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[. INTRODUCTION The recent complete calculation of the static potential at
two loops[3] and its foreseen applications to top quark pair
The static singlet potential between a heavy quark and aproduction at the Next Linear Collidg#] brings this prob-

antiquark is an object of considerable interest both theoretilem to the edge of experimentally testable physics. We feel
cally and phenomenologically. Strictly speaking, the potenthat a clear resolution is needed. o
tial being a dynamical quantity, it can be defined only in a !t is the aim of this paper to fully clarify this problem by
context where the full dynamics of the system is consistenthProviding a quantitative framework where the different
taken into account, for instance, in the proper Sdhrger scales that. characterize a n_onrelatmshc system can be prop-
equation. Nevertheless, the static singlet potential is usuall§"y {aken into account. This is achieved by using an effec-

. ; o o field theory approach.
defined as the logarithm of the static Wilson loop divided by ve . < .
the interaction time in the limit of infinite interaction time. hegy/e- V\Sgrlfsni:?se atrrllo?tr\?e\:llic/i}m?ésmecatg:/d v <(T§m9|'ht2r?
Moreover, the above definition, in QCD, suffers from infra- y-d Y, P ely :

red (IR) divergences when computed at finite orders of per-We will systematically integrate out the hard: n) and soft

. . . . (~mv) degrees of freedom by performing in both cases a
turbation theory[l]: This has to do with the non-Ab.ehan erturbative matching to suitable effective field theories. The
nature of QCD, which allows massless gluons to self-interac

o tegration of the hard scale gives rise to nonrelativistic QCD
at arbitrarily small energy scales. (NRQCD) [5], whereas the integration of the soft scale gives
The problem was posed in the pddf of whether the (ise 1o potential NRQCIPNRQCD [6]. In the latter effec-

static singlet potential could be defined in some way at anyiye theory only ultrasof{US) degrees of freedom are left,
order in perturbation theory. The leading IR singularities inwhich in this Rapid Communication means the ones with
the static Wilson loop were found at a relative ord€rin  energy much smaller thamv. The static potential can be
[1]. These singularities can indeed be regulated upon resunamderstood as a matching coefficient in pNRQCD.

mation of a certain class of diagrams which give rise to a The main result of this work is to state rigorously what in

dynamical cutoff provided by the difference between the sinperturbative QCD has to be understood as @@ static
glet and the octet potentials. However, the extraction of thgotential, namely the relevant object for the dynamicef

static singlet quark-antiquark)Y-Q) potential from this re- Q pairs with large but finite mass. This does not simply
summation has been regarded as suspect by other authawincide with the static Wilson loop as usually computed,
[2], who noticed that the difference between the singlet andince this turns out to contain US contributions as well. As a
the octet potential provides a dynamical scale which, at leastonsequence the static potential manifests, at the relative or-
in perturbation theory, is of the same order of the kineticder &>, an explicit dependence on the cutoff of the effective
energy for quarks of large but finite mass. A similar situationtheory and has to be understood as a matching coefficient in
occurs in QED for the Lamb shift, where one of the contri-PNRQCD. The leading cutoff dependence is evaluated ex-
butions has to be interpreted as a nonpotential correction tBlicitly.
the hydrogen atom energy levels. The novel feature in QCD

is that such an effect appears to be related to the definition of Il. THEORETICAL FRAMEWORK

the static potential, while in QED it is of orderrf. No After integrating out the hard scale-(m) from QCD, we
quantitative procedure has been developed so far to deal witre left with NRQCD. For our purposes it is sufficient to
this problem in QCD. work at the lowest order in the NRQCD Lagrangian, namely,
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o D2 o D? NRQCD at a scal@ smaller tharmv and larger than the US
Lnroep= ¢ ID°+ o—1 i+ x| iD= 5=t x scales. Since, in particulag, is larger tham\ ocp the match-
2m 2m ; ) QCD X
ing can be done perturbatively. At the lowest order in the
B E Fa pava n coupling constant we gety_ = ay = as, Vao=Vg=1. In or-

4 v der to have the proper free-field normalization in the color

space we define
whereys is the Pauli spinor field that annihilates the fermion P

and y is the Pauli spinor field that creates the antifermion;

a
iD%=ig,—gA® andiD=iV +gA. szl_lc S, O= T 03, %)
Integrating out also the soft scale, from Eq. (1) we VN, VTe

are left with an effective theorgppNRQCD where only US
degrees of freedom remain dynamical. The surviving fieldgvhereTg=1/2.

