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Within an effective field theory framework, we obtain an expression for the next-to-leading term inrthe 1/
expansion of the singl@@ QCD potential in terms of Wilson loops, which holds beyond perturbation theory.
The ambiguities in the definition of the QCD potential beyond leading ordenirat¢ discussed and a specific
expression for the i potential is given. We explicitly evaluate this expression at one loop and compare the
outcome with the existing perturbative results. On general grounds we show that for quenched QED and fully
Abelian-like models this expression exactly vanishes.
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I. INTRODUCTION the one-loop perturbative QCD potenti@ee discussion at
the end of Sec. VAand, therefore, appears to be incom-
After the discovery of the first heavy-quark bound statesplete. In Ref.[9] the author does not succeed in obtaining
the » and theY systems, it was soon realized that a nonrel-suitable finite expressions. We conclude, therefore, that the
ativistic picture seemed to hold for them. This is characterquestion of the Ih corrections to the QCD potential has not
ized by, at least, three scales: héiile massn, of the heavy  been settled yet and hence deserves further studies. In this
quarks, soft (the relative momentum of the heavy-quark—work we will present arab initio and systematic calculation
antiquark |p|~mv, v<1), and ultrasoft(US, the typical of the QCD potential up t®O(1/m). We will get a new
binding energyE~mu? of the bound-state systémit was  expression of the i potential that is finite, consistent with
also seen that, if one wanted to describe the whole spectrugne-loop perturbative QCD, and suitable to be evaluated by
of the ¢y and theY systems, a perturbative evaluation of the lattice simulations.
potential was not sufficient. This triggered the investigation We will perform the calculation by integrating out in two
of these systems by all sorts of potential modekse[1] for  steps the hard and the soft scales characterizing the heavy-
some reviews which are, in general, quite successful phe-quark—antiquark system. This is implemented by introducing
nomenologically. Since then, a lot of effort has been devoteduitable effective field theories. This approach allows us to
to obtaining the relevant potentials to be used in the Schroexpress the heavy-quark—antiquark dynamics in terms of
dinger equation of such models from QCB-9] by relating  systematic and controlled expansions. It has proved to be a
these potentials to some Wilson loops that could eventuallpowerful computational tool in several different situations.
be computed on the lattice or by using some vacuum models-or instance, the hard logarithmic correctionsli m) to the
The expression for the leading spin-independent potential, dfichten-Feinberg-Gromes potentials were computed in this
O(1/m°), has been known for a long time and corresponds tavay in Ref.[10] (see alsd8]). Moreover, we believe that the
the static Wilson loop2,3]. The expressions for the leading effective field theories provide a suitable framework where
spin-dependent potentials in therléxpansion, oD(1/m?),  eventually some long-standing conceptual questions will be
have been calculated in Refel,5]. The 1M corrections to  clarified. In particular, the extent of validity of the naive
these potentials have proved to be very difficult to obtain. Tgpotential picture for the heavy quarkonium dynamics, as-
our knowledge the spin-independent case has been addressgamed in potential models, could be affected by the consid-
only in Refs.[6,9]. The result of Ref[6] does not reproduce eration of extra degrees of freedom such as hybrids and

pions.
The two QCD effective field theories that arise from in-
*Email address: nora.brambilla@cern.ch tegrating out the scales andmv are called nonrelativistic
TEmail address: antonio.pineda@cern.ch QCD (NRQCD) and(pNRQCD), respectively. Nonrelativis-
*Email address: soto@ecm.ub.es tic QCD was first introduced in Ref11]. It has an ultravio-
SEmail address: antonio.vairo@cern.ch let cutoff much smaller than the mass and much larger
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than any other scalén particular much larger than ocp, Il. NRQCD AND pNRQCD

which means that the matching from QCD to NRQCD can  1pe Lagrangian of NRQCD up to ordemifeads
always be done perturbative[#2,13)). NRQCD has proved
to be extremely successful in studyif@Q systems near r oy
threshold. The Lagrangian of NRQCD is organized in pow- ~NRQCD™ 4
ers of 1m, making in this way explicit the nonrelativistic

D+ D? N B
Do 2m1 gCk 2m1 ‘/I

2
nature of the described systems. The maximum size of each +x'iDg— b —qc® T B>X_ EGa GHrva
term can be estimated by assigning the soft scale to any 2m; F2m, 4 v ’
dimensionful object. In order to connect NRQCD with a po- (1)

tential picture the degrees of freedom with energies much

larger thanmuv? have to be integrated out. Once this is done,wherey is the Pauli spinor field that annihilates the fermion,
one is left with a new QCD effective field theory called x is the Pauli spinor field that creates the antifermidn?
potential NRQCD[14,15.! Strictly speaking, pNRQCD has =i do—gA°, and iD=iV+gA. The matching coefficients
two ultraviolet cutoffsA; and A,. The former satisfies the cY=1+0(ay are not going to be relevant here. For sim-
relationmyv?< A ;<mv and is the cutoff of the energy of the plicity, light fermions are not explicitly displayed. Their in-
quarks, and of the energy and the momentum of the gluonglusion does not change the results of this paper, although it
whereas the latter satisfiesv <A ,<m and is the cutoff of ~changes the expression of some intermediate formulas.

