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Within an effective field theory framework, we obtain an expression for the next-to-leading term in the 1/m

expansion of the singletQQ̄ QCD potential in terms of Wilson loops, which holds beyond perturbation theory.
The ambiguities in the definition of the QCD potential beyond leading order in 1/m are discussed and a specific
expression for the 1/m potential is given. We explicitly evaluate this expression at one loop and compare the
outcome with the existing perturbative results. On general grounds we show that for quenched QED and fully
Abelian-like models this expression exactly vanishes.
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I. INTRODUCTION

After the discovery of the first heavy-quark bound stat
the c and theY systems, it was soon realized that a nonr
ativistic picture seemed to hold for them. This is charact
ized by, at least, three scales: hard~the massm, of the heavy
quarks!, soft ~the relative momentum of the heavy-quark
antiquark upu;mv, v!1), and ultrasoft~US, the typical
binding energyE;mv2 of the bound-state system!. It was
also seen that, if one wanted to describe the whole spec
of the c and theY systems, a perturbative evaluation of t
potential was not sufficient. This triggered the investigat
of these systems by all sorts of potential models~see@1# for
some reviews!, which are, in general, quite successful ph
nomenologically. Since then, a lot of effort has been devo
to obtaining the relevant potentials to be used in the Sch¨-
dinger equation of such models from QCD@2–9# by relating
these potentials to some Wilson loops that could eventu
be computed on the lattice or by using some vacuum mod
The expression for the leading spin-independent potentia
O(1/m0), has been known for a long time and correspond
the static Wilson loop@2,3#. The expressions for the leadin
spin-dependent potentials in the 1/m expansion, ofO(1/m2),
have been calculated in Refs.@4,5#. The 1/m corrections to
these potentials have proved to be very difficult to obtain.
our knowledge the spin-independent case has been addr
only in Refs.@6,9#. The result of Ref.@6# does not reproduce
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the one-loop perturbative QCD potential~see discussion a
the end of Sec. V A! and, therefore, appears to be incom
plete. In Ref.@9# the author does not succeed in obtaini
suitable finite expressions. We conclude, therefore, that
question of the 1/m corrections to the QCD potential has n
been settled yet and hence deserves further studies. In
work we will present anab initio and systematic calculation
of the QCD potential up toO(1/m). We will get a new
expression of the 1/m potential that is finite, consistent with
one-loop perturbative QCD, and suitable to be evaluated
lattice simulations.

We will perform the calculation by integrating out in tw
steps the hard and the soft scales characterizing the he
quark–antiquark system. This is implemented by introduc
suitable effective field theories. This approach allows us
express the heavy-quark–antiquark dynamics in terms
systematic and controlled expansions. It has proved to b
powerful computational tool in several different situation
For instance, the hard logarithmic corrections (; ln m) to the
Eichten-Feinberg-Gromes potentials were computed in
way in Ref.@10# ~see also@8#!. Moreover, we believe that the
effective field theories provide a suitable framework whe
eventually some long-standing conceptual questions will
clarified. In particular, the extent of validity of the naiv
potential picture for the heavy quarkonium dynamics,
sumed in potential models, could be affected by the con
eration of extra degrees of freedom such as hybrids
pions.

The two QCD effective field theories that arise from i
tegrating out the scalesm andmv are called nonrelativistic
QCD ~NRQCD! and~pNRQCD!, respectively. Nonrelativis-
tic QCD was first introduced in Ref.@11#. It has an ultravio-
let cutoff much smaller than the massm and much larger
©2000 The American Physical Society23-1
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than any other scale~in particular much larger thanLQCD,
which means that the matching from QCD to NRQCD c
always be done perturbatively@12,13#!. NRQCD has proved

to be extremely successful in studyingQ̄Q systems near
threshold. The Lagrangian of NRQCD is organized in po
ers of 1/m, making in this way explicit the nonrelativisti
nature of the described systems. The maximum size of e
term can be estimated by assigning the soft scale to
dimensionful object. In order to connect NRQCD with a p
tential picture the degrees of freedom with energies m
larger thanmv2 have to be integrated out. Once this is don
one is left with a new QCD effective field theory calle
potential NRQCD@14,15#.1 Strictly speaking, pNRQCD ha
two ultraviolet cutoffsL1 and L2. The former satisfies the
relationmv2!L1!mv and is the cutoff of the energy of th
quarks, and of the energy and the momentum of the glu
whereas the latter satisfiesmv!L2!m and is the cutoff of
the relative momentum of the quark–antiquark system,p.
This theory has been thoroughly studied, and its match
with NRQCD performed, in the situationmv@LQCD. In this
case the matching can be performed perturbatively. In
paper we will allowLQCD to be as large asmv and, there-
fore, we cannot rely on perturbation theory. Neverthele
we will assume that the matching between NRQCD a
pNRQCD can be performed order by order in the 1/m ex-
pansion. We will present, for the general situationLQCD

&mv, the matching of NRQCD to pNRQCD at the next-t
leading order in the 1/m expansion in the singlet sector~to be
defined later!. This will prove to be equivalent to computin
the 1/m potential. Formulas that are similar to those in t
classical papers of Refs.@4–6# will be worked out. No fur-
ther degrees of freedom with US energy besides the sin
will be considered. This means that nonpotential effects w
be neglected in this paper~in the perturbative situation thi
would be equivalent to working at zero order in the mu
pole expansion!. A detailed study of the matching betwee
NRQCD and pNRQCD in the situationLQCD&mv, includ-
ing US effects, will be worked out elsewhere.

