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Infrared behavior of the static potential in perturbative QCD
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The definition of the quark-antiquark static potential is given within an effective field theory framework. The
leading infrared divergences of the static singlet potential in perturbation theory are explicitly calculated.
@S0556-2821~99!50121-5#

PACS number~s!: 12.39.Hg, 12.38.Bx
a
e

en
a

nt

a
by
.
a-
er
n
a

an
in

u

in
th

th
n
a
ti
on
ri
n
C
n

w

l at
air

eel

y
nt
rop-
ec-

s a
he
D

es

t,
ith

in

ly
d,

s a
or-

ve
t in
ex-

to
ly,
I. INTRODUCTION

The static singlet potential between a heavy quark and
antiquark is an object of considerable interest both theor
cally and phenomenologically. Strictly speaking, the pot
tial being a dynamical quantity, it can be defined only in
context where the full dynamics of the system is consiste
taken into account, for instance, in the proper Schro¨dinger
equation. Nevertheless, the static singlet potential is usu
defined as the logarithm of the static Wilson loop divided
the interaction time in the limit of infinite interaction time
Moreover, the above definition, in QCD, suffers from infr
red ~IR! divergences when computed at finite orders of p
turbation theory@1#. This has to do with the non-Abelia
nature of QCD, which allows massless gluons to self-inter
at arbitrarily small energy scales.

The problem was posed in the past@1# of whether the
static singlet potential could be defined in some way at
order in perturbation theory. The leading IR singularities
the static Wilson loop were found at a relative orderas

3 in
@1#. These singularities can indeed be regulated upon res
mation of a certain class of diagrams which give rise to
dynamical cutoff provided by the difference between the s
glet and the octet potentials. However, the extraction of
static singlet quark-antiquark (Q-Q̄) potential from this re-
summation has been regarded as suspect by other au
@2#, who noticed that the difference between the singlet a
the octet potential provides a dynamical scale which, at le
in perturbation theory, is of the same order of the kine
energy for quarks of large but finite mass. A similar situati
occurs in QED for the Lamb shift, where one of the cont
butions has to be interpreted as a nonpotential correctio
the hydrogen atom energy levels. The novel feature in Q
is that such an effect appears to be related to the definitio
the static potential, while in QED it is of order 1/m2. No
quantitative procedure has been developed so far to deal
this problem in QCD.
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The recent complete calculation of the static potentia
two loops@3# and its foreseen applications to top quark p
production at the Next Linear Collider@4# brings this prob-
lem to the edge of experimentally testable physics. We f
that a clear resolution is needed.

It is the aim of this paper to fully clarify this problem b
providing a quantitative framework where the differe
scales that characterize a nonrelativistic system can be p
erly taken into account. This is achieved by using an eff
tive field theory approach.

We will assume thatmv@LQCD, m and v being the
heavy-quark mass and velocity, respectively (v!1). Then
we will systematically integrate out the hard (;m) and soft
(;mv) degrees of freedom by performing in both case
perturbative matching to suitable effective field theories. T
integration of the hard scale gives rise to nonrelativistic QC
~NRQCD! @5#, whereas the integration of the soft scale giv
rise to potential NRQCD~pNRQCD! @6#. In the latter effec-
tive theory only ultrasoft~US! degrees of freedom are lef
which in this Rapid Communication means the ones w
energy much smaller thanmv. The static potential can be
understood as a matching coefficient in pNRQCD.

The main result of this work is to state rigorously what
perturbative QCD has to be understood as theQ-Q̄ static
potential, namely the relevant object for the dynamics ofQ-
Q̄ pairs with large but finite mass. This does not simp
coincide with the static Wilson loop as usually compute
since this turns out to contain US contributions as well. A
consequence the static potential manifests, at the relative
deras

3 , an explicit dependence on the cutoff of the effecti
theory and has to be understood as a matching coefficien
pNRQCD. The leading cutoff dependence is evaluated
plicitly.

