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Next-to-leading-log renormalization-group running in heavy-quarkonium creation
and annihilation
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In the framework of potential nonrelativistic QCD, we obtain the next-to-leading-log renormalization-group
running of the matching coefficients for the heavy-quarkonium production currents near threshold. This allows
us to obtainS-wave heavy-quarkonium production or annihilation observables with next-to-leading-log accu-
racy within perturbative QCD. In particular, we give expressions for the decays of heavy quarkonium toe1e2

and to two photons. We also compute theO(ma8ln3a) corrections to the hydrogen spectrum.
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Heavy-quark–antiquark systems near threshold are c
acterized by the small relative velocityv of the heavy quarks
in their center of mass frame. This small parameter produ
a hierarchy of widely separated scales:m ~hard!, mv ~soft!,
mv2 ~ultrasoft!, etc. The factorization between them is ef
ciently achieved by using effective field theories, where o
can organize the calculation as various perturbative exp
sions on the ratio of the different scales, effectively prod
ing an expansion inv. The terms in these series get mul
plied by parametrically large logs: lnv, which can also be
understood as the ratio of the different scales appearin
the physical system. Again, effective field theories are v
efficient in the resummation of these large logs once
renormalization-group~RG! analysis of them has been pe
formed. This will be the aim of this paper for annihilatio
and production processes near threshold.

We will restrict ourselves, in this paper, to the situati
whereLQCD!mas

2 ~to be implicit in what follows!, which is

likely to be relevant, at least, fort- t̄ production near thresh
old.

Nonrelativistic QCD ~NRQCD! @1# has an ultraviolet
~UV! cutoff nNR5$np ,ns% satisfyingmv!nNR!m. At this
stagenp;ns . np is the UV cutoff of the relative three
momentum of the heavy quark and antiquark,p. ns is the
UV cutoff of the three-momentum of the gluons and lig
quarks.

Potential NRQCD~pNRQCD! @2# ~see@3,4# for details! is
defined by its particle content and cutoffnpNR5$np ,nus%,
wherenp is the cutoff of the relative three-momentum of th
heavy quarks andnus is the cutoff of the three-momentum o
the gluons and light quarks. They satisfy the following i
equalities: upu!np!m and p2/m!nus!upu. Note that no
gluons or light quarks with a momentum ofO(upu) are kept
dynamical in pNRQCD. The motivation to integrate o
these degrees of freedom is that they do not appear as p
cal ~on-shell! states near threshold. Nevertheless, they
appear off shell and, since their momentum is of the orde
the relative three-momentum of the heavy quarks, integra
them out produces nonlocal terms~potentials! in three-
momentum space. Indeed, these potentials encode
nonanalytical behavior in the transfer momentum of
heavy quark,k5p2p8, of the order of the relative three
momentum of the heavy quarks.
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The matching process, which basically means the com
tation of the potentials, is carried out for a given extern
incoming ~outcoming! momentump (p8). Therefore, one
has to sum over all of them in the pNRQCD Lagrangia
since they are still physical degrees of freedom as long
their momentum is belownp . In position space, this mean
that an integral overx, the relative distance between th
heavy quarks, appears in the Lagrangian when written
terms of the heavy-quark–antiquark bilinear.

Within pNRQCD, integrals overp ~or x) appear when
solving the Schro¨dinger equation that dictates the dynami
of the heavy quarkonium near threshold. At lower orde
these integrals are finite, effectively replacingp by ;mas.
Nevertheless, at higher orders in quantum mechanics pe
bation theory and/or if some singular enough operators
introduced~as will be the case of the heavy-quarkonium pr
duction currents! singularities proportional to lnnp appear.
These must be absorbed by the potentials or by the matc
coefficients of the currents. We will describe how to resu
the logarithms associated with this cutoff within pNRQCD

A RG analysis for nonrelativistic systems has been
dressed before in Refs.@5–7#, where the authors match to a
effective theory called vNRQCD. In physical terms, th
theory should be equivalent to the previously defined p
RQCD once the RG evolution has been performed and
soft degrees of freedom have been integrated out, as
ultrasoft gluons and light fermions and potential quarks
left as dynamical degrees of freedom. We will compare w
their results. In some cases disagreement will be found.

