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Next-to-leading-log renormalization-group running in heavy-quarkonium creation
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In the framework of potential nonrelativistic QCD, we obtain the next-to-leading-log renormalization-group
running of the matching coefficients for the heavy-quarkonium production currents near threshold. This allows
us to obtainSwave heavy-quarkonium production or annihilation observables with next-to-leading-log accu-
racy within perturbative QCD. In particular, we give expressions for the decays of heavy quarkoratiei to
and to two photons. We also compute thémea®In3a) corrections to the hydrogen spectrum.
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Heavy-quark—antiquark systems near threshold are char- The matching process, which basically means the compu-
acterized by the small relative velocityof the heavy quarks tation of the potentials, is carried out for a given external
in their center of mass frame. This small parameter produceiscoming (outcoming momentump (p’). Therefore, one
a hierarchy of widely separated scales{hard, mv (soft), has to sum over all of them in the pNRQCD Lagrangian,
mv? (ultrasof), etc. The factorization between them is effi- since they are still physical degrees of freedom as long as
ciently achieved by using effective field theories, where ongheir momentum is below, . In position space, this means
can organize the calculation as various perturbative exparthat an integral ovex, the relative distance between the
sions on the ratio of the different scales, effectively produc-heavy quarks, appears in the Lagrangian when written in
ing an expansion iw. The terms in these series get multi- terms of the heavy-quark—antiquark bilinear.
plied by parametrically large logs: in which can also be Within pNRQCD, integrals ovep (or x) appear when
understood as the ratio of the different scales appearing isolving the Schrdinger equation that dictates the dynamics
the physical system. Again, effective field theories are veryf the heavy quarkonium near threshold. At lower orders,
efficient in the resummation of these large logs once ahese integrals are finite, effectively replacipdy ~mas.
renormalization-grougRG) analysis of them has been per- Nevertheless, at higher orders in quantum mechanics pertur-
formed. This will be the aim of this paper for annihilation bation theory and/or if some singular enough operators are
and production processes near threshold. introduced(as will be the case of the heavy-quarkonium pro-

We will restrict ourselves, in this paper, to the situationduction currents singularities proportional to I, appear.
whereA ocp<ma (to be implicit in what follows, whichis  These must be absorbed by the potentials or by the matching
likely to be relevant, at least, fart production near thresh- coefficients of the currents. We will describe how to resum
old. the logarithms associated with this cutoff within pNRQCD.

Nonrelativistic QCD (NRQCD) [1] has an ultraviolet A RG analysis for nonrelativistic systems has been ad-
(UV) cutoff vyg={v,,vs} satisfyingmv <vyg<m. At this  dressed before in Reff5—7], where the authors match to an
stage v,~vs. v, is the UV cutoff of the relative three- effective theory called VNRQCD. In physical terms, this
momentum of the heavy quark and antiquapk,vs is the  theory should be equivalent to the previously defined pN-
UV cutoff of the three-momentum of the gluons and light RQCD once the RG evolution has been performed and the

quarks. soft degrees of freedom have been integrated out, as only
Potential NRQCO(pNRQCD [2] (se€[3,4] for detailg is  ultrasoft gluons and light fermions and potential quarks are
defined by its particle content and cutaffyg=1{vp, 7y}, left as dynamical degrees of freedom. We will compare with

wherew,, is the cutoff of the relative three-momentum of the their results. In some cases disagreement will be found.
heavy quarks and, is the cutoff of the three-momentum of Let us now describe the matching between QCD and
the gluons and light quarks. They satisfy the following in- pPNRQCD within a RG framework. For the case where no
equalities:|p|<v,<m and p?/m<w,.<|p|. Note that no divergences proportional to in appear, the procedure re-
gluons or light quarks with a momentum ©X(|p|) are kept duces to the results of Reff8] to which we refer for the
dynamical in pNRQCD. The motivation to integrate out notation and background material necessary to follow this
these degrees of freedom is that they do not appear as phygiaper.