The paper is organized in the following way. In Sec. II w
introduce NRQCD up to order 1/m and discuss its static
limit. Moreover, we define what will be pNRQCD in th
present context. In Secs. III and IV we derive the 1/m cor-
rections to the potential, by matching NRQCD to pNRQC
The Green functions are worked out in the Wilson loop la
guage. The 1/m potential can be written in a simple way a
insertions of chromoelectric fields on a static Wilson loop.
Sec. IV we compute the potential perturbatively up to o
loop. Quenched QED and Gaussian models of the Q
long-range dynamics are also discussed. Finally, Sec. V
devoted to the conclusions and the Appendix to show h
unitary transformations affect the form of the potential.

1For related work on these issues within the perturbative reg
of NRQCD we refer to@12,13,16,17#.
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II. NRQCD AND pNRQCD

The Lagrangian of NRQCD up to order 1/m reads

LNRQCD5c†S iD 01
D2

2m1
1gcF

(1) s•B

2m1
Dc

1x†S iD 02
D2

2m2
2gcF

(2) s•B

2m2
Dx2

1

4
Gmn

a Gmna,

~1!

wherec is the Pauli spinor field that annihilates the fermio
x is the Pauli spinor field that creates the antifermion,iD 0

5 i ]02gA0, and iD5 i“1gA. The matching coefficients
cF

( j ).11O(as) are not going to be relevant here. For sim
plicity, light fermions are not explicitly displayed. Their in
clusion does not change the results of this paper, althoug
changes the expression of some intermediate formulas.

The Hamiltonian associated with the Lagrangian~1! is

H5H (0)1
1

m1
H (1,0)1

1

m2
H (0,1)1•••,

H (0)5E d3x
1

2
~EaEa1BaBa!,

H (1,0)52
1

2E d3x c†~D21gcF
(1)s•B!c,

H (0,1)5
1

2E d3x x†~D21gcF
(2)s•B!x,

and the physical states are constrained to satisfy the G
law. We are interested in the one-quark–one-antiquark se
of the Fock space.

It will prove convenient to study the static limit. The one
quark–one-antiquark sector of the Fock space can
spanned by

un;x1 ,x2&
(0)
ªc†~x1!x~x2!un;x1 ,x2&

(0), ;x1 ,x2 , ~2!

where un;x1 ,x2&
(0) is a gauge-invariant eigenstate~up to a

phase!, as a consequence of the Gauss law, ofH (0) with
energyEn

(0)(x1 ,x2); un;x1 ,x2&
(0) encodes the gluonic conten

of the state—namely, it is annihilated byx†(x) and c(x)
(;x). It transforms as a 3x1

^ 3x2
* under color SU~3!. The

normalizations are taken as follows:

(0)^m;x1 ,x2un;x1 ,x2&
(0)5dnm , ~3!

(0)^m;x1 ,x2un;y1,y2&
(0)5dnmd (3)~x12y1!d (3)~x22y2!.

~4!

Notice that sinceH (0) does not contain any fermion field
un;x1 ,x2&

(0) itself is also an eigenstate ofH (0) with energy
En

(0)(x1 ,x2). We have made it explicit that the positionsx1

and x2 of the quark and antiquark, respectively, are go
quantum numbers for the static solutionun;x1,x2&

(0),
whereasn generically denotes the remaining quantum nu
e

3-2
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QCD POTENTIAL AT O(1/m) PHYSICAL REVIEW D 63 014023
bers, which are classified by the irreducible representat
of the symmetry groupD`h ~substituting the parity generato
by CP). The ground-state energyE0

(0)(x1 ,x2) is usually as-
sociated with the static potential~see @15# for important
qualifications on this association! and the remaining energie
En

(0)(x1 ,x2), nÞ0, are usually called gluonic excitations b
tween static quarks. They can be computed on the lat
~see, for instance,@18#!. Translational invariance implies tha
En

(0)(x1 ,x2)5En
(0)(r ), wherer5x12x2.

The gap between different states at fixedr will depend on
the dimensionless parameterLQCDr . In a general situation
there will be a set of states$nus% such thatEnus

(0)(r );mv2 for

the typicalr of the actual physical system. We denote the
states as ultrasoft. The aim of pNRQCD is to describe
behavior of the ultrasoft states~pNRQCD has been intro
duced in@14# and discussed in different kinematic situatio
in @15#!. Therefore, all the physical degrees of freedom w
energies larger thanmv2 will be integrated out from
NRQCD in order to obtain pNRQCD. In the perturbativ
situationLQCDr !1, which has been studied in detail in@15#,
$nus% corresponds to a heavy-quark–antiquark state, in ei
a singlet or an octet configuration, plus gluons and light f
mions, all of them with energies ofO(mv2). In a nonpertur-
bative situation, which we will generically denote b
LQCDr;1, it is not so clear what$nus% is. One can think of
different possibilities. Each of them will give, in principle
different predictions and, therefore, it should be possible
experimentally discriminate between them. In particular, o
could consider the situation where, because of a mass ga
QCD, the energy splitting between the ground state and
first gluonic excitation is larger thanmv2, and because o
chiral symmetry breaking of QCD, Goldstone bosons~pions
and kaons! appear. Hence, in this situation,$nus% would be
the ultrasoft excitations about the static ground state~i.e., the
solutions of the corresponding Schro¨dinger equation!, which
will be named the singlet, plus the Goldstone bosons. If
switches off the light fermions~pure gluodynamics!, only the
singlet survives and pNRQCD becomes totally equivalen
a quantum-mechanical Hamiltonian, thus providing us wit
qualitative explanation of how potential models emerge fr
QCD. In addition, we shall see below how quantitative fo
mulas can be provided in order to calculate the potential
QCD.