Let us now describe the matching between QCD a
pNRQCD within a RG framework. For the case where
divergences proportional to lnnp appear, the procedure re
duces to the results of Ref.@8# to which we refer for the
notation and background material necessary to follow t
paper.

We first address the procedure that gives the running
the potentials. One first does the matching from QCD
NRQCD. The latter depends on some matching coefficie
c(ns) andd(np ,ns), which can be obtained order by order
as ~with np5ns) following the procedure described in Re
@9#. Thec(ns) stand for the coefficients of the operators th
already exist in the theory with only one heavy quark@i.e.,
heavy-quark effective theory~HQET!# and the d(np ,ns)
©2002 The American Physical Society22-1
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stand for the coefficients of the four heavy-fermion ope
tors. The starting point of the renormalization-group equat
can be obtained from these calculations by settingnp5ns

5m ~up to a constant of order 1!. In principle, we should
now compute the running ofnp andns . The running of the
c(ns) can be obtained using HQET techniques@10#. The run-
ning of thed(np ,ns) is more complicated. At one loop,np

does not appear and we effectively haved(np ,ns).d(ns),
whose running can also be obtained using HQET-like te
niques@8#. At higher orders, the dependence onnp appears
and the running of thed(np ,ns) becomes more complicated
Fortunately, we need not compute the running ofd in this
more general case because, as we will see, the relevant
ning of thed for near threshold observables can be obtain
within pNRQCD.

The next step is the matching from NRQCD to pNRQC
The latter depends on some matching coefficients~poten-
tials!. They typically have the following structure
Ṽ„c(ns),d(np ,ns),ns ,nus ,r …. After matching, any depen
dence onns disappears since the potentials have to be in
pendent ofns . Therefore, they could be formally written a
Ṽ„c(1/r ),d(np,1/r ),1/r ,nus ,r …. These potentials can be ob
tained order by order inas following the procedure of Refs
@2–4#. The integrals in the matching calculation would d
pend on a factorization scalem, which should correspond
either tons or to nus . In the explicit calculation, they could
be distinguished by knowing the UV and infrared~IR! be-
havior of the diagrams: UV divergences are proportiona
ln ns, which should be such as to cancel thens scale depen-
dence inherited from the NRQCD matching coefficients, a
IR divergences tonus . In practice, however, as long as w
only want to perform a matching calculation at some giv
scalem5ns5nus , it is not necessary to distinguish betwe
ns and nus ~or if working order by order inas without at-
tempting any log resummation!.

Before going into the rigorous procedure to obtain the R
equations of the potentials, let us first discuss their struc
on physical grounds. As we have mentioned, the potentia
independent ofns . The independence of the potential wi
respect tons allows us to fix the latter to 1/r , which, in a
way, could be understood as the matching scale forns .1

Therefore, 1/r , the point where the multipole expansio
starts, would also provide us with the starting point of t
renormalization-group evolution ofnus ~up to a constant of
order 1!. The running ofnus can then be obtained following
the procedure described in Refs.@11,8#. At the end of the day,
we would haveṼ„c(1/r ),d(np,1/r ),1/r ,nus ,r …, where the
running onnus is known and also the running in 1/r if the d
is np independent. So far, the only explicit dependence of
potential onnp appears in thed. Nevertheless, the potentia
is also implicitly dependent on the three-momentum of
heavy quarks through the requirement 1/r;p!np , and also

1In practice, the potential is often first obtained in momentu
space so that one could then setns5k. Note, however, that this is
not equivalent to fixingns51/r , since finite pieces will appear afte
performing the Fourier transform.
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throughnus , sincenus needs to satisfyp2/m!nus!upu. This

latter requirement holds if we fixnus5np
2/m ~this constraint

tells you how much you can run downnus in the potential
before finding the cutoffnp

2/m caused by the cutoff ofp).
Within pNRQCD, the potentials should be introduced

the Schro¨dinger equation. This means that integrals over
relative three-momentum of the heavy quarks take pla
When these integrals are finite one hasp;1/r;mas and
p2/m;mas