cal (on-shel) states near threshold. Nevertheless, they can We first address the procedure that gives the running of
appear off shell and, since their momentum is of the order ofthe potentials. One first does the matching from QCD to
the relative three-momentum of the heavy quarks, integratin@lRQCD. The latter depends on some matching coefficients:
them out produces nonlocal termpotential$ in three-  c(vs) andd(v,,vs), which can be obtained order by order in
momentum space. Indeed, these potentials encode the (with v,=v) following the procedure described in Ref.
nonanalytical behavior in the transfer momentum of the[9]. Thec(v,) stand for the coefficients of the operators that
heavy quarkk=p—p’, of the order of the relative three- already exist in the theory with only one heavy quéitk.,
momentum of the heavy quarks. heavy-quark effective theoryHQET)] and the d(vy,vs)
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stand for the coefficients of the four heavy-fermion operathroughv,s, sincer,s needs to satisfp?/m<v,<<|p|. This
tors. The starting point of the renorma[ization—grou!o equationgier requirement holds if we fix, = vﬁ/m (this constraint
can be obtained from these calculatlt_)ns_ by setliggvs (g5 you how much you can run dowm,. in the potential
=m (up to a constant.of order)1In principle, we should before finding the cutofi2/m caused by the cutoff gf).

how compute the_ running of, and vs. Th_e running of the Within pPNRQCD, the r[))otentials should be introduced in
¢(vs) can be obtained using HQET techniqi6]. The run- the Schrdinger equation. This means that integrals over the

ning of thed(v, vs) is more complicated. At one loop, relative three-momentum of the heavy quarks take place.
does not appear and we effectively hale,,vs)=d(vs),  \yhen these integrals are finite one has 1/r ~mag and
whose running can also be obtained using HQET-like tech- 2/ m~ma?

niques[8]. At higher orders, the dependence gnappears - Therefore, one can lower,s down to~ma§
T ’ X repr ing the resul ined in . Insom in
and the running of thd(v,,vs) becomes more complicated. eproducing the results obtained in Refl. In some cases,

Fortunately, we need not compute the runningdain this particular in heavy-quarkonium creation, the integrals qver

more general case because, as we will see, the relevant e dlvergen.t , and the log strucFure Is dictated by the ultra-
iolet behavior ofp and 1f. This means that we cannot

ning of thed for near threshold observables can be obtained . . '
within pNRQCD. replace I¥ and Vus by their pr_lys_|cal expectation values
The next step is the matching from NRQCD to pNRQCD.bUt rather by their cutoffs mthm the integral ovep.
The latter depends on some matching coefficigptsten- ~ Therefore, for the RG equation of,, the anomalous
tials). They typically have the following structure; dimensions  will dezpend (at leading grder .Onz
V(c(ve),d(vp,ve),vs, vys.l). After matching, any depen- V(C(vp).d(vp,vp),vp,vp/m,vp) and the running will go
dence onvg disappears since the potentials have to be indeffom »,~m down to »,~mas. Note that, at this stage, a
pendent ofvs. Therefore, they could be formally written as Single cutoffv, exists and the correlation of cutoffs can be
V(c(1Ur),d(vy, 1), 1, wye,r). These potentials can be ob- seen. The importance of the idea that the cutoffs of the non-
tained order pt;y orljer,ilalzjs%ollowing the procedure of Refs relativistic effective theory should be correlated was first re-
s . -
[2—4]. The integrals in the matching calculation would de_ahzed by Luke, Manohar, and Rothstein in RE] (for an

pend on a factorization scale, which should correspond application to QED sefl2]). Note also that at the _matching
either tovg or to vs. In the explicit calculation, they could scalew,~m, what would be the ulrasoft cutoff is also of

be distinguished by knowing the UV and infraré) be- orderm. In this sense the statement in Rigf] that ultrasoft

havior of the diagrams: UV divergences are proportional togluons appear at the scate should be understood, a point