the relative momentum of the quark—antiquark system, The Hamiltonian associated with the Lagrangianis
This theory has been thoroughly studied, and its matching 1 1
with NRQCD performed, in the situationy > A g¢p. In this H=HO4+ —H@LOL — O .

case the matching can be performed perturbatively. In this My ma

paper we will allowA ocp to be as large asw and, there- 1

fore, we cannot rely on perturbation theory. Nevertheless, H(O):f d3x =(E2E2+ B2B?),

we will assume that the matching between NRQCD and 2

PNRQCD can be performed order by order in then¥x-

pansion. We will present, for the general situatidycp H(1’°)=—Ef d*x y'(D?+gcPa-B) s,

<mv, the matching of NRQCD to pNRQCD at the next-to- 2

leading order in the i expansion in the singlet sect@o be

defined latex. T_his will prove to be equi_va_lent to compL_lting H(o,1)=EJ d3x XT(D2+gc(F2)a- B)x,

the 1im potential. Formulas that are similar to those in the 2

classical papers of Reff4—6] will be worked out. No fur-

ther degrees of freedom with US energy besides the singl

will be considered. This means that nonpotential effects will

be neglected in this papéin the perturbative situation this

would be equivalent to working at zero order in the multi-

pole expansion A detailed study of the matching between

NRQCD and pNRQCD in the situatioh gcp=<mv, includ-

ing US effects, will be worked out elsewhere. N5 X1, %) = T (X)) x (X2) [N X, %)@, Xy, %0, (2)
The paper is organized in the following way. In Sec. Il we -

introduce NRQCD up to order i/ and discuss its static Wherelg;xl,xz>(°) is a gauge-invariant eigenstatep to a

limit. Moreover, we define what will be pNRQCD in the phasg, as a consequence of the Gauss lawHé with

present context. In Secs. Il and IV we derive thenldor-  energyE{(x;,%,); [n;xy,%,)(? encodes the gluonic content

rections to the potential, by matching NRQCD to pNRQCD.of the state—namely, it is annihilated by'(x) and #(x)

The Green functions are worked out in the Wilson loop lan-(¥X). It transforms as a ,3® 3§2 under color S3). The

guage. The I potential can be written in a simple way as normalizations are taken as follows:

insertions of chromoelectric fields on a static Wilson loop. In

Sec. IV we compute the potential perturbatively up to one  O{M;Xq,Xo|N; Xy, %)@= 8, 3

loop. Quenched QED and Gaussian models of the QCD 0 o 5 5

long-range dynamics are also discussed. Finally, Sec. VI is ¥(Mix1,%[N;y1,y2)P= 8,ndP(x1 —y1) 6P (x2—y2).

devoted to the conclusions and the Appendix to show how (4)

unitary transformations affect the form of the potential.

nd the physical states are constrained to satisfy the Gauss
aw. We are interested in the one-quark—one-antiquark sector
of the Fock space.
It will prove convenient to study the static limit. The one-
quark—one-antiquark sector of the Fock space can be
spanned by

Notice that sinceH(® does not contain any fermion field,

In;x1,%,)(? itself is also an eigenstate &f(®) with energy

E®(x;,%,). We have made it explicit that the positiors

and x, of the quark and antiquark, respectively, are good
For related work on these issues within the perturbative regimgluantum numbers for the static SO|Uti0h_1;X1,X2>(O),

of NRQCD we refer td12,13,16,17. whereasn generically denotes the remaining quantum num-
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bers, which are classified by the irreducible representationsnder symmetries as the static ground state of NRQCD in the
of the symmetry grou®..;, (substituting the parity generator one-quark—one-antiquark sector. In the above situation, the
by CP). The ground-state enerds{”)(x;,%,) is usually as- Lagrangian of pNRQCD reads

sociated with the static potentidbee [15] for important
qualifications on this associatipand the remaining energies
E©(x;,%,), n#0, are usually called gluonic excitations be-
tween static quarks. They can be computed on the lattice
(see, for instancé18]). Translational invariance implies that wherehg is the Hamiltonian of the singléin fact, hg is only

Lonroep™ S'ido—hs(X1,X2,P1,P2)1S, (5

E@(x1,%) =E(r), wherer =x; —x,. a function ofr, p;, p,, which is analytic in the two last
The gap between different states at fixedill depend on  operators but typically contains nonanalyticitiesrin p;=
the dimensionless paramet&iycpr. In @ general situation, —iV, , andp,=—iV, . It has the following expansion up to

there will be a set of statg®,4 such thatEEfL’J)s(r)~mv2 for  order 1fm:

the typicalr of the actual physical system. We denote these

states as ultrasoft. The aim of pNRQCD is to describe the 02 02

behavior of the ultrasoft statgNRQCD has been intro- ho(X: X LR VAN i
duced in[14] and discussed in different kinematic situations s(X1:X2,P1,P2) om, ' 2m, o(r) m,
in [15]). Therefore, all the physical degrees of freedom with (6)
energies larger tharmv? will be integrated out from