In this paper, we will only study the pure singlet sect
with no reference to further ultrasoft degrees of freedom
this situation, pNRQCD only describes the ultrasoft exci
tions about the static ground state of NRQCD. In terms
static NRQCD eigenstates, this means that onlyu0;x1 ,x2&

(0)

is kept as an explicit degree of freedom whereasun;x1 ,x2&
(0)

with nÞ0 are integrated out.2 This provides the only dy-
namical degree of freedom of the theory. It is described
means of a bilinear color singlet fieldS(x1 ,x2 ,t), which has
the same quantum numbers and transformation prope

2In fact, we are only integrating out states with energies lar
thanmv2 and all the states withnÞ0 will be understood in this way
throughout the paper.
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under symmetries as the static ground state of NRQCD in
one-quark–one-antiquark sector. In the above situation,
Lagrangian of pNRQCD reads

LpNRQCD5S†@ i ]02hs~x1 ,x2 ,p1 ,p2!#S, ~5!

wherehs is the Hamiltonian of the singlet~in fact, hs is only
a function of r , p1 , p2, which is analytic in the two last
operators but typically contains nonanalyticities inr !, p15
2 i“x1

, andp252 i“x2
. It has the following expansion up to

order 1/m:

hs~x1 ,x2 ,p1 ,p2!5
p1

2

2m1
1

p2
2

2m2
1V0~r !1S 1

m1
1

1

m2
DV1~r !.

~6!

In this work we will present the matching between NRQC
and pNRQCD within an expansion in 1/m using the static
limit solution as a starting point. Whereas this can be ju
fied within a perturbative framework, in the nonperturbati
case the validity of the 1/m expansion cannot be general
guaranteed.3 We note that this assumption is implicit in a
the attempts at deriving the nonperturbative potentials fr
QCD we are aware of. Furthermore, we would like to e
phasize the following important point. The matching calc
lation can be done independently of what the specific cou
ing in pNRQCD is. As argued in@13,17,15#, when doing a
matching calculation we are integrating out high energy
grees of freedom. Hence, the Wilson coefficients~potentials!
that this integration produces are independent of what
low energy dynamics is. The 1/m expansion just provides a
convenient way to organize the matching calculation. O
should not conclude that the relative size of the differe
potentials in the pNRQCD Lagrangian is trivially dictated b
the 1/m expansion.

III. WILSON LOOP MATCHING

In this section we will work out the matching up to ord
1/m in a language that is close to the traditional approach
Eichten and Feinberg@4,9#. The matching between NRQCD
and pNRQCD is done by enforcing suitable Green functio
to be equal in the two theories at the desired order in 1/m. In
this section we shall consider space-time Green functio
which are more conventional in nonperturbative studies.

Let us consider an interpolating state with a nonvanish
overlap with the ground state,

c†~x1!f~x1 ,x2!x~x2!uvac&, ~7!

r
3See@19# for an example where certain degrees of freedom can

be integrated out in the 1/m expansion.
3-3
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where f may in principle be everything that makes th
above state overlap with the ground stateu0& (0). We will use
here the following popular choice:4

f~y,x;t ![P expH igE
0

1

ds~y2x!•A„x2s~x2y!,t…J ,

~8!

where P is a path-ordering operator. We also defi
f(y,x;t50)[f(y,x). It is going to be useful to introduce
an(x1 ,x2), defined by

c†~x1!f~x1 ,x2!x~x2!uvac&5(
n

an~x1 ,x2!un;x1 ,x2&
(0).

The statesun& (0) being defined up to a phase, it is convenie
to fix them in such a way that all the coefficientsan are real.
The identification of the singlet from the state~7! depends on
the interpolating field used in NRQCD. This dependence
reflected in different normalization factorsZ. The matching
condition reads

x†~x2 ,t !f~x2 ,x1 ;t !c~x1 ,t !5Z1/2~x1 ,x2 ,p1 ,p2!S~x1 ,x2 ,t !.
~9!

As in hs , the normalization factorZ only depends onr , p1,
andp2, and is given in the form of an expansion in 1/m as

Z~x1 ,x2 ,p1 ,p2!5Z0~r !1S 1

m1
1

1

m2
DZ1~r !

1 iZ1,p~r !r•S p1

m1
2

p2

m2
D1•••, ~10!

where we have made use of the fact that the NRQCD
grangian~1! as well as the pNRQCD Lagrangian~5! are
invariant under aCP plus m1↔m2 transformation.

We will match the Green functionGNRQCD defined by

GNRQCD5^vacux†~x2,T/2!f~x2 ,x1 ;T/2!c~x1,T/2!

3c†~y1 ,2T/2!f~y1 ,y2 ;2T/2!

3x~y2 ,2T/2!uvac&, ~11!

with the corresponding Green function in pNRQCD~here
and in the rest of the paper, if not explicitly stated, dep
dence onx1,2, p1,2 is understood!:

GpNRQCD5Z1/2e2 iThsZ†1/2d (3)~x12y1!d (3)~x22y2!.
~12!

4With this choice we assume that the ground state has theSg
1

quantum numbers~see@15#!. This is so in perturbative QCD as we
as nonperturbative QCD according to the available lattice sim
tions.
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A. Calculation in NRQCD

We expandGNRQCD order by order in 1/m:

GNRQCD5GNRQCD
(0) 1

1

m1
GNRQCD

(1,0) 1
1

m2
GNRQCD

(0,1) 1•••.

Integrating out the fermion fields one gets

GNRQCD
(0) 5^Wh&d (3)~x12y1!d (3)~x22y2!, ~13!

GNRQCD
(1,0) 5

i

2E2T/2

T/2

dt^D2~ t !&hd (3)~x12y1!d (3)~x22y2!.

~14!