In v5, which should be such as to cancel thescale depen- that becomes relevant within a RG approach.

dence inherited from the NRQCD matching coefficients, anq\lR%I?Shaen?jboneR%%lgsig)uqc;nbn(;I?ﬁélﬂhitmicg lrllgv\llasetv(v)eneen
IR divergences tw,s. In practice, however, as long as we P g '

only want to perform a matching calculation at some givendoes the matching by computing the potentials order by or-

scaleu=vs= g, it is not necessary to distinguish between der in a at the matching scale,=vs=,s following the
— YsT Puss _ . . .
vs and v, (or if working order by order inag without at- procedure of Ref§2-—4] (by doing the matching at a generic

) : v, some of the running is trivially obtaingdThe structure
tempting any log resummation

Before going into the rigorous procedure to obtain the RG?f the potential —at this stage then  reads

equations of the potentials, let us first discuss their structurd (€(vp),d(vp,vp),vp,vp,vp) (and similarly for the deriva-
on physical grounds. As we have mentioned, the potential i§VeS With respect to In of the potentigl This provides the
independent ofs;. The independence of the potential with starting point of the renormallzatlon.-group evolutiongf
respect tov, allows us to fix the latter to &/ which, in a  (UP to a constant of order) 1The running ofv,s can then be
way, could be understood as the matching scale sar obtained followm_g the procedure _descrlbed in R¢fd, 8.
Therefore, 17, the point where the multipole expansion For the final point of the evolution ob, we choose
starts, would also provide us with the starting point of the

renormalization-group evolution af s (up to a constant of ) _ _ _
order 1. The running ofr,s can then be obtained following ~ “Roughly speaking, this result can be thought of as expanding In
the procedure described in Reff$1,8]. At the end of the day, 2round Inv, in the potential, i.e.,

we would haveV(c(1/r),d(v,, 1), 1k, v,g,r), where the V(e(LIr),d(vp, 1), L ,vg/m,r)

running onw, is known and also the running inrlif the d

is v, independent. So far, the only explicit dependence of the
potential onv, appears in thel. Nevertheless, the potential d.

is also implicitly dependent on the three-momentum of the NGl mY/ VS S @

heavy quarks through the requirement-1p<v,, and also  The In(,r) terms may give subleading contributions to the anoma-
lous dimension when introduced in divergent integrals guefhe
discussion at this stage is not very rigorous and a more precise
YIn practice, the potential is often first obtained in momentumdiscussion would require a full detailed study within dimensional
space so that one could then sgt=k. Note, however, that this is regularization, which goes beyond the aim of this work. Neverthe-
not equivalent to fixingzs= 1/r, since finite pieces will appear after less, we do not expect it to change the underlying idea, although it
performing the Fourier transform. deserves further investigation.

=V (c( vp),d(vp,vp), v ,VS/m, vp)
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Vys= vg/m. At the end of the day, we obtain isjustknown at one-loop order, since, at this order, it is only
Vic(v,).d(v., Vo 20, v =V(v.). vs dependent. Nevertheless, at higher orders_, dependence on
(T(hg)run(nipng F()))fvppgoes fro’#wf(mp()this was fixed when “p 2PPEArS. Thgrefore, the abpve m.ethod Is not C.O”.‘P'ete

. unless an equation for the running @f is provided. This is
the matghmg between QCD and NRQCD was dqmp to naturally given within pNRQCD. It appears through the it-
the physical scale of the problem~mas. If the running of  gration of potentials. Let us consider this situation in more
the NRQCD matching coefficients is known, the above resulfjetail. We first recall what the Hamiltonian in pNRQCD for
gives the complete running of the potentials. The proceduréhe singlet sector igsee Ref.[8] for notation and further
to get the running ot is known at any finite order. Fai it  detail9:

2 4 (1) (2 () @) (2)
h.=c p__ P _ %_CfCADS _CfDl*S E 2 +CfD2'S iLZ-I— %5(3)(0-1—%825(3)(0
S M a3 T 2mr? om? |1’ om? r® m? 3m?
3¢ 1) Jr—CfD(Sl)z’S Ls) @)
2m2 r3 4m2 r3 12! ’

where C¢=(N2-1)/(2N,) and we will setc,=c,=1 (we anomalous dimension can be organized within an expansion
will only eventually usec, for tracking of the contribution in agand using the free propagat(ﬁo). Moreover, each
due to this term The propagator of the singlet {formally) G(CO) produces a potential loop and one extra powemah

the numerator, which kills the powers inniof the different
1 3) potentials. This allows the mixing of potentials with different
E—hg powers in 1. One typical example would be the diagram in

Fig. 12 The computation of this diagram would go as fol-

At leading order(within a strict expansion imxg) the propa- lows:
gator of the singlet reads

1 1 1 7C Dd S SO 1 Qy
O = = = ———
LRSS L AL LN R GC(E) E—h(so) E—pz/m—cfas/r . E—p2/ m ( ) /m f r
If we were interested in computing the spectrum at 1 @CD@ o 1
O(ma?), one should consider the iteration of subleading po- XEZ plm  m2 (r) "E—p?m’ ®)
tentials (6hy) in the propagator as follows:
GL(E)ShG(E)- - - 5h.G(E). (4 Using 8®)(r)=|r=0)(r=0|, we can see that the relevant

computation readénstead ofav one could usex, since the
In general, if these potentials are singular enough, these comontrivial running ofay_is a subleadmg effect; nevertheless,
tributions will produce logarithmic divergences due to poten-ye keepay_since it allows us to keep track of the contribu-
tial loops. These divergences can be absorbed in the matCHons due to the Coulomb potentials
ing coefficientsD(®) andD ), of the local potential§those
r= 0>

proportional to the5(3)(r)] prowdmg the renormalization- 1 ay L
Amay, m

group equations of these matching coefficients in terms of Ci—
E-p’m~ " r E—p%m

vp. Let us explain how it works in detail. Since the singular
behavior of the potential loops appears fipf> a./r, a per- g
turbative expansion iny is licit in G¢(E), which can be J dp’ J’ c

approximated by (2m9) (2m)9 p'2—mE f P p’-mE

— 0 _
[ )= G(E) = E—piim m2onS 1

U= ©
Therefore, with the accuracy we aim at in this paper, a
practical simplification follows from the fact that the Cou-
lomb potential— Cas/r can be considered to be a perturba- 3The diagram in Fig. 1 is also the relevant one in order to obtain
tion as far as the computation of theypnultraviolet diver-  the O(ma?®in o) contribution to the hydrogen spectrum. See the
gences is concerned. This means that the computation of thappendix.
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whereD =4+ 2¢ andq=p—p’. This divergence is absorbed | [ I [ |
in fog contributing to its running at next-to-leading-log
(NLL) order as follows:

d
og D) ~an (rDER )+ (D
p

Therefore, even without knowing the running of théwhich
needs to be known at NLL order in this casee can obtain
the running of the potentigbne can also think of trading Eq.
(7) into an equation fod, which is the only unknown param-
eter within the potentidl This is so becaus®{?) is only
needed with LL accuracy in the right-hand side of EqQ. @) Q)
The above method deals with the resummation of logs D (X‘V D
d.s s dss

due to the hard, soft, and ultrasoft scales. Nevertheless, for

some specific kinematical situations even smaller scales

could appeatr. Their Study, however, goes beyond the aim of FIG. 1. One pOSSible contribution to the running]:ﬁfg at NLL.

this paper. In any case, pNRQCD can be considered to be thige first _picture represents0 the calculation in terms of the free
right starting point to study these kinematical situations.  duark-antiquark propagat@{” and the small rectangles the poten-