NRQCD in order to obtain pNRQCD. In the perturbative In this work we will present the matching between NRQCD

situationA ocpf <1, which has been studied in detail[ib5], o o : ;
] ont . . and pNRQCD within an expansion inm/using the static
{nyg corresponds to a heavy-quark-antiquark state, in e'thq?mit solution as a starting point. Whereas this can be justi-

a singlet or an octet configuration, plus gluons and light fer-. o . . )
mions, all of them with energies @(mv2). In a nonpertur- fied within a perturbative framework, in the nonperturbative

e Stuaton, i we il geneicaly eote by $252 1 Yl o e M expenson camt be generaly
Aqcor ~1, it is not so clear whan,g is. One can think of g ) b P

different possibilities. Each of them will give, in principle, the attempts at deriving the nonperturbative potentials from

different predictions and, therefore, it should be possible toQCD. We are aware OT' FurthermO(e, we would I|!<e to em-
hasize the following important point. The matching calcu-

experimentally discriminate between them. In particular, on tion can be done independently of what the specific count-
could consider the situation where, because of a mass gap Ilﬁ in PNRQCD is. As apr ued i[¥13 17.19 WheIEIJ doing a
QCD, the energy splitting between the ground state and th&d N P ) 9 L 9

first gluonic excitation is larger thamv?, and because of matching calculation we are inte_grating out .high energy de-
chiral symmetry breaking of QCD Gold'stone bosopi®ns ghreeshof freedom. Henced, the Wilson goefflctlje(mmtep t|aﬂ$ h

LT that this integration produces are independent of what the
and kaony appear. Hence, in this situatiof,¢J would be

the ultrasoft excitations about the static ground stiage, the low energy dynamics is. The m/expan3|pn just proy|des a
. . o . ; convenient way to organize the matching calculation. One
solutions of the corresponding ScHimger equatio)) which

will be named the singlet, plus the Goldstone bosons. If Onéc,hould not conclude that the relative size of the different

switches off the light fermion&ure gluodynamigs only the fhogeln ‘:;atlasxlnatr]hsgoaNRQCD Lagrangian is trivially dictated by

singlet survives and pPNRQCD becomes totally equivalent to pansion.

a quantum-mechanical Hamiltonian, thus providing us with a

gualitative explanation of how potential models emerge from

QCD. In addition, we shall see below how quantitative for-

mulas can be provided in order to calculate the potentials in In this section we will work out the matching up to order

QCD. 1/m in a language that is close to the traditional approach of
In this paper, we will only study the pure singlet sector Eichten and Feinberfy#,9]. The matching between NRQCD

with no reference to further ultrasoft degrees of freedom. Irand pNRQCD is done by enforcing suitable Green functions

this situation, pPNRQCD only describes the ultrasoft excita-to be equal in the two theories at the desired orderim 1

tions about the static ground state of NRQCD. In terms ofthis section we shall consider space-time Green functions,

static NRQCD eigenstates, this means that ¢@ikx, ,x,)(®  which are more conventional in nonperturbative studies.

is kept as an explicit degree of freedom wherggs, ,x,)® Let us consider an interpolating state with a nonvanishing

with n#0 are integrated odt.This provides the only dy- overlap with the ground state,

namical degree of freedom of the theory. It is described by

means of a bilinear color singlet fiefs(x; ,x,,t), which has

the same quantum numbers and transformation properties ¥ (x0) p(x1,%2) x (Xp) [Vag), )

Vq(r).

IIl. WILSON LOOP MATCHING

2In fact, we are only integrating out states with energies larger
thanmy? and all the states with+ 0 will be understood in thisway  3See[19] for an example where certain degrees of freedom cannot
throughout the paper. be integrated out in the i/ expansion.
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where ¢ may in principle be everything that makes the A. Calculation in NRQCD

above state overlap with the ground stkﬁéo) We will use We expandGyrocp order by order in h:
here the following popular choick: Q

1 Gnroco™ GNRQCDJr GNlR(gCD GNORlQ)CD
¢(y,x;t)EPex#igf ds(y—x)-A(X—s(x—y),),
0

®) Integrating out the fermion fields one gets

G Roco= (W) 8®(x;—y1) 8P (x,—y»), 13
where P is a path-ordering operator. We also define Nrooo= (W) 9704 = Y1) 7%~ ¥2) 13
d(y,x;t=0)=¢(y,x). It is going to be useful to introduce i (T2
an(X1,Xz), defined by Glidco= 2[ dt(D?(1)) 56 (%= y1) 8B (X2 —y,).
(14
t _ . (0)
4 (X1)¢(X1’X2)X(X2)|Vac>_§n: (X1, %) |N5%q %)™ Analogous formulas hold here and in the following for

G{xdcp- For simplicity we will not display them. The angu-
lar bracketq - - - ) stand for the average value over the Yang-

The state$n>(°) being defined up to a phase, it is convenient . ) ] ) )
Mills action, W is the rectangular static Wilson loop,

to fix them in such a way that all the coefficiemts are real.
The identification of the singlet from the stdf® depends on
the interpolating field used in NRQCD. This dependence is WDEPex;{ —ig j; dz* Aﬂ(z)],
reflected in different normalization factors The matching T

condition reads and the angular brackets - -)5=(...Wp) stand for the

+ _ T average over the gauge fields in the presence of the static
X (X2, ) p(Xa X ) ¥(Xe, 1) = Z75(X1, X2,P1,P2) S(X1.X2,1). \wjilson loop (1)g=(Wp)). For further convenience we
©  aiso defing(- - -))g=(---Wg)/(Wg). We use the conven-
] o tion that, if not specified, fields act on the first quark line,
As in hg, theT no_rmah_zatlon factoZ only depends om, py, e.g., D(t)=D(x;,t), E(t)=E(x,,t), and so on. We have
andp,, and is given in the form of an expansion inmlAs used time reversalB(t))5=—(B(—1t))y to eliminate the
spin-dependent term in E§Ll4). Therefore, we can already
state that no spin-dependent potential appea@(&fm) [4].