Analogous formulas hold here and in the following f
GNRQCD

(0,1) . For simplicity we will not display them. The angu
lar bracketŝ •••& stand for the average value over the Yan
Mills action, Wh is the rectangular static Wilson loop,

Wh[P expH 2 ig R
r 3T

dzm Am~z!J ,

and the angular bracketŝ•••&h[^ . . . Wh& stand for the
average over the gauge fields in the presence of the s
Wilson loop (̂ 1&h5^Wh&). For further convenience we
also definê ^•••&&h[^•••Wh&/^Wh&. We use the conven
tion that, if not specified, fields act on the first quark lin
e.g., D(t)[D(x1 ,t), E(t)[E(x1 ,t), and so on. We have
used time reversal̂B(t)&h52^B(2t)&h to eliminate the
spin-dependent term in Eq.~14!. Therefore, we can alread
state that no spin-dependent potential appears atO(1/m) @4#.

It is useful to introduce at this point two identities involv
ing covariant derivatives and Schwinger lines:

~ i! D~x,t !f~ t,x,t8,x!

5f~ t,x,t8,x!D~x,t8!1 igE
t8

t

dt9f~ t,x,t9,x!

3E~x,t9!f~ t9,x,t8,x!,

~ ii ! D~x1 ,t !f~x1 ,x2 ;t !

[ igr3E
0

1

ds sf„x1 ,x8~s!;t…

3B„x8~s!,t…f„x8~s!,x2 ;t…1f~x1 ,x2 ;t !“x1
,

x8~s!5sx11~12s!x2 ,

where f(t,x,t8,x)[P exp$2ig*t8
t dt9 A0(x,t9)%. In the first

reference in@4#, both identities~i! and ~ii ! were derived.
Identity ~ii ! corrects their equation~4.7c!. As a by-product of
the above identities, we get

“x1
^Wh&5 igE

2T/2

T/2

dt^E~ t !&h1^Oi~2T/2!&h

2^Of~T/2!&h , ~15!

where
-

3-4
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QCD POTENTIAL AT O(1/m) PHYSICAL REVIEW D 63 014023
Oi~ t !5 igrE
0

1

ds sf„x1 ,x8~s!;t…B„x8~s!,t…

3f„x8~s!,x2 ;t…, x8~s!5x21sr ,

Of~ t !5 igrE
0

1

ds~12s!f„x2 ,x9~s!;t)B~x9~s!,t !

3f„x9~s!,x1 ;t…, x9~s!5x12sr .

Let us note that time-reversal symmetry gives^ igE(t)&h

5^ igE(2t)&h and ^Oi(2T/2)&h52^Of(T/2)&h .
Using the above relations, Eq.~14! can be worked out,

giving

GNRQCD
(1,0) 5

i

2 H T

2
“x1

2 ^Wh&1
T

2
^Wh&“x1

2

1T^Of~T/2!•Oi~2T/2!&h1 igE
2T/2

T/2

dtS T

2
2t D

3^Of~T/2!•E~ t !&h2 igE
2T/2

T/2

dtS T

2
1t D

3^E~ t !•Oi~2T/2!&h1
g2

2 E
2T/2

T/2

dtE
2T/2

T/2

dt8

3ut2t8u^E~ t !•E~ t8!&hJ
3d (3)~x12y1!d (3)~x22y2!. ~16!

B. Calculation in pNRQCD

Let us consider the Green function defined in Eq.~12!.
Expanding it up to order 1/m, we obtain

GpNRQCD5GpNRQCD
(0) 1

1

m1
GpNRQCD

(1,0) 1
1

m2
GpNRQCD

(0,1) .

Inserting Eqs.~6! and ~10! into Eq. ~12!, we obtain

GpNRQCD
(0) 5Z0e2 iV0Td (3)~x12y1!d (3)~x22y2!, ~17!

GpNRQCD
(1,0) 5Z0e2 iV0TH Re@Z1#

Z0
2

1

2 S“•r
Z1,p

Z0
D

2
i

2
T~“V0!•r

Z1,p

Z0
1 iT

“x1

2

2
2 iTV1

1
iT

8 S 4
~“Z0!

Z0
•“x1

12
~“2Z0!

Z0
2

~“Z0!2

Z0
2 D

1
T2

4 S 2~“V0!•“x1
1

~“Z0!

Z0
•~“V0!1~“2V0! D

2
iT3

~“V0!2J d (3)~x12y1!d (3)~x22y2!, ~18!

6

01402
where“5“ r . As in the NRQCD case, we do not displa
the analogous formulas forGpNRQCD

(0,1) . In order to keep Eqs
~17! and~18! simpler, we have already used the fact thatZ0
andZ1,p can be chosen as real. This follows from the matc
ing to GNRQCD

(1,0) Eq. ~16!, once any constant phase inZ0 is
conventionally set to zero.

C. Matching

At O(1/m0) we match Eq.~13! with Eq. ~17!. We obtain

V05 lim
T→`

i

T
ln^Wh&. ~19!

At O(1/m) we match Eq.~16! with Eq. ~18!. We obtain

V11
1

2
~“V0!•r

Z1,p

Z0

5 lim
T→`

F2
1

8 S ~“Z0!

Z0
D 2

1 i
T

4

~“Z0!

Z0
•~“V0!1

T2

12
~“V0!2

2
g

4E2T/2

T/2

dtH S 12
2t

T D ^^Of~T/2!•E~ t !&&h

2S 11
2t

T D ^^E~ t !•Oi~2T/2!&&hJ
2

1

2
^^Of~T/2!Oi~2T/2!&&h2

g2

4TE2T/2

T/2

dtE
2T/2

T/2

dt8

3ut2t8u^^E~ t !•E~ t8!&&hG . ~20!

A similar expression with neither end-point string contrib
tions nor normalization factors has been obtained in@9#. The
right-hand side of Eqs.~19! and ~20! can be shown to be
finite in theT→` limit. This is not obvious from the point of
view of a pure Wilson-loop calculation in the spirit of Re
@4#, as is apparent from the difficulties met by the author
@9# ~the normalization factors are crucial in order to get
finite expression!. For this reason and because such kinds
arguments may become relevant to future analyses
Wilson-loop correlators, we mention here the relevant st
of the proof.