The matching scale between QCD and NRQCDviﬁ tlgls. The plc_tu_re below is the_ representation Wlthlnam_ore standard
~p~m. On the other hand, the matching scale betweeﬁj'agrammat,'c |nterprgtat|0n in terms of quarkg and antiquarks. The
NRSQCD and pNRQCD is also the hard Scakep'~ 2Im delta potentlals are displayed asnlocal |nteract|_on§ and the Coulomb

P otential as an object extended in spéet not in time.
~m. Therefore, one could wonder about the necessity oP
using the intermediate theory NRQCD. This is indeed the
attitude in Refs[5—7,12, where the authors directly perform by ng(M,M)=1—2C; ,
the matching between QCD and an effective field theory: ' ™
VNRQCD which, once the RG evolution has been performed ] o
and the soft degrees of freedom have been integrated outince we only aim at a NLL resummation in this paper. If we
should be physically equivalent to pNRQCD with, ~ compare with ?h_e previous discussion of the potent_lal_s, the
~mMmas. One motivation for going through NRQCD is that it matching coefﬂm_entsi play the role ofb,. Therefore, W|'Fh|n
allows to one perform the factorization of the hard scalePNRQCD, we will needd; ng(vp,vp) =byne(vp). We first
within an effective field theory framework. In fact, a full have to consideb; \g(vp,vs). In this case, unlike for the
factorization of the different regions of momentum thatd’s, there is no running due toy at the order of interest. This
ought to be integrated out is achieved within pNRQCD. Thiscan be easily seen in the Coulomb gauge. Moreover, the
extremely simplifies the matching process since one deaRatching from NRQCD to pNRQCD creates the potentials
with only one scalgregion of momentumin the loops at but leavesb; unchanged since soft loops or HQET-like cal-
each step. In the matching between QCD and NRQCD onlgulations give zero correction to; at the order of interest.
hard loops need to be considered, whereas in the matchirfgermally,
between NRQCD and pNRQCD only soft loops need to be . y
considered. Moreover, the structure of the UV cutoffs of the ~ P1nrd' ' x(0)[nraco=B1pnrt ' X(0)|pnroen: (10)
theory is better understood in this way. For instance, one can ) »
see that all thexplicit dependence of the potentials epis ~ O in other words, the matching condition reads
inherited from thed matching coefficients. Within a diagram- B1,pneB1nR(¥p), vus= vp)=b1 nr(vp) . The running ofv is
matic approach the factorization of the different regions ofélso trivial as there is none at the order of interébis
momentum has been achieved using the threshold expans:i!S‘r_fiIS to do with the fact that we are dealing with an anni-
[13]. hilation procesg Therefore, we finally haveB;(vy)

Let us now consider the case of the electromagnetic cur=B1pnr(D1NR(¥p), ¥5/M)=by n(¥p). We can see that we
rent, which will provide an example in which to apply the are in the analogous situation to the running f)(v,)
above discussion. The procedure is analogous to the potemersus the running ad(v,,v,). We now need the RG equa-
tials. We first do the matching from QCD to NRQCD: tion for B4(v,). This requires us to obtain the ultraviolet

. corrections to the current within pPNRQCD, keeping track of

Q.),//-Q(O)|QCD': by nri o' x(0) +O(L1/m)|Nroep-  (8)  the contributions due to the different potentials. Fortunately,

this calculation has already been done and we can extract the

We will just concentrate on the coefficieb . Within  relevant information from Refl16]. The computation goes
NRQCD, it should be understood as a functiorvgfand v, along the same lines as in the example of Fig. 1. The explicit
i.e., by nr(Vp,vs). One should first obtain the matching con- diagrams to be computed for the RG runningBx{v,) are
ditions at the hard scale. This has been computed up to twgiven in Fig. 2(wheres denotes the spjnFrom this figure,
loops [14] but we will only need the one-loop expression we can clearly illustrate the structure of the computation.
[15] O(1/m) corrections toh!?) only need one potential loop to

agm)

C)
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______ <] I | ficients must have no runninghis explains why onlyc, is
considered at this order-rom the above discussion, the RG