are theQ-Q statesiwith US energy and the US gluons. The

Q-Q states can be decomposed into a singaind an octet . MATCHING
(O) under color transformation. The relative coordinate
=X;—X,, whose typical size is the inverse of the soft scale,
is explicit and can be considered as small with respect to th
remaining(US) dynamical lengths in the system. Hence the
gluon figlds can be systematically expanded i(multi_pole The matching is in general done by comparing 2-fermion
expansion Therefore the pNRQ_CD Lagrangian Is con- grean functiongplus external gluons at the ultrasoft sgale
structgd not only (_)rder by order inri/ bu.t also order by j, NRQCD and pNRQCD, order by order inmi/and order
orderinr. As a typical feature of an effective theory, all the 1, qer in the multipole expansion. If the soft scale is in the
npnanalynp behavior im 1S encoded in the matphmg coeffi- perturbative region of QCI.e., larger tham\ ocp), this can
cients, which can be interpreted as pote_nhal-hke_terms_ be done explicitly order by order in the coupling constant. If
The most general pNRQCD Lagrangian density that cafy o, - one can still perform the matching by subtracting the
be constructed with these fields and that is compatible W'tl?:alculation in pPNRQCD to the desired order of accuracy.
the symmetries of NRQCD is given at the leading order inThe remaining term only contains the soft scale to US

the multipole expansion by higher-order correctionsand goes in the pNRQCD Lagrang-

In this section we discuss how to perform the matching
between NRQCD and pNRQCD. In particular we will con-
Eentrate on the effects produced by the leading corrections
coming from the multipole expansion.

_ p? ian as a new potential term.
LonroeD™ Tr[ ST( 1dp— - —=Vs(r)+--- IS The matching can be done once the interpolating fields for
SandO? have been identified in NRQCD. The former need
o p? to have the same quantum numbers and the same transfor-
+0O{iDo— m —Vo(r)+---]0 mation properties as the latter. We choose the following defi-

nitions for the singlet:

+gVa(r)Tr{O'r-ES+S'r-EO}

vacr) X (%2, 1) (X Xe 0 (Xe, 1) =ZSHT)S(R,1 1)

BV Ty for.
9 2 TH{Or-EO+O'0r- B, @ and for the octet
where R=(x;+x,)/2, S=S(r,R,t), and O=0(r,R,t) are tix, t R1)T2h(R.x .t t
the singlet and octet wave functions, respectively. All the X (%2060 ROTG(RX1, 1) (X1, 1)
gauge fields in Eq(2) are evaluated iR andt. In particular =Z§’2(r)oa(R,r,t),
E=E(R,t) andiD ,0=id,0—g[Ap(R,t),0]. Vg andV, are
the singlet and octet hea@-Q static potential, respectively. Where
Higher-order potentials in the ivexpansion and the center- N
of-mass_ kinetic terms are irrelevant here and are neglected. B(y,x,1)=P ex igJ ds(y—x)-A(x—s(x—y),t)}.
We define 0

V(r)=—C v (r) From the normalization conditiof#) it follows, at the tree
SR level, thatZ;=N, andZ,=T.
(3) In order to get the singlet potential, we choose the follow-

ing Green function:

| E<O|XT(X2)¢(X2 X1) P(X1) ¢T(Y1)¢(Y1 ’Y2)X(Y2)|0>-(5)

Ca ay (1)
Vo(r)5<7—CF) .

V, and Vg are the matching coefficients associated in the

Lagrangian(2) to the leading corrections in the multipole In NRQCD we obtain, at order ()°,

expansion. Both the potentials and the coefficievitsand

Vg have to be determined by matching pNRQCD with I =8%(x1— Y1) 83(Xo— Y2 ){Wp), (6)
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FIG. 2. Graphs contributing té(W). Dashed lines represent
Coulomb exchanges.

NRQCD PNRQCD (7). For the IR-singular terms in NRQCD, this way is noth-

FIG. 1. The matching of the static potential. On the right side!Nd but the resummation of the diagrams depicted in Fig. 2,
are the pNRQCD fields: simple lines are singlet propagator, doubl@S it was indicated iri1]. This procedure is automatically

lines are octet propagators, circled crosses are the singlet-octet vetdopted in any attempt to extract tfreonperturbativestatic
tices of Eq.(2), and the wavy line is the US gluon propagator. potentlal from a nonperturbatlve evaluation of the Wilson

loop (e.g., in lattice calculations
where W;; is the rectangular Wilson loop with edges In order to make the comparison wifi] easier, we will
=(T/2x12), x,=(T/2,—rl2), y,=(—T/2r/2), and y, follow here this second approach. We will show the cancel-
=(—T/2,—r/2). The symbol ) means the average over the lation of the In{/,—V,) terms explicitly. Evaluating expres-

gauge fields. sions (6) and (7) with the prescription(ii) we get, for the
In pPNRQCD we obtain at order (h)° and at the next- Static potential at the next-to-leading order in the multipole
to-leading order in the multipole expansion expansion,
1=Z (ﬁ _ b\’v’ _ —iTV(r) i
s(M)6%(X1—y1) 8°(Xa—y2)e V(rim)= lim - In(W)
2 T—oo T
g VZ(r)fT/Z dtjt dtlefi(tf’[’)(v —Vy)
X 1—— 0~ Vs
Ne A o c. % r? V. V3 (Vo—Ve)? g
+Cr— 3 (Vo Vy) Ly (8)
X(Tr{r-E(t t,t")r-E(t’ t't . 7 . L
(TH{r- B #(tt)r- E(t) & )}>) @ The dependence on M{—V,) in the second line is canceled