~a! Inserting the identity operator(un& (0) (0)^nu into the
Wilson-loop average, the latter may be written as

^Wh&5(
n

e2 iEn
(0)Tan

2 .

Doing the same for the average^E(t)&h one obtains
3-5
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^E~ t !&h5(
n

e2 iEn
(0)Tan

2 (0)^nuEun& (0)

1 (
nÞm

e2 i (En
(0)

1Em
(0))T/21 i (En

(0)
2Em

(0))t

3anam
(0)^nuEum& (0).

~b! End-point strings containing the operatorsOf andOi
select intermediate states with quantum numbers diffe
from the singlet. This can be checked directly on the defi
tions of these operators. As an immediate consequence,
relators containing the operatorsOf andOi in Eq. ~20! van-
ish in theT→` limit and do not contribute to the potentia

~c! From Eq. ~15! and time-inversion invariance of th
chromoelectric field, it follows that

2~“V0!5 (0)^0ugEu0& (0),

~“Z0!52(
nÞ0

a0an

(0)^0ugEun& (0)

En2E0
.

~d! Inserting the identity operator into the correlat
^E(t)•E(t8)&h , it may be written as

^E~ t !•E~ t8!&h5 (
n,m,s

anam
(0)^nuEus& (0) (0)^suEum& (0)

3e2 i (En
(0)

1Em
(0))T/2ei (En

(0)
2Es

(0))tei (Es
(0)

2Em
(0))t8,

for t.t8. With the above points~a!–~d! it is easy to show
that the right-hand side of Eqs.~19! and ~20! is finite in the
large-T limit. Their explicit expressions read

V05E0
(0) , ~21!

V11
1

2
~“V0!•r

Z1,p

Z0

5 lim
T→`

F2
1

8 S ~“Z0!

Z0
D 2

1 i
T

4

~“Z0!

Z0
•~“V0!

1
T2

12
~“V0!22

g2

4TE2T/2

T/2

dtE
2T/2

T/2

dt8ut2t8u

3^^E~ t !•E~ t8!&&hG
5

1

2 (
nÞ0

U (0)^nugEu0& (0)

E0
(0)2En

(0) U2

1~“E0
(0)! (

nÞ0

an

a0

(0)^nugEu0& (0)

~E0
(0)2En

(0)!2
. ~22!

Analogously, we can obtain matching expressions for
normalization factors. AtO(1/m0), the result isZ05ua0u2.
At O(1/m) a more complicated equality is obtained, whi
involves a combination ofZ1 andZ1,p . The fact that we have
01402
nt
i-
or-

e

two equations and three independent functions,Z1 , Z1,p ,
and V1, at O(1/m) makes the determination ofV1 ambigu-
ous. This ambiguity is intrinsic in the sense that any value
Z1,p andV1 that satisfies Eq.~22! will lead to the same phys
ics ~as far as one consistently works at higher orders in 1/m),
and has to do with the fact that a quantum-mechan
Hamiltonian is defined up to time-independent unitary tra
formations~see the Appendix!. As a consequence, the amb
guity in the definition ofV1 also gives rise to ambiguities in
the definition of the potentials of orderO(1/m2) and higher.
In the next section we will fixZ1,p ~and thenV1) by impos-
ing an extra matching condition, which will prove to be pa
ticularly convenient.

IV. QUANTUM-MECHANICAL MATCHING

In the previous section we have done the matching, co
paring Green functions in NRQCD and in pNRQCD. In th
section the comparison is between states and matrix elem
in NRQCD and in pNRQCD. The calculation, in terms
states, will be closer in philosophy to the usual quant
mechanics calculations in perturbation theory@20# ~see also
@21#!. Moreover, the whole procedure will share some sim
larities to the adiabatic approximation and the Born
Oppenheimer method as used in atomic physics calculat
@22#. The underlying assumption is that the difference
energies among states labeled with differentn is much larger
than the difference of energies among states labeled with
samen. In our case, since we only aim at correctly reprodu
ing the ground-state spectrum, we only need that the split
between the ground state and the first gluonic excitation
larger than the typical splitting of the states of the grou
state@taken ofO(mv2) by definition#. This is nothing but the
condition we have assumed throughout the present pape

H is not diagonal in the basis ofH (0) (un& (0)) with respect
to the n labeling. We consider instead a basis of states,
beled as

un;x1 ,x2&, ~23!

such that the HamiltonianH is diagonal with respect to thes
states,

^m;x1 ,x2uHun;y1,y2&5dnmEn~x1 ,x2 ,p1 ,p2!d (3)~x12y1!

3d (3)~x22y2!, ~24!

whereEn(x1 ,x2 ,p1 ,p2) is an analytic function inp1 , p2, and
such that they are normalized as

^m;x1 ,x2un;y1 ,y2&5dnmd (3)~x12y1!d (3)~x22y2!.
~25!

Conditions~24! and ~25! give

Hun;y1 ,y2&5E d3x1 d3x2un;x1 ,x2&En~x1 ,x2 ,p1 ,p2!

3d (3)~x12y1!d (3)~x22y2!. ~26!

A set of statesun& and an operatorEn that satisfy Eqs.~25!
and~26! can be obtained from the static solutionsun& (0) and
3-6
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En
(0) to any desired order of accuracy by working out form

las analogous to the ones used in standard quan
mechanics perturbation theory@20#. If we write un& and En
as an expansion in 1/m,

un&5un& (0)1
1

m1
un& (1,0)1

1

m2
un& (0,1)1•••, ~27!