II. THEORETICAL FRAMEWORK

After integrating out the hard scale (;m) from QCD, we
are left with NRQCD. For our purposes it is sufficient
work at the lowest order in the NRQCD Lagrangian, name
©1999 The American Physical Society02-1
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LNRQCD5c†H iD 01
D2

2mJ c1x†H iD 02
D2

2mJ x

2
1

4
Fmn

a Fmn a , ~1!

wherec is the Pauli spinor field that annihilates the fermi
and x is the Pauli spinor field that creates the antifermio
iD 05 i ]02gA0 and iD5 i“1gA.

Integrating out also the soft scale,mv, from Eq. ~1! we
are left with an effective theory~pNRQCD! where only US
degrees of freedom remain dynamical. The surviving fie
are theQ-Q̄ states~with US energy! and the US gluons. The
Q-Q̄ states can be decomposed into a singlet~S! and an octet
~O! under color transformation. The relative coordinater
5x12x2 , whose typical size is the inverse of the soft sca
is explicit and can be considered as small with respect to
remaining~US! dynamical lengths in the system. Hence t
gluon fields can be systematically expanded inr ~multipole
expansion!. Therefore the pNRQCD Lagrangian is co
structed not only order by order in 1/m, but also order by
order inr . As a typical feature of an effective theory, all th
nonanalytic behavior inr is encoded in the matching coeffi
cients, which can be interpreted as potential-like terms.

The most general pNRQCD Lagrangian density that
be constructed with these fields and that is compatible w
the symmetries of NRQCD is given at the leading order
the multipole expansion by

LpNRQCD5TrH S†S i ]02
p2

m
2Vs~r !1••• DS

1O†S iD 02
p2

m
2Vo~r !1••• DOJ

1gVA~r !Tr$O†r•E S1S†r•E O%

1g
VB~r !

2
Tr$O†r•E O1O†Or•E%, ~2!

where R[(x11x2)/2, S5S(r ,R,t), and O5O(r ,R,t) are
the singlet and octet wave functions, respectively. All t
gauge fields in Eq.~2! are evaluated inR andt. In particular
E[E(R,t) andiD 0O[ i ]0O2g@A0(R,t),O#. Vs andVo are
the singlet and octet heavyQ-Q̄ static potential, respectively
Higher-order potentials in the 1/m expansion and the cente
of-mass kinetic terms are irrelevant here and are neglec
We define

Vs~r ![2CF

aVs
~r !

r
,

~3!

Vo~r ![S CA

2
2CFD aVo

~r !

r
.

VA and VB are the matching coefficients associated in
Lagrangian~2! to the leading corrections in the multipo
expansion. Both the potentials and the coefficientsVA and
VB have to be determined by matching pNRQCD w
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NRQCD at a scalem smaller thanmv and larger than the US
scales. Since, in particular,m is larger thanLQCD the match-
ing can be done perturbatively. At the lowest order in t
coupling constant we getaVs

5aVo
5as, VA5VB51. In or-

der to have the proper free-field normalization in the co
space we define

S[
1lc
ANc

S, O[
Ta

ATF

Oa, ~4!

whereTF51/2.

III. MATCHING

In this section we discuss how to perform the match
between NRQCD and pNRQCD. In particular we will co
centrate on the effects produced by the leading correct
coming from the multipole expansion.

The matching is in general done by comparing 2-ferm
Green functions~plus external gluons at the ultrasoft scal!
in NRQCD and pNRQCD, order by order in 1/m and order
by order in the multipole expansion. If the soft scale is in t
perturbative region of QCD~i.e., larger thanLQCD), this can
be done explicitly order by order in the coupling constant
not, one can still perform the matching by subtracting t
calculation in pNRQCD to the desired order of accura
The remaining term only contains the soft scale~up to US
higher-order corrections! and goes in the pNRQCD Lagrang
ian as a new potential term.

The matching can be done once the interpolating fields
S andOa have been identified in NRQCD. The former ne
to have the same quantum numbers and the same tran
mation properties as the latter. We choose the following d
nitions for the singlet:

x†~x2 ,t !f~x2 ,x1 ,t !c~x1 ,t !5Zs
1/2~r !S~R,r ,t !

and for the octet

x†~x2 ,t !f~x2 ,R,t !Taf~R,x1 ,t !c~x1 ,t !