m; + m, Zy(1) It is useful to introduce at this point two identities involv-
ing covariant derivatives and Schwinger lines:

Z(X1,X2,P1,P2) =Zo(r) +

+iZyp(r)r-

pl pz)+

m . (10 (i) D(x,)(t,x,t",X)

t
where we have made use of the fact that the NRQCD La- =d>(t,x,t’,x)D(x,t’)+|gft,dt”gb(t,x,t”,x)
grangian(l) as well as the pNRQCD Lagrangiah) are , L
invariant under &P plus m;«<m, transformation. XE(X,t") (1", x,t",X),

We will match the Green functio®yrocp defined by .
© (i) D(xq,)b(Xy,%z31)

Grroco={(Vad x (o, T/2) p(Xo ,X1; T12) h(x1, T/2)

Xt (Y1, = T12)(y1.Y2;—TI2)
X x(y2,—TI2)|vad, (11) XB(X'(5),) (X' (), X2, 1)+ (X1, %2 1) Vi ,

1
=igrx f ds s¢p(xq,x'(s);t)
0

with the corresponding Green function in pNRQGBere X' (8)=sx1+ (1= 8%z,

and in the rest of the paper, if not explicitly stated, depen-

dence o, », Py, is understoog where ¢(t,x,t",x)=P exp{— |gft, dt’ Ay(x,t")}. In the first

reference in[4], both identities(i) and (ii) were derived.
Identity (ii) corrects their equatio@.79. As a by-product of

120 —iTher 1 1/2(3) (o _ 3)(y Corret
Gpnraep= 2%~ TNsZM2613) (x; —y;) 63 (x, YZ)-(lz) the above identities, we get

T2
V. (Woy=ig | dH(E®)o+ (O~ T):
“With this choice we assume that the ground state hasE;]ﬁe !
quantum numberésee[15)). This is so in perturbative QCD as well —{(O¢(T/12))q, (15)
as nonperturbative QCD according to the available lattice simula-
tions. where
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00=igr | ds 5600 x (7086 (510

X P(X'(8),X2;1), X' (S)=Xp+sr,

1
O¢(t)=igr Jo ds(1—s)d(x,,X"(s);t)B(X"(s),t)

X p(X"(8),x1;1), X'(S)=x1—Ssr.

Let us note that time-reversal symmetry givegE(t))n
=(igE(—1))o and(Oi(—T/2))n=—(O0«(T/2)) .

Using the above relations, E¢l4) can be worked out,

giving
i 2 T 2
Glkdco= 5 Vx1<WD>+ E(WD>VX1

T2 T
+T(Of(T/2)-Oi(—T/2)>D+igj_ledt(E—t)

+t

T/2
X(O¢(T/2)-E(t))n— '9f

X(E(1)-O;( = T/2))p + gfm dtjm

T2 T2

><|t—t’|<E(t>-E(t’)>D]

X 3%y —y1) (%~ y,). (16)
B. Calculation in pPNRQCD

Let us consider the Green function defined in ELR).
Expanding it up to order i, we obtain

Gpnroeo™ GpNRQCD+ GpNRQcD+ GpNRQCD

Inserting Eqs(6) and(10) into Eq.(12), we obtain

GRroco=2Zoe VT8 (x,—y1) 6P (x—yy),  (17)

e Vol

REZ,] 1(V le)

Z, 2 Zo

10 _
G|(0NR)QCD_ Zo
2

y \
T(VVO) r—+|T7—|TV1

(VZo) (V?Zg)  (VZp)?
<4 . "V 2 Z 2 )
T2 (VZ> ) )

+ [ 2(VVo)- Vi +——-(VVg) +(VVy)

.T3
- I?(VVO)Z] ¥ (x;—y1) 8P (xo—y,),  (18)

PHYSICAL REVIEW D 63 014023

whereV=V,. As in the NRQCD case, we do not display
the analogous formulas de RQCD In order to keep Egs.
(17) and(18) simpler, we have already used the fact tHat
anlep can be chosen as real. This follows from the match-
ing to GSR%CD Eqg. (16), once any constant phase I is
conventionally set to zero.

C. Matching
At O(1/m°) we match Eq(13) with Eq. (17). We obtain

Vo= lim I?In(WDy (19

T—oo

At O(1/m) we match Eq(16) with Eq. (18). We obtain

1((VZo))2
T 8 ZO

T (VZy)
47,

g (T2 {( 2t
- — dtjy | 1— =
4) -1 T

TZ
1—2(VV0)2

((On(T/2)-E()))5y

+ 2 cern-0- )0

T2 T/2
—S(OKTI2IO,(~ TR o f Cat| " at

X[t=t"[((E(t) - E(t"))) |- (20

A similar expression with neither end-point string contribu-
tions nor normalization factors has been obtaine®inThe
right-hand side of Eqs(19) and (20) can be shown to be
finite in theT— oo limit. This is not obvious from the point of
view of a pure Wilson-loop calculation in the spirit of Ref.
[4], as is apparent from the difficulties met by the author of
[9] (the normalization factors are crucial in order to get a
finite expression For this reason and because such kinds of
arguments may become relevant to future analyses of
Wilson-loop correlators, we mention here the relevant steps
of the proof.