En5En
(0)1

1

m1
En

(1,0)1
1

m2
En

(0,1)1•••, ~28!

we obtain, atO(1/m) for n50 ~when not specified, state
and energies are calculated inx1 andx2),

u0& (1,0)5
1

E0
(0)2H (0) (

nÞ0
E d3x18 d3x28un;x18 ,x28&

(0)

3 (0)^n;x18 ,x28uH
(1,0)u0& (0)

52
1

E0
(0)2H (0) (

nÞ0
H (0)^nugEu0& (0)

E0
(0)2En

(0)
•“x1

1
1

2S“x1

(0)^nugEu0& (0)

E0
(0)2En

(0) D 2
1

2

3 (
j Þ0,n

(0)^nugEu j & (0) (0)^ j ugEu0& (0)

~Ej
(0)2En

(0)!~Ej
(0)2E0

(0)!
J un& (0),

~29!

E0
(1,0)d (3)~x12y1!d (3)~x22y2!

5 (0)^0uH (1,0)u0& (0)

5S 2
“x1

2

2
1

1

2 (
nÞ0

U (0)^nugEu0& (0)

E0
(0)2En

(0) U2D
3d (3)~x12y1!d (3)~x22y2!. ~30!

These equations may be derived from the identities

~a! (0)^nuDx1
un& (0)5“x1

,

which follows from symmetry considerations, and

~b! (0)^nuDx1
u j & (0)5

(0)^nugE~x1!u j & (0)

En
(0)2Ej

(0)
; nÞ j ,

which follows from explicit calculation. Analogous formula
hold for the antiparticle contribution.

Matching

The aim of pNRQCD is to describe the behavior ofu0&.
The integration of high excitations is trivial using the ba
~23! since, in this case, they are decoupled fromu0&. There-
fore, the matching of NRQCD to pNRQCD is basically
rename things in a way such that pNRQCD reproduces
01402
-
m-

e

matrix elements of NRQCD for the ground state. The mat
ing conditions in this formalism read as follows:

u0&5S†uvac& and E0~x1 ,x2 ,p1 ,p2!5hs~x1 ,x2 ,p1 ,p2!.
~31!

Using Eq.~31! and Eq.~9! we obtain the normalization fac
tor, given the interpolating field:

Z1/2~x1 ,x2 ,p1 ,p2!d (3)~x12y1!d (3)~x22y2!

5^vacux†~x2!f~x2 ,x1!c~x1!u0;y1 ,y2&. ~32!

It is explicit now thaths and, hence, the potential, fixed b
Eq. ~31!, depend neither on the normalization factors nor
the specific shape of the end-point strings. Moreover, E
~31! and~32! provide matching conditions at any finite ord
in 1/m.

From Eqs.~31! and ~32! one could draw the conclusio
that the ambiguity in the computation ofV1, discussed in the
previous section, has disappeared. This is not the case.
tually, Eqs.~27! and ~28! with Eqs.~29! and ~30! only give
one of the possible solutions of Eqs.~26! and ~25!. Indeed,
these equations do not completely fix the stateun&. In stan-
dard quantum mechanics the state is fixed up to an arbit
constant phase. In our case, since we only diagonalize in
n space, this phase becomes a unitary operator;5 given a state
un& that satisfies Eqs.~26! and~25!, this means that the state

E d3x18 d3x28un,x18 ,x28&e
iOn(x18 ,x28 ,p18 ,p28)

3d (3)~x182x1!d (3)~x282x2!,

with On
†5On , still satisfy Eq.~25! and the Hamiltonian is

still diagonal inn with

En→eiOnEne2 iOn.

This freedom reflects the fact thaths is defined by the match
ing up to an arbitrary unitary transformation or, which is t
same, up to an arbitrary unitary field redefinition,

hs→eiO0hse
2 iO0,

and so does theZ. In order to make the calculations easie
we have taken advantage of this freedom by fixing the re
tive phase betweenu0& and u0& (0) following the standard
choice of quantum-mechanics perturbation theory. With t
choice, we obtain Eqs.~29! and ~30!; as we will see below,
this will allow us to obtain a compact expression forV1 in
terms of Wilson loops. Furthermore, the procedure can
easily generalized at any finite order in 1/m.

From Eqs.~29! and ~32! we can perform the matching a
O(1/m). We obtain

5Note that the phase is not completely arbitrary if we demand
stateun& to coincide with the unperturbed stateun& (0) in the limit
1/m→0. This constrainsOn(x,p) to smoothly go to zero in the
limit 1/m→0.
3-7
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Z0
1/25a0 , ~33!

Z1

Z0
1/2

5 (
nÞ0

an

E0
(0)2En

(0) H S“x1

(0)^nugEu0& (0)

E0
(0)2En

(0) D
22S (0)^nugEu0& (0)

~E0
(0)2En

(0)!2 D ~“x1
E0

(0)!

1 (
j Þ0,n

(0)^nugEu j & (0) (0)^ j ugEu0& (0)

~Ej
(0)2En

(0)!~Ej
(0)2E0

(0)!
J , ~34!

Z1,pr

Z0
1/2

52(
nÞ0

an

(0)^nugEu0& (0)

~E0
(0)2En

(0)!2
. ~35!

From Eqs.~30! and ~31! we get, up toO(1/m),

V0~r !5E0
(0)~r !, ~36!

V1~r !5
1

2 (
nÞ0

U (0)^nugEu0& (0)

E0
(0)2En

(0) U2

. ~37!

At first sight, this result seems of limited practical utilit
since it depends on the exact and complete solution of
bound state at order 1/m0. Fortunately this is not the case. I
fact, Eq.~20! suggests a very simple form for the 1/m poten-
tial:

V15 lim
T→`

S 2
g2

4TE2T/2

T/2

dtE
2T/2

T/2

dt8ut2t8u

3@^^E~ t !•E~ t8!&&h2^^E~ t !&&h•^^E~ t8!&&h# D .

~38!

Using the same technique as outlined in~a!–~d! of Sec. III C,
it can be proved that Eq.~38! is finite and equal to Eq.~37!.