D equation reads
B D

d CaCy
d—ysz— By — =

2
D(l)_&
2 S 4

Vp avs

x{ay,~ 3 s(s+ 1)DE—DP+4DP}

B O, DY (11)

whereC,=N;, and the RG-improved matching coefficients
______ <] I I | of the potentials can be read from R€f8,11] with the as-

signment ¥ — v, andv,s— vﬁ/m (see alsd17,4] for calcu-
lations of the potentials at finite orders ). We have kept

@ . P . .
B aV D the spin explicit so our results will also be valid for the
s s Ls pseudoscalar current:
—————— <] (] [| | 67075Q(0)|QCD.: bonri X (0)+O(1/M)|Nroco:
(12)
(2) . . .
]3S a\, DS2S with the matching conditiof18]:
bgm) =1+ | 5| St 24 13
—————— O S I | I | - AMTHT T T W
B C Equation(11) gives subleading effects within a strict expan-
S CX’\/S 4 (XVS sion in . Therefore, it can be approximated to
FIG. 2. Diagrams, up to permutations, that contribute to the d CAC; sz
running ofB. Vpd_Bs: - D(Sl)_ 7%
kill the 1/m coefficient. O(1/m?) corrections toh{®) need x{as— 4s(s+1)DZ .~ DP+4DY),
two potential loops to kill the ™? coefficient, and so on. In ' ' ’ 14
the situation with more than one potential loop, the addi- (14)
tional potential loops can be produced without additional dth luti d
1/m factors coming from the potential only if Coulomb po- and the sofution reads
tentials are introduced. This explains why thenJgotential (m)
needs zero Coulomb potential insertions, th@?lpotentials _ asdm Bo
need one Coulomb potential insertion, and the’Lterm Bs(vp)=by(m)+A, who In(w?)
needs two Coulomb potential insertiotfsr the running of e
D and D(S?S we expect a similar structureln principle, +Azam)[2Po— 1]+ Agagm)[ 270~ *CA—1]
this would be be a never ending story unless there is an small + Agam)[ 2P0~ 1CAB_ 17+ A m)In(z50)
parameter that tells us how far we have to go in the calcula- 4T >Ts '
tion in order to achieve some given accuracy. This is indeed (15)

so. The Iih potential is a NLL effec{8] and therefore higher

powers inD® produce NNLL effects or beyond. On the Where Bo=5Ca—3Tens, z=[ay(v,)/adm)]"%, and w
other hand, the introduction of Coulomb potentials brings=[as(¥5/m)/ayv,)]*%. The coefficientsA; in Eq. (15)
powers inas, which suppresses the order of the calculation.read

In our case, for a NLL calculation, the maximum power of

the anomalous dimension should b&. This means that

with zero ay_ insertions[O(1/m) potential§ the matching *The RG equations dB, within YNRQCD has been computed in

coefficient DS’) has to be known with NLL accuracy, with Refs. [5,7]. In principle, they are different. Nevertheless, it may

. . . . . happen that field redefinitions of the potentials may make them
2
one Ay insertion[ O(1/m") pOtent'aIS the matching coeffi- equal. We have not checked that but it is plausible since, as we will

cients ©?) have to be known with LL accuracy, and with see, for the leading and subleading Idbst not beyoniiboth cal-
two ay_ insertions] O(1/m?) potentiald the matching coef- culations will agree.
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8’7TCf 2 2
A]_: 3_,82_(CA+ 2Cf + 3CfCA),
0

mC[3Bo(26C5+ 19CAC— 32C%) — CA(208C4 + 651C,C+ 116C?) ]
= 2 L
78B5Ca

2

3=

mCH Bl 45(s+1)— 3]+ Ca[ 15— 14s(s+1)]}
6(Bo—2Ca)? '

- 247C2(3By—11CA)(5CA+8Cy)