(a) Inserting the identity operatdg|n)© OX(n| into the
Wilson-loop average, the latter may be written as

O
<WD>:; e 'En Ty,

Doing the same for the averagE(t))5 one obtains
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LEOT 2 (0) © two equations and three independent functiais, Z,,,
(E())n=2 e & Ta? (On|E|n) andV,, at O(1/m) makes the determination &f, ambigu-
" ous. This ambiguity is intrinsic in the sense that any value of
Z,, andV, that satisfies E¢(22) will lead to the same phys-
ics (as far as one consistently works at higher ordersiim) 1/
and has to do with the fact that a quantum-mechanical
X apam O(n|Elm)©. Hamiltonian is defined up to time-independent unitary trans-
formations(see the Appendix As a consequence, the ambi-
(b) End-point strings containing the operat@s and O; guity in the definition ofV, also gives rise to ambiguities in
select intermediate states with quantum numbers differerthe definition of the potentials of ord€@(1/m?) and higher.
from the singlet. This can be checked directly on the definiin the next section we will fixZ, , (and therVV;) by impos-
tions of these operators. As an immediate consequence, cdng an extra matching condition, which will prove to be par-
relators containing the operato@s andO; in Eq. (20) van- ticularly convenient.
ish in theT—< limit and do not contribute to the potential.

(c) From Eq. (15 and time-inversion invariance of the IV. QUANTUM-MECHANICAL MATCHING
chromoelectric field, it follows that

+ > e IED+ED) T2+i(EP-ED)t
n#m

In the previous section we have done the matching, com-

—(VVo) = (9(0|gE|0)®, paring Green functions in NRQCD and in pNRQCD. In this
section the comparison is between states and matrix elements

©(0|gE[n)©@ in NRQCD and in pNRQCD. The calculation, in terms of

(VZO)=2§O aoanﬁ- states, will be closer in philosophy to the usual quantum

mechanics calculations in perturbation thep29] (see also
(d) Inserting the identity operator into the correlator [21])- Moreover, the whole procedure will share some simi-
(E(1)-E(t")), it may be written as larities to the adiabatic approximation and the Born—
Oppenheimer method as used in atomic physics calculations
[22]. The underlying assumption is that the difference of

(E(t)- E(t,)>D:n%S ananX(n|E[s)(@ ©)(s|E|m)(© energies among states labeled with diffeneig much larger
o than the difference of energies among states labeled with the
we ED+EOTI20i (B - E)0i (EQ - ER) samen. In our case, since we only aim at correctly reproduc-

ing the ground-state spectrum, we only need that the splitting
for t>t’. With the above pointga)—(d) it is easy to show between the ground state and the first gluonic excitation be

that the right-hand side of Eq&L9) and (20) is finite in the larger than the typical splitting of the states of the ground

condition we have assumed throughout the present paper.
Vo=EO, (21) H is not diagonal in the basis &f(*) (|n)(®) with respect
to then labeling. We consider instead a basis of states, la-
1 Zyp beled as
Vi+=(VVy)-r—==
2Tz, In;X1,X2), (23
2
— lim/| - E( (VZO)) T T (VZo) {(VV,) such that the HamiltoniaH is diagonal with respect to these
T2 8\ Zo 4 Z, 0 states,
T2 2 112 12 (M;Xq %o HIN;Y1,Y2) = SnmEn(X1 X2, P1,P2) 83 (X —y1)
+—(VV0)2—g— dtJ dt[t—t'| MiXq,Xo[ANY1,Y2 nmEn{X1,X2,P1,P2 1™ Y1
12 ATJ 12 J -2 X 8%~ ya), (24)

whereE, (X41,X5,p1,P2) is an analytic function ip,, p,, and
such that they are normalized as

X((E(1)-E(t"))o

2

1 ©¢n|gE|0)©@ (M;x1, %2l Y1,Y2) = 8ym8® (X1 = y1) 83 0= y2).

"2 (0)_ g (25)
n#0 E0 —En
Conditions(24) and (25) give
a (O)<n| E|0>(0)
(0) n g
HVED) 2 o Eo_goes (22

n70 8o (Ey’—Ey”) H|E;Y1-YZ>:J d3X1d3X2|EiX1:X2>En(X11X2’p1,p2)

Analogously, we can obtain matching expressions for the X 83 (%1 —y1) 83 (X,— V). (26)

normalization factors. AD(1/m°), the result isZ,=|ay|?.
At O(1/m) a more complicated equality is obtained, which A set of states*@) and an operatoE,, that satisfy Eqs(25)
involves a combination af; andZ, ;. The fact that we have and(26) can be obtained from the static solutigng(® and
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E( to any desired order of accuracy by working out formu-matrix elements of NRQCD for the ground state. The match-
las analogous to the ones used in standard quantuniRg conditions in this formalism read as follows:
mechanics perturbation theof20]. If we write |n) andE,

