist method with the result of inverting the
parallax. We have used the developed tools to estimate
the mode and the median of the Uniform Distance
and of the Exponentially Decreasing Space Density for
the distance and the distance modulus, as well as the
90% uncertainty interval associated to these quantities
and the Transformation method estimates r∗ and µ∗

with their associated uncertainty intervals. We have
compared the bias, the root mean square and the
standard deviation of these estimates with the inverted
parallax as a function of the true fractional parallax
error ftrue for the whole range of ftrue ∈ [0, 100], for

ftrue ≤ 1 and ftrue ≤ 0.3. In the tables above, the mean
bias, standard deviation and root mean square over all
Gaia DR2 subsamples limited by ftrue are summarized.

The developed software, as well as the tutorial on its
use, that will be available from April 2018 in the Gaia
Archive 1 at DR2 section, allows to use arbitrary priors
for the calculation of the estimation of distances and dis-
tance modulus. As an improvement, more specific and
complex priors can be developed in the framework of
pyrallaxes, for instance, priors including the photomet-
ric data. In order to use these tools we would strongly
recommend to analyze the sample beforehand and create
the most suitable prior for each sample. Nevertheless,
if a faster method is sought, we can recommend to use
the mode or the median of the Bayesian method with the
Exponentially Decreasing Space Density Prior, which im-
proves the estimation of distance from the trigonometric
parallax for the Gaia Data Release 2. In any case, we
would not recommend the usage of the Transformation
method, since it is only well behaved for a given range
of ftrue and the parameters used for defining the trans-
formation have been adjusted empirically with a specific
sample that does not need to match with Gaia DR2.
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