A I, (68-13C2
B —7TCf2 )
As= S26 5 130, (520, (CA(~ 9Ca+ 100C)+ BoCil = T4C+C,[ 42~ 135(s+ 1)])

+6B2{2C;+Ca[—3+s(s+1)]}). (16)

Our evaluation can be compared with the result obtained using the vNRQCD fornjdlisvile agree for the spin-dependent
terms but differ for the spin-independent ones. The disagreement still holds if we consider QED with light fer@jons (
—1,Ca—0,Tg—1). Agreement is found if we consider QED without light fermior;{1,Cp,—0,n;—0,Tg—1). If we
expand our results irg, we can compare with earlier results in the literature. By following the discussion if Reive can
relate our results to the correction to the wave function at the origin as defined ih1BefWe obtain

) Bs(vp)|? ) 2 Ct 5, [3 ., [41 2 ,
AyA0)=|5 o) —1=—Cragin(ay)} | 2= 38(s+1)|Cy+Car — —agin®(ag)| 5 Ci+| 15— 155(5+1) [CiCat 3 CA
S
Bo 2
+ 5 || 2= 3S(s+ 1) |CrHCa [+, 17

where we have expanded up to second order ip)A(In(may) with a=ayv,). The first term reproduces the leading log
term[14,19 (see alsd20]), the Bo-independenO(«2In’«y) terms reproduce the Kniehl and Penin res[di&] and we agree
with the completeD(alIn?ay) term computed by Manohar and Stewat [the sign of difference for th@,-dependent terms
displayed in Ref[7] is due to the fact that in Ref7] the expansion was made with(m) whereas here we have chosen
ay(may)]. Nevertheless, disagreement with this last evaluation appears at higher orders in the expaasipweanhave
explicitly checked this for th@(agln3as) termd. As far as we can see, the disagreement seems to be due to the fact that they
have different expressions for the RG improved potenfid/g|.>

By settingv,~mas, Bg(v,) includes all the large logs at NLL order in afinclusive enoughSwave heavy-quarkonium
production observable that we can think of. For instance, the decagy/sefo and to two photons at NLL order read

I'(Vo(nS—efem)=2

[ @enQ _2( mQCfa's
n

3
Mugns, ) {B1(vp)(1+8¢n)}? (18

[ aenQ _2( mqCras

3
»MVQ(nS)_ 114+2[By(vp) — 1]+ 25y},

5The running of the Coulomb potential is not needed for the precision of the above calculation. Nevertheless, the running obtained in
VNRQCD(21] also disagrees with the one obtained in pNRQQD]. At this respect, we would like to report on a recent computdt&
of the four-loop double log term of the Coulomb potential proportioneﬂ:iqso which agrees with the pPNRQCD result and disagrees with
the vNRQCD one.
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2
Aen

I'(Ps(nS)— =6
(Q( )— YY) MPQ(nS)

2 mQCfCES
n

3
) {Bo( Vp)(l+ 5¢n)}2 (19

2
AenQ

=6
M Po(n9

[ maCras 3{1+2[B (v)—
0 Vp) 1]+268¢n},

whereV and P stand for the vector and pseudoscalar heavywe will use their results on the strict hydrogen lirtrio light
quarkonium, we have fixed,=mqgCras/n, as=ayvy), fermions:n{=0).

and[V,(z) =d"InT'(2)/dZ" andI'(z) is the Euled” function| According to Ref[12], the O(ma®Ina) correction to the
8 hydrogen energy can be obtained from the anomalous dimen-
_9s 0 sion due to diagrams of the type of Fig. 2a in R&&] or, in
=—| —Cp+ — +1)— . ]
O¢n T Ca 4 Pan+1)=2n¥,(n) our case, to the diagram in Fig. 1. The argument that led to

this conclusion was that t@(mea®Insa) terms had the high-
(20) est possible log power that could appear from a NNNLL
evaluation of the energy and that, in order to achieve such