as an expansion in i, - |O> ST|VaC> and EO(X1:X21plvp2) hs(xl:XvalrpZ() )
31
In)=|n)©+ i|n>(1,0)+ i|n>(0|1)+ - (27) Using Eq.(31) and Eq.(9) we obtain the normalization fac-
- my — my — tor, given the interpolating field:
1/2 3 3
E,= E(0)+ E(l 0y — E(O Dy .. (28) ZY%(x1,%2,P1,P2) 8P (X1~ y1) 8¥ (%~ y)
m2 =(vadx'(x2) (X, X)) ¥(x1)|0;y1.y2).  (32)
we obtain, ato(1/m) for n=0 (when not specified, states ¢ j5 explicit now thath, and, hence, the potential, fixed by
and energies are calculatedxp andxy), Eq. (31), depend neither on the normalization factors nor on
1 the specific shape of the end-point strings. Moreover, Eqs.
(1,0)_ 3y’ 43¢/ v’ /) (0) (31) and(32) provide matching conditions at any finite order
= ) 2 fd X1 %xglixq %z) in 1/m.
From EQ@s.(31) and (32) one could draw the conclusion
x (On; Xi,x§|H(l'°)|9>(°) that the ambiguity in the computation f, discussed in the
©) ©) previous section, has disappeared. This is not the case. Ac-
1 (n[gE[0)™ tually, Egs.(27) and (28) with Egs.(29) and (30) only give
B EQ-HO 7o | EQ-EO ! one of the possible solutions of Eq26) and(25). Indeed,
these equations do not completely fix the state In stan-
1 (°)<n|gE|0)(°) 1 dard quantum mechanics the state is fixed up to an arbitrary
> xlw ) constant phase. In our case, since we only diagonalize in the
0 n n space, this phase becomes a unitary operagoren a state
©)(n|gE|j)© ©)j|gE|0)© In) that satisfies Eq$26) and(25), this means that the states
X > ] Iny© -
j#£0n (EJ(O)— Eﬁo))(EJ(O)_ EE,O)) f d3 X2>e|0n(><l X5.P1.P)
(29)

X 8@(x)—x7) 8P (x5—xy),
EG- 00 (x1=y2) 8 (x=y2)
— O)(0|H(L9|0)(©) with Ol =0, still satisfy Eq.(25) and the Hamiltonian is
— — still diagonal inn with

Vxl2 1

2 2 n#0

©)(n|gE|0)®)|®
EQ—gO

) E,—e'OnE e On,

5 . This freedom reflects the fact thiag is defined by the match-
X 883)(x;—y1) 8P (X~ ). (30 ing up to an arbitrary unitary transformation or, which is the

] . ] N same, up to an arbitrary unitary field redefinition,
These equations may be derived from the identities

h HeiODh e—ioo,
(@ ©n|D,[m©=V, -
and so does th&. In order to make the calculations easier,

which follows from symmetry considerations, and we have taken advantage of this freedom by fixing the rela-
tive phase betweef0) and |0)(® following the standard
. O} n|gE(xy)]j)©@ . choice of quantum-mechanics perturbation theory. With this
(b) (0)<n|Dx1|J>(O): o oo YNFl choice, we obtain Eqg29) and (30); as we will see below,
En’—Ej this will allow us to obtain a compact expression &y in

terms of Wilson loops. Furthermore, the procedure can be
easily generalized at any finite order inml/

From Egs.(29) and(32) we can perform the matching at
O(1/m). We obtain

which follows from explicit calculation. Analogous formulas
hold for the antiparticle contribution.

Matching

The aim of pNRQCD is to describe the behavior|0f.
The integration of high excitations is trivial using the basis SNote that the phase is not completely arbltrary |f we demand the
(23) since, in this case, they are decoupled fl‘kﬁm There-  state|n) to coincide with the unperturbed stdie} in the limit
fore, the matching of NRQCD to pNRQCD is basically to 1/m—0. This constrain€,(x,p) to smoothly go to zero in the
rename things in a way such that pNRQCD reproduces thémit 1/m—0.
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Zg*=aq, (33 a) b)
g,
%,

Z an ©n|gE|0)(* %
2§ S EP-eP (| T EP-ED

_9 ©(n|gE|0)® E©) FIG. 1. Dashed lines indicate Coulombic exchanges; curly lines

(E((jo)— E(O))z ( X1 -0 ) transverse gluons. Graph) is the disconnected graph canceling the
n

T2(VV,)?/12 term in Eq.(20). Graph(b) (and the symmetric graph
(°)<n|gE|j>(°) (0)<j |gE|0)(0)] which is understoodgives the only nonvanishing contribution to

(34 the 1im potential at ordetxﬁ in the Coulomb gauge. In other gauges
additional diagrams may be present.

+
Fin (€0 ED)ED-ED)

Zyor ©)(n|gE|0)© then evaluate the integralsThis observation greatly simpli-
=2 A— (35 fies the perturbative calculation and may also do so for non-
Zl/2 AZ0 (E(O)_ E(O))2 .
0 0 n perturbative ones.