. ) . in the first line by the contribution to the Wilson loop
Fields with only temporal argument are evaluated in the(5<WD>) coming from the graphs shown in Fig. 2 whose

center-of-mass coordinate. qualitative features were considereding]. Indeed, the ex-
Comparing Egs.(6) and (7), one gets at the next-to- 5t calculation done in this work gives
leading order in the multipole expansion the singlet wave-

function normalizatiorZs and the singlet static potenti® 3

. | s
(see Fig. L Va(r) and V,(r) must have been previously lim — In5<WD>:_CFCiE(Vo_VS)
obtained from the matching of suitable operators. Since here T
we shall only need the tree-level results, we postpone the XIN((Vo—Ve)2r?). 9
general discussion {]. We shall further concentrate on the
singlet potential while the wave function normalization will ~ Finally, the result given in Eq(8) allows us to write the
also be discussed [iT]. The explicit calculation can be done complete expression for the static potential, &), up to the
in several(equivalent ways. relative ordera’Inur in coordinate spaceaf is in the MS

(i) By matching order by order in[7]. Both expressions schemg
(6) and(7) are IR divergenfEq. (7) is also UV divergent

Regulating both expressions in dimensional regularization agr)
the calculation in pPNRQCD gives zelthere is no scale avs(r#):as(r)[ 1+ (a1t 27eBo)— -
while the calculation of the Wilson loop shows up an explicit
dependence on the infrared regulagorvia a typical Irr
term. +| ve(4a180+2p1)

(ii) By keeping, without expanding, in Eg7) the expo-
nentials inV, andV,. The scalev,—V,, which appears in w2 aﬁ(r)
this way, regulates the IR divergences in Ef). Because of + 34'47% Bo+a, >
this scale, the calculation in pNRQCD now gives a nonzero 167
contribution proportional to the UV cutoffc of the theory C3 43
[~In(V,—Vo/u]. This calculation would be sufficient to ex- Joas (10
tract the leading IR divergences of the static potential, in the 12 = '

same way as it is sufficient to evaluate the leading logarithm

in the effective field theory in order to know the running of a where B,, are the coefficients of the beta functicen, was
matching coefficient. However, in order to carry out thecalculated in Refl9] anda, in Ref.[3] (see[3] for notatior).
matching consistently, we have to evaluate ).in a way = We emphasize that this new contribution to the static poten-
that exactly corresponds to keeping the exponentials in Edial would be zero in QED.
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IV. CONCLUSIONS interact with theQ-Q system, their dynamics is sensitive to

Equation(10) is the main result of this Rapid Communi- the energies of thénonstati¢ system and hence it is not
cation. It states that_, defined through the static potential IC‘?{_”eCt to r:nc!udle tglem mb;[het sta(;ltlc pogentlal. .Wféenlgalcu-
[see Eq(3)], is not a short distance quantity as(in the MS ating a physical observable he epencence In _0[ )

‘ . . must cancel againgi-dependent contributions coming from

schemg since it depends on the IR behavior of the theory. Itthe US gluons
szsbzi tt:J (;t:;rnuggfdfstc?g? t?ﬁea g}gt(r::;;%g?eegcg?ga?f(l)?_ Finally it is worth mentioning that the static potential suf-
9 . P e g fers from IR renormalons ambiguities with the following
gives the analytic value of the coefficient of the leadingrin )

. 4 . . o . structure:
correction, which arises at relative ordeg, i.e., immedi-
ately after the known two-loop corrections. The situation for SVg~C+Cpr2+---.

the static octet potential seems to be simjlak .
The evaluated terms clarify the long-standing issue offhe constan€ is known to be cancelled by the IR pole mass

how the perturbative static potential should be defined atenormalon10] while the IRC, renormalon gets cancelled
higher order in the perturbative series. Equat®rexplicitly by the UV renormalon existing in the second term of &q.
shows that the static potential does not coincide with thd7]-

static Wilson loop as usually computed. It should be empha-

sized that the separation between soft and US contributions ACKNOWLEDGMENTS
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