5Zo
1/2~r !Oa~R,r ,t !,

where

f~y,x,t ![P expH igE
0

1

ds~y2x!•A„x2s~x2y!,t…J .

From the normalization condition~4! it follows, at the tree
level, thatZs5Nc andZo5TF .

In order to get the singlet potential, we choose the follo
ing Green function:

I[^0ux†~x2!f~x2 ,x1!c~x1!c†~y1!f~y1 ,y2!x~y2!u0&.
~5!

In NRQCD we obtain, at order (1/m)0,

I 5d3~x12y1!d3~x22y2!^Wh&, ~6!
2-2
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where Wh is the rectangular Wilson loop with edgesx1
5(T/2,r /2), x25(T/2,2r /2), y15(2T/2,r /2), and y2
5(2T/2,2r /2). The symbol̂ & means the average over th
gauge fields.

In pNRQCD we obtain at order (1/m)0 and at the next-
to-leading order in the multipole expansion

I 5Zs~r !d3~x12y1!d3~x22y2!e2 iTVs(r )

3S 12
g2

Nc
VA

2~r !E
2T/2

T/2

dtE
2T/2

t

dt8e2 i (t2t8)(Vo2Vs)

3^Tr$r•E~ t !f~ t,t8!r•E~ t8!f~ t8,t !%& D . ~7!

Fields with only temporal argument are evaluated in
center-of-mass coordinate.

Comparing Eqs.~6! and ~7!, one gets at the next-to
leading order in the multipole expansion the singlet wa
function normalizationZs and the singlet static potentialVs
~see Fig. 1!. VA(r ) and Vo(r ) must have been previousl
obtained from the matching of suitable operators. Since h
we shall only need the tree-level results, we postpone
general discussion to@7#. We shall further concentrate on th
singlet potential while the wave function normalization w
also be discussed in@7#. The explicit calculation can be don
in several~equivalent! ways.

~i! By matching order by order inas @7#. Both expressions
~6! and ~7! are IR divergent@Eq. ~7! is also UV divergent#.
Regulating both expressions in dimensional regulariza
the calculation in pNRQCD gives zero~there is no scale!,
while the calculation of the Wilson loop shows up an expli
dependence on the infrared regulatorm via a typical lnmr
term.

~ii ! By keeping, without expanding, in Eq.~7! the expo-
nentials inVo andVs . The scaleVo2Vs , which appears in
this way, regulates the IR divergences in Eq.~7!. Because of
this scale, the calculation in pNRQCD now gives a nonz
contribution proportional to the UV cutoffm of the theory
@; ln(Vo2Vs)/m#. This calculation would be sufficient to ex
tract the leading IR divergences of the static potential, in
same way as it is sufficient to evaluate the leading logarit
in the effective field theory in order to know the running of
matching coefficient. However, in order to carry out t
matching consistently, we have to evaluate Eq.~6! in a way
that exactly corresponds to keeping the exponentials in

FIG. 1. The matching of the static potential. On the right s
are the pNRQCD fields: simple lines are singlet propagator, dou
lines are octet propagators, circled crosses are the singlet-octe
tices of Eq.~2!, and the wavy line is the US gluon propagator.
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~7!. For the IR-singular terms in NRQCD, this way is not
ing but the resummation of the diagrams depicted in Fig
as it was indicated in@1#. This procedure is automaticall
adopted in any attempt to extract the~nonperturbative! static
potential from a nonperturbative evaluation of the Wils
loop ~e.g., in lattice calculations!.

In order to make the comparison with@1# easier, we will
follow here this second approach. We will show the canc
lation of the ln(Vo2Vs) terms explicitly. Evaluating expres
sions ~6! and ~7! with the prescription~ii ! we get, for the
static potential at the next-to-leading order in the multipo
expansion,

Vs~r ;m!5 lim
T→`

i

T
ln^Wh&

1CF

as

p

r 2

3
~Vo2Vs!

3ln
~Vo2Vs!

2

4pm2 . ~8!