Equation~38! is the main result of the present work.
gives the leading 1/m correction to the heavy-quark potenti
expressed in terms of chromoelectric field insertions in
static Wilson loop, thus avoiding the explicit computation
the normalization factors. The potential appears, therefore
the same form as the potential calculated in Refs.@4–6# and
is suitable for lattice evaluations similar to those perform
in @8#. Moreover, the above expression expanded inas gives
the full perturbative series of the 1/m potential in the regime
where this expansion makes sense~i.e., mv@LQCD). In the
next section we will calculate from it the leading nonvanis
ing perturbative contribution to the 1/m potential, which will
coincide with the results of Refs.@23,24#. For the calculation
of some higher order perturbative corrections to theV1 po-
tential we refer to@25#. Finally, it is interesting to note tha
Eq. ~38! also holds if the correlators are evaluated on a W
son loop with infinitely large time extension~i.e., if we make
the limit T→` in the Wilson loops fort and t8 finite, and
01402
e

a
f
in

d

-

-

then evaluate the integrals!. This observation greatly simpli
fies the perturbative calculation and may also do so for n
perturbative ones.

V. APPLICATIONS

In this section we will consider Eq.~38! in perturbative
QCD and in quenched QED. In the first case we will evalu
the contribution to the potential at the leading nonvanish
order inas. In the second we will show that the potentialV1
vanishes exactly. This may be relevant to several Gaus
models used in the phenomenology of the nonperturba
dynamics of the strong interaction. We will shortly comme
on this.

A. Perturbative QCD

We perform the calculation in the Coulomb gauge. Sin
Eq. ~38! is a gauge-independent quantity, the result will ho
in any gauge. At orderas, the right-hand side of Eq.~38!
only gives a self-energy type of contribution, since the ch
moelectric fields are inserted on the same quark line. T
first nonvanishing contribution to the potential~i.e., depend-
ing on r ) appears at orderas

2 . Three types of diagrams arise
~i! Disconnected graphs. An example is shown by graph

~a! of Fig. 1. These graphs cancel in the difference of
right-hand side of Eq.~38!.

~ii ! Connected graphs with end-point strings contrib
tions. Nondisconnected graphs involving gluons attached
the end-point strings vanish in Eq.~38!. As noticed in the
previous section theT→` limit can also be performed in the
correlators before doing the time integrals in Eq.~38!. This
turns out to be quite useful here, making the irrelevance
these graphs to the potential manifest.

~iii ! Connected graphs with no end-point strings contrib
tions. The only nonvanishing graph contributing to Eq.~38!
is graph ~b! of Fig. 1. The analogous graph involving th
triple-gluon vertex, but with two transverse gluons attach
to the chromoelectric fields on the quark line, can be sho
to vanish in the limit of Eq.~38! by explicit calculation.

Therefore, considering all relevant contributions@which
reduce to graph~b! of Fig. 1# we get from Eq.~38!, at order
as

2 ,

V1
pert52CFCA

as
2

4r 2
. ~39!

FIG. 1. Dashed lines indicate Coulombic exchanges; curly li
transverse gluons. Graph~a! is the disconnected graph canceling t
T2(“V0)2/12 term in Eq.~20!. Graph~b! ~and the symmetric graph
which is understood! gives the only nonvanishing contribution t
the 1/m potential at orderas

2 in the Coulomb gauge. In other gauge
additional diagrams may be present.
3-8
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Equation ~39! coincides with the result of Refs.@23,24#
~which may also be obtained using the rules of@17#! and
with the non-Abelian part of the perturbative calculation
the 1/m potential done in@26#. In Ref. @26# also an Abelian
contribution to the 1/m potential is found. We have stresse
throughout the paper that there is no unique way to define
1/m potential and, therefore, different matching procedu
are, in general, expected to give different expressions fo
One may suspect that this is due to the fact that in R
@23,24# the Coulomb gauge is used whereas in@26# the Feyn-
man gauge is used. However, this has more to do with
freedom we have in quantum mechanics to change the f
of the Hamiltonian by a unitary transformation witho
changing the physics, rather than with the gauge fixing
pendence itself. What typically happens in perturbative c
culations, which match non-gauge-invariant Green functio
is that depending on the gauge one uses, one gets a diff
form of the potential. The different forms are equivalent a
can be obtained from each other by unitary transformatio
More precisely, from the discussion in the Appendix it fo
lows thatV1

pert/m, at O(as
2), can be rewritten in terms of a

O(as/m2) potential.6 However, whereas the Abelian piec
found in @26# can be obtained from the general expressio
for the O(1/m2) potential @6#, this is not so for the non-
Abelian piece in Eq.~39!, since there is no non-Abelian con
tribution at the tree level. Therefore, we conclude that E
~38! represents a genuine new potential not considered in
past in the nonperturbative parametrizations of the QCD
tential in terms of Wilson loops. Finally, let us mention tha
to our knowledge,V1

pert has never been computed using W
son loops before.

B. Quenched QED

Let us consider quenched QED. In this situation t
Wilson-loop average is exactly known~it reduces to Gauss
ian integrals; see, for instance,@27#! and can be written as

^Wh&5expH 2
g2

2 E
0

1

dsE
0

1

ds8E
2T/2

T/2

dtE
2T/2

T/2

dt8 r i r j

3 f i j ~ t2t8,~s2s8!r !J , ~40!

where f i j (t,r )5 f j i (t,r )5^Ei(t,r )Ej (0,0)&. As a direct con-
sequence~for a derivation, see, for instance,@28#! we obtain

^^E~ t !•E~ t8!&&h2^^E~ t !&&h•^^E~ t8!&&h5 f i i ~ t2t8,0!.
~41!