From Egs.(30) and(31) we get, up toO(1/m), V. APPLICATIONS

Vo(N)=EL(r), (36) In this section we will consider Eq38) in perturbative
QCD and in quenched QED. In the first case we will evaluate
(0) (0|2 the contribution to the potential at the leading nonvanishing
1 (n|gE|0) : , \
Vi(r)== —0 o (37)  orderinas. In the second we will show that the potential
2 770 Eg —E; vanishes exactly. This may be relevant to several Gaussian

models used in the phenomenology of the nonperturbative
At first sight, this result seems of limited practical utility, dynamics of the strong interaction. We will shortly comment
since it depends on the exact and complete solution of then this.
bound state at orderh’. Fortunately this is not the case. In
fact, Eq.(20) suggests a very simple form for theripoten- A. Perturbative QCD

tial:
We perform the calculation in the Coulomb gauge. Since

Eq. (38) is a gauge-independent quantity, the result will hold

2
V,= lim ( _ g_fT/Z dt T dt’|t—t’| in any gauge. At orderg, the right-hand side of Eq38)
Tow\  AT)-t2m )12 only gives a self-energy type of contribution, since the chro-
moelectric fields are inserted on the same quark line. The
XLUE®)-E))) o —(EON o (EX)INT] - first nonvanishing contribgtion to the potent(@b., depenq-
ing onr) appears at ordetrs . Three types of diagrams arise.
(39) (i) Disconnected graphsAn example is shown by graph

(a) of Fig. 1. These graphs cancel in the difference of the
right-hand side of Eq(38).

(i) Connected graphs with end-point strings contribu-
tions Nondisconnected graphs involving gluons attached to
the end-point strings vanish in E¢38). As noticed in the
aprevious section th& — oo limit can also be performed in the
correlators before doing the time integrals in E88). This
{ﬂrns out to be quite useful here, making the irrelevance of

Using the same technique as outlinedan-(d) of Sec. Il C,

it can be proved that Eq38) is finite and equal to E(37).
Equation(38) is the main result of the present work. It

gives the leading i correction to the heavy-quark potential

expressed in terms of chromoelectric field insertions in

static Wilson loop, thus avoiding the explicit computation of

the normalization factors. The potential appears, therefore, i ! :

the same form as the potential calculated in Refs.6] and ese graphs to the potentlal manifest. . . .

is suitable for lattice evaluations similar to those performed. (iii ) Connected graphs W'th no e”d'PO'!’“ SF“”QS contribu-

in [8]. Moreover, the above expression expandeddigives tions The only nonvanishing graph contributing to Eg8)

the full perturbative series of therti/potential in the regime EI ?fpﬂg? \?érfelg. gﬁtTvCi?ha}[\r:v?)IOt?;rllJ:vgrrsgh I{Jr]c;/r?slvgjctga(t:ui d
where this expansion makes seitse., mv>Aqcp). In the pe-g : 9

: . : : ., to the chromoelectric fields on the quark line, can be shown
next section we will calculate from it the leading nonvanish-

: ) o . . . to vanish in the limit of Eq(38) by explicit calculation.
Ing p(.erturb.atlve contribution to ther/potential, which V\."” Therefore, considering all relevant contributiofvghich
coincide with the results of Reff23,24]. For the calculation reduce to grapkb) of Fig. 1] we get from Eq(38), at order
of some higher order perturbative corrections to Yhepo- 2 grap 9: g 4439,

tential we refer tq25]. Finally, it is interesting to note that s’

Eq. (38) also holds if the correlators are evaluated on a Wil- P
son loop with infinitely large time extensidne., if we make VEeT= — CFCA&- (39
the limit T—c in the Wilson loops fort andt’ finite, and 4r?
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Equation (39) coincides with the result of Refd23,24 Several QCD vacuum modelg,7,29 seem to approxi-
(which may also be obtained using the rules[d7]) and mate the Wilson-loop long-range nonperturbative dynamics
with the non-Abelian part of the perturbative calculation of with expressions analogous to E¢0). The above consider-
the 1 potential done irf26]. In Ref.[26] also an Abelian ations made for quenched QED may be relevant to them. As
contribution to the Th potential is found. We have stressed a matter of fact, Ih corrections do not seem to show up
throughout the paper that there is no unique way to define théhere. Therefore, it is tempting to generalize the exact result
1/m potential and, therefore, different matching procedureof quenched QED to Gaussian models of the QCD vacuum.
are, in general, expected to give different expressions for itNevertheless, some words of caution are needed. A model
One may suspect that this is due to the fact that in Refsconsists in an approximation of QCD, which is supposed to
[23,24] the Coulomb gauge is used whereafdfi] the Feyn-  coincide with a relevant limit on the QCD dynamics. This
man gauge is used. However, this has more to do with thémit is unknown by definition. Therefore, how to implement
freedom we have in quantum mechanics to change the forit is, in the practice of several models, not well established.
of the Hamiltonian by a unitary transformation without While it is clear that starting from a Gaussian expression for
changing the physics, rather than with the gauge fixing dethe Wilson loop a relation like Ed41) is going to hold, it is
pendence itself. What typically happens in perturbative calnhot guaranteed that iiv potentials will not show up if the
culations, which match non-gauge-invariant Green functions(aussian approximation of the Wilson loop is implemented
is that depending on the gauge one uses, one gets a differeatt some intermediate step of the calculation.

form of the potential. The different forms are equivalent and

can be obtained from each other by unitary transformations.