The dependence on ln(Vo2Vs) in the second line is cancele
in the first line by the contribution to the Wilson loo
(d^Wh&) coming from the graphs shown in Fig. 2 whos
qualitative features were considered in@1,8#. Indeed, the ex-
act calculation done in this work gives

lim
T→`

i

T
lnd^Wh&52CFCA

2
as

3

12p
~Vo2Vs!

3 ln„~Vo2Vs!
2r 2

…. ~9!

Finally, the result given in Eq.~8! allows us to write the
complete expression for the static potential, Eq.~3!, up to the
relative orderas

3lnmr in coordinate space (as is in the MS̄
scheme!:

aVs
~r ,m!5as~r !H 11~a112gEb0!

as~r !

4p

1FgE~4a1b012b1!

1S p2

3
14gE

2 Db0
21a2Gas

2~r !

16p2

1
CA

3

12

as
3~r !

p
lnrmJ , ~10!

wherebn are the coefficients of the beta function,a1 was
calculated in Ref.@9# anda2 in Ref. @3# ~see@3# for notation!.
We emphasize that this new contribution to the static pot
tial would be zero in QED.

le
er-

FIG. 2. Graphs contributing tod^Wh&. Dashed lines represen
Coulomb exchanges.
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IV. CONCLUSIONS

Equation~10! is the main result of this Rapid Commun
cation. It states thataVs

, defined through the static potenti
@see Eq.~3!#, is not a short distance quantity asas ~in theMS
scheme!, since it depends on the IR behavior of the theory
can be better understood as a matching coefficient~an analo-
gous situation occurs for the pole mass!. Moreover Eq.~10!
gives the analytic value of the coefficient of the leading lnmr
correction, which arises at relative orderas

3 , i.e., immedi-
ately after the known two-loop corrections. The situation
the static octet potential seems to be similar@7#.

The evaluated terms clarify the long-standing issue
how the perturbative static potential should be defined
higher order in the perturbative series. Equation~8! explicitly
shows that the static potential does not coincide with
static Wilson loop as usually computed. It should be emp
sized that the separation between soft and US contribut
is not an artificial trick but a necessary procedure if o
wants to use the static potential in a Schro¨dinger-like equa-
tion in order to study the dynamics ofQ-Q̄ states of large bu
finite mass. In that equation the kinetic term of theQ-Q̄
system is US and so is the energy. Since the US glu
09150
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interact with theQ-Q̄ system, their dynamics is sensitive
the energies of the~nonstatic! system and hence it is no
correct to include them in the static potential. When calc
lating a physical observable them dependence in Eq.~10!
must cancel againstm-dependent contributions coming from
the US gluons.

Finally it is worth mentioning that the static potential su
fers from IR renormalons ambiguities with the followin
structure:

dVs;C1C2r 21•••.

The constantC is known to be cancelled by the IR pole ma
renormalon@10# while the IRC2 renormalon gets cancelle
by the UV renormalon existing in the second term of Eq.~7!
@7#.
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@3# Y. Schröder, Phys. Lett. B447, 321 ~1999!; M. Peter, Phys.
Rev. Lett.78, 602 ~1997!.

@4# M. Beneke, A. Signer, and V. A. Smirnov, Phys. Lett. B454,
137 ~1999!; A. Hoang, hep-ph/9809431.

@5# W. E. Caswell and G. P. Lepage, Phys. Lett.167B, 437
~1986!; G. T. Bodwin, E. Braaten, and G. P. Lepage, Ph
Rev. D51, 1125~1995!; 55, 5853~E! ~1997!.

@6# A. Pineda and J. Soto, Nucl. Phys. B~Proc. Suppl.! 64, 428
~1998!.

@7# N. Brambilla, A. Pineda, J. Soto, and A. Vairo
hep-ph/9907240.

@8# W. Kummer, W. Mödritsch, and A. Vairo, Z. Phys. C72, 653
~1996!.

@9# A. Billoire, Phys. Lett.92B, 343 ~1980!.
@10# A. Pineda, Ph.D. thesis, Univ. Barcelona, 1998.
2-4