: . ower, it was necessary to mix with NNLL logs. The latter
which has been taken from R¢19] (see als$23]). Working gnly appear in the LL )tlavaluation @ whigh indeed

along similar lines one could easily obtain NLL expressmnsOnly produces a single Idg.2] (see alsd8]). The other point

for othe_r heavy-quarkonium o_bservables in the StUle-b_f was that the NLL evaluation of the potentials would only
production near threshold or in sum rules of bottomonlum.produce single logs unless mixed with LL running. There-
Note that fort-t production near threshold there already ex-fore, the diagrams with the highest possible poweDtﬁﬁ)
ists a (partia) NNLL RG improved evaluation within the | give the highest possible log power of the hydrogen
VNRQCD formalism[24]. Since we disagree for the RG im- energy at NNNLL.
proved expression for the electromagnetic current matching The RG equation for the coefficient of the delta potential
coefficient, this discrepancy would also propagate to thafye to Fig. 1 reads
evaluation.

In conclusion, by using the method of Rg8] and incor- d )
porating the ide§5] of correlating the cutoffs of the effective Voo D (vy)=2%aDP(vy). (A1)
theory, we have taken the first steps toward the creation of a P

comprehensive system of RG equations in pPNRQCD onc . . . o
the scalev,, enters into the game. We have used this formal—erhe loop integral of the diagram of Fig. 1 is just equal to the

. ; : . jone that gives the running af due toDy . Therefore, we
ism to compute the running of the matching coefficients o n obtain Eq(AL) from Eq. (11) by just introducing a fac-
the vector and pseudoscalar currents and disagreement wifh q 9. Y 9

the results obtained using the VNRQCD framewfik has tor 4 due to the fact that we have to change the reduced mass

been found. Our results allow us to obtewave heavy- m/2 from the equal mass case to the reduced magom

qguarkonium production observables with NLL accuracy. Wethe hydrogeniike case. The left-hand side of B4l) gives

have explicitly illustrated this point for heavy-quarkonium the relevant running oD W'th_NLL accuracy fog our case.
decays tee* e~ and to two photons. We have also computed ' "erefore, on the right-hand side we only naxid’ with LL

the O(ma®in®a) corrections to the hydrogen spectrum in the @ccuracy, which we read from R¢25] in the limit n¢=0:
Appendix.

+3+ +2
2 YET R

2 _ @ 2
We thank A. Hoang, A. V. Manohar, and specially J. Soto ij )(Vp)_ ECD(Vp/m)’ (A2)
for useful discussions. We also thank J. Soto for comments
on the manuscript. where
APPENDIX: O(ma®In®a) CONTRIBUTIONS 16a v
TO THE HYDROGEN ENERGY Co(va/m)=1— 3 —Inmp. (A3)
a

With the above discussion, we may also try to see wheth
we are able to obtain th®(ma?®lnda) contributions to the
hydrogen spectrum. It goes beyond the scope of this paper to
perform a detailed analysis. Here, we will just see that under o—
some assumptions from Réfl2], we are able to obtain the Pdv,
O(ma®in®a) correction to the hydrogen spectrum.

We will use the notation of Ref25]. In that paper, hy- The above equation gives the following correction at
drogenlike atoms with light fermions were considered. HereO(a°In®:

e{'herefore, Eq(Al) approximates to

d ) . 2“3 2, 2
Dy'(vp)=2 ZCD(Vp/m). (A4)

054022-7
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ot (A5)
This contribution gives the following correction to the hy-
drogen spectrumi(,~mZa):

=

0
—) ﬂ|r1?’Za.
ar n3

64

SE= 2—7m(Za)6 (AB)
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This result agrees with the analytical result of Karshenboim
[26], the numerical computation of Goidenkoagt[27], and

the analytical result of Manohar and StewftP]. It dis-
agrees with the numerical computations of Malampalli and
Sapirstein[28] and Yerokhin[29], which agree with each
other. Nevertheless, it may happen that the latter computa-
tions are not complete for the desired accurggy.
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