More precisely, from the discussion in the Appendix it fol- VI. CONCLUSIONS

lows thatVE®"Ym, at O(«2), can be rewritten in terms of an We h btained t and ‘urbati
O(as/m?) potential® However, whereas the Abelian piece € have oblained an exact and nonperturbalive expres-

found in[26] can be obtained from the general expressions$on forVy, the QQ potential at order 1. This expression
for the O(1/m?) potential [6], this is not so for the non- 'S shown in Eq(38). The perturbative calculation of it up to

Abelian piece in Eq(39), since there is no non-Abelian con- order a agrees wit{23,24 and is consistent with the one-
tribution at the tree level. Therefore, we conclude that Eql00P contribution of(26]. However, the existence of a non-
(39) represents a genuine new potential not considered in therturbative contribution at order ri/was, to our knowl-
past in the nonperturbative parametrizations of the QCD po€dge, not considered before in the literature, be it in
tential in terms of Wilson loops. Finally, let us mention that, Phenomenological applicatiori4] or in attempts at obtain-

to our knowledgeV/?*" has never been computed using Wil- ing the nonperturbative potentials from QC®H-6]. We note
son loops before. that via a unitary transformation themiterms can, in certain

circumstances, be reshuffled inn/ (and higher terms in
the potential(see the Appendix When these circumstances
B. Quenched QED apply (i.e., whenV;<m?v?), our results do not have imme-
Let us consider quenched QED. In this situation thediate consequences on phenomenological models where the
Wilson-loop average is exactly knowiit reduces to Gauss- full set of 1/m? potentials are considered and input As-
ian integrals; see, for instand®7]) and can be written as  saze However, when they do ndi.e., whenV;~m?v?),
our results imply that a i potential should be included in

2r1 1 T2 T2 : ;
(W) =expl — g_f dsf ds’f dt dt'ryr, those models. In e|the_r_case, they are_extremely important for
2Jo 0 T2 TR the attempts at obtaining the potentials from lattice QCD,
since, upon doing the above-mentioned reshuffling, the 1/
4 (e o potential given by Eq(38) generates ti? terms different
XH(t=t,(s=s )r)], (40 from the ones calculated so fE8].

The most promising way to have an estimate of the non-
wheref;;(t,r)="f;(t,r)=(E;(t,r)E;(0,0)). As a direct con- perturbative behavior of the correlators appearing in(B§).
sequencéfor a derivation, see, for instande8]) we obtain  is by a lattice simulation. In practice this can already be done

from the lattice data of Ref8], since the correlators we get
(EM)-E(t"))a—(EM)a- ((Et))o="fi(t—t',0). are of the same type. Such lattice data could be of interest for
(41  at least two reasons. If the potential found on the lattice
happens to be small in the long range, it would support the
Therefore, since the terrf;(t—t’,0) is a self-energy-type Abelian dominance picture. In the short range it should show
contribution, the potential contribution &f; [as defined in  the interplay of the perturbativéknown) region with the
Eq. (38)] vanishes exactly in quenched QED. The same renonperturbative one.
sult is obtained in Ref.17]. When there are no additional US degrees of freedom, the

5For the general, unequal mass, case the Abelian term is of the"The reader may, for instance, compare the formulas of R&fS.
type 1/(m;+m,) and the field redefinition discussed in the Appen- with the predictions of some Gaussian models discussed in Ref.
dix would transform it into a 1#;m,) term. [29].
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adopted nonperturbative procedure can be easily generalized p? 1
to the evaluation of higher order terms in the inverse mass H'=7_—+Vo+ —+ _W-(VVo)+ 2 W-(VVy)
expansior30]. The inclusion of US degrees of freedom in
the nonperturbative regime will be discussed elsewhere. 2 r
ZW{(VWI(VIVg) = o2 {p' P!, (VW)
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[9]. price to pay is the appearance of new terms at order’ 1/
(and highey. Of course, the leading size of these new terms
is the same as the origin&l; /m. In particular, sincep, V,
APPENDIX ~my and Vo~mu?, we get W~V,/(m%?% and

i Inl (Tiwi 2 i o
In this appendix we show that there exists a unitary trans’-{p P (VWHIM™~V, /m. The size of the remaining

2 ‘a2 3.2 i
formation that reshuffles momentum-independent tgrms L/im* induced terms i8/3/(m"y”) and, hence, it depends on

in 1/m? momentum-dependent and momentum-independerﬂ1e size ofV,/m, .Wh'Ch IS a priori un.known. On general
terms. Let us consider the Hamiltonian grounds the maximum size of, is given by the largest

available scale, namelynv, and hence at most; ~m??2.
2 V(1) Reasoning in the same way, thenf/potentials(calculated
H= p—+V0(r) L7 (A1) via the quantum-mechanical matching 80]) are not bigger
2m than muv®. However, from the conditiogW,p}<m, it fol-
lows that the reshuffling of the i/ potential to 1fh? poten-
The unitary transformation tials may be done in the way above onl\Mf<m??. As a
consequence, all the terms @f(V2/(m3v?)) have a size
much smaller thamuv?2. More specifically, if, for instance,
Vi~m?3, then the terms oD(VZ/(m®v?)) are of order
mv* and hence suppressed by a faatowith respect to the
transformsH—H’=UTHU. More explicitly, under the con- original 1/ potential (as well as with respect to theri?
dition {W,p}<m (which is necessary in order to maintain potentials obtained from the quantum-mechanical matghing
the standard form of the leading terms in the HamiltonianWe note that in perturbation theory € a) V;~m?v* and,
i.e., a kinetic term plus a velocity independent potenti&l therefore the terms oO(Vi/(mSUZ)) are suppressed by a
reads factorv?.

U=ex] ~ - wir)pi|
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