Therefore, since the termf i i (t2t8,0) is a self-energy-type
contribution, the potential contribution ofV1 @as defined in
Eq. ~38!# vanishes exactly in quenched QED. The same
sult is obtained in Ref.@17#.

6For the general, unequal mass, case the Abelian term is o
type 1/(m11m2) and the field redefinition discussed in the Appe
dix would transform it into a 1/(m1m2) term.
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Several QCD vacuum models@1,7,29# seem to approxi-
mate the Wilson-loop long-range nonperturbative dynam
with expressions analogous to Eq.~40!. The above consider
ations made for quenched QED may be relevant to them
a matter of fact, 1/m corrections do not seem to show u
there. Therefore, it is tempting to generalize the exact re
of quenched QED to Gaussian models of the QCD vacu
Nevertheless, some words of caution are needed. A m
consists in an approximation of QCD, which is supposed
coincide with a relevant limit on the QCD dynamics. Th
limit is unknown by definition. Therefore, how to impleme
it is, in the practice of several models, not well establish
While it is clear that starting from a Gaussian expression
the Wilson loop a relation like Eq.~41! is going to hold, it is
not guaranteed that 1/m potentials will not show up if the
Gaussian approximation of the Wilson loop is implemen
at some intermediate step of the calculation.7

VI. CONCLUSIONS

We have obtained an exact and nonperturbative exp
sion for V1, the QQ̄ potential at order 1/m. This expression
is shown in Eq.~38!. The perturbative calculation of it up to
orderas

2 agrees with@23,24# and is consistent with the one
loop contribution of@26#. However, the existence of a non
perturbative contribution at order 1/m was, to our knowl-
edge, not considered before in the literature, be it
phenomenological applications@1# or in attempts at obtain-
ing the nonperturbative potentials from QCD@4–6#. We note
that via a unitary transformation the 1/m terms can, in certain
circumstances, be reshuffled in 1/m2 ~and higher! terms in
the potential~see the Appendix!. When these circumstance
apply ~i.e., whenV1!m2v2), our results do not have imme
diate consequences on phenomenological models where
full set of 1/m2 potentials are considered and input asAn-
sätze. However, when they do not~i.e., whenV1;m2v2),
our results imply that a 1/m potential should be included in
those models. In either case, they are extremely importan
the attempts at obtaining the potentials from lattice QC
since, upon doing the above-mentioned reshuffling, the 1m
potential given by Eq.~38! generates 1/m2 terms different
from the ones calculated so far@6#.

The most promising way to have an estimate of the n
perturbative behavior of the correlators appearing in Eq.~38!
is by a lattice simulation. In practice this can already be do
from the lattice data of Ref.@8#, since the correlators we ge
are of the same type. Such lattice data could be of interes
at least two reasons. If the potential found on the latt
happens to be small in the long range, it would support
Abelian dominance picture. In the short range it should sh
the interplay of the perturbative~known! region with the
nonperturbative one.

When there are no additional US degrees of freedom,

he7The reader may, for instance, compare the formulas of Refs.@4,5#
with the predictions of some Gaussian models discussed in
@29#.
3-9
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adopted nonperturbative procedure can be easily genera
to the evaluation of higher order terms in the inverse m
expansion@30#. The inclusion of US degrees of freedom
the nonperturbative regime will be discussed elsewhere.
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APPENDIX

In this appendix we show that there exists a unitary tra
formation that reshuffles momentum-independent 1/m terms
in 1/m2 momentum-dependent and momentum-independ
terms. Let us consider the Hamiltonian

H5
p2

2m
1V0~r !1

V1~r !

m
. ~A1!

The unitary transformation

U5expS 2
i

m
$W~r !,p% D

transformsH→H85U†HU. More explicitly, under the con-
dition $W,p%!m ~which is necessary in order to mainta
the standard form of the leading terms in the Hamiltoni
i.e., a kinetic term plus a velocity independent potential! H8
reads
R

ed

s.

01402
ed
s

s

-

f.

-

nt

,

H85
p2

2m
1V01

V1

m
1

2

m
W•~“V0!1

2

m2 W•~“V1!

1
2

m2 Wi
„“

iWj~“ jV0!…2
1

2m2 ˆp
i ,$pj ,~¹ iWj !%‰

1OS 1

m3D . ~A2!

By choosing

W52
1

2
V1

“V0

~“V0!2
,

all the 1/m potentials in the Hamiltonian~A2! disappear. The
price to pay is the appearance of new terms at order 1m2

~and higher!. Of course, the leading size of these new ter
is the same as the originalV1 /m. In particular, sincep, “,
;mv and V0;mv2, we get W;V1 /(m2v3) and
ˆpi ,$pj ,(¹ iWj )%‰/m2;V1 /m. The size of the remaining
1/m2 induced terms isV1

2/(m3v2) and, hence, it depends o
the size ofV1 /m, which is a priori unknown. On genera
grounds the maximum size ofV1 is given by the largest
available scale, namely,mv, and hence at mostV1;m2v2.
Reasoning in the same way, the 1/m2 potentials~calculated
via the quantum-mechanical matching in@30#! are not bigger
than mv3. However, from the condition$W,p%!m, it fol-
lows that the reshuffling of the 1/m potential to 1/m2 poten-
tials may be done in the way above only ifV1!m2v2. As a
consequence, all the terms ofO„V1

2/(m3v2)… have a size
much smaller thanmv2. More specifically, if, for instance
V1;m2v3, then the terms ofO„V1

2/(m3v2)… are of order
mv4 and hence suppressed by a factorv with respect to the
original 1/m potential ~as well as with respect to the 1/m2

potentials obtained from the quantum-mechanical matchin!.
We note that in perturbation theory (v;as) V1;m2v4 and,
therefore the terms ofO„V1

2/(m3v2)… are suppressed by
factor v2.
ys.
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