2 . Therefore, one can lowernus down to;mas
2

reproducing the results obtained in Ref.@8#. In some cases, in
particular in heavy-quarkonium creation, the integrals ovep
are divergent, and the log structure is dictated by the ul
violet behavior ofp and 1/r . This means that we canno
replace 1/r and nus by their physical expectation value
but rather by their cutoffs within the integral overp.
Therefore, for the RG equation ofnp , the anomalous
dimensions will depend ~at leading order! on2

Ṽ„c(np),d(np ,np),np ,np
2/m,np… and the running will go

from np;m down to np;mas. Note that, at this stage,
single cutoffnp exists and the correlation of cutoffs can b
seen. The importance of the idea that the cutoffs of the n
relativistic effective theory should be correlated was first
alized by Luke, Manohar, and Rothstein in Ref.@5# ~for an
application to QED see@12#!. Note also that at the matchin
scalenp;m, what would be the ultrasoft cutoff is also o
orderm. In this sense the statement in Ref.@5# that ultrasoft
gluons appear at the scalem should be understood, a poin
that becomes relevant within a RG approach.

With the above discussion in mind, the matching betwe
NRQCD and pNRQCD could be thought as follows. O
does the matching by computing the potentials order by
der in as at the matching scalenp5ns5nus following the
procedure of Refs.@2–4# ~by doing the matching at a gener
np some of the running is trivially obtained!. The structure
of the potential at this stage then rea
Ṽ„c(np),d(np ,np),np ,np ,np… ~and similarly for the deriva-
tives with respect to lnr of the potential!. This provides the
starting point of the renormalization-group evolution ofnus
~up to a constant of order 1!. The running ofnus can then be
obtained following the procedure described in Refs.@11,8#.
For the final point of the evolution ofnus , we choose

2Roughly speaking, this result can be thought of as expandingr
around lnnp in the potential, i.e.,

Ṽ„c~1/r !,d~np,1/r !,1/r ,np
2/m,r …

.Ṽ„c~np!,d~np ,np!,np ,np
2/m,np…

1 ln~npr!r
d

dr
Ṽu1/r 5np

1•••. ~1!

The ln(npr) terms may give subleading contributions to the anom
lous dimension when introduced in divergent integrals overp. The
discussion at this stage is not very rigorous and a more pre
discussion would require a full detailed study within dimension
regularization, which goes beyond the aim of this work. Nevert
less, we do not expect it to change the underlying idea, althoug
deserves further investigation.
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nus5np
2/m. At the end of the day, we obtai

Ṽ„c(np),d(np ,np),np ,np
2/m,np…[Ṽ(np).

The running ofnp goes fromnp5m ~this was fixed when
the matching between QCD and NRQCD was done! up to
the physical scale of the problemnp;mas. If the running of
the NRQCD matching coefficients is known, the above res
gives the complete running of the potentials. The proced
to get the running ofc is known at any finite order. Ford it
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is just known at one-loop order, since, at this order, it is o
ns dependent. Nevertheless, at higher orders, dependenc
np appears. Therefore, the above method is not comp
unless an equation for the running ofnp is provided. This is
naturally given within pNRQCD. It appears through the
eration of potentials. Let us consider this situation in mo
detail. We first recall what the Hamiltonian in pNRQCD fo
the singlet sector is~see Ref.@8# for notation and further
details!:
hs5ck

p2

m
2c4

p4

4m3
2Cf

aVs

r
2

CfCADs
(1)

2mr2
2

CfD1,s
(2)

2m2 H 1

r
,p2J 1

CfD2,s
(2)

2m2

1

r 3 L21
pCfDd,s

(2)

m2
d (3)~r !1

4pCfDS2,s
(2)

3m2
S2d (3)~r !

1
3CfDLS,s

(2)

2m2

1

r 3 L•S1
CfDS12 ,s

(2)

4m2

1

r 3S12~ r̂ !, ~2!
sion

nt
in
l-

t

s,

u-

ain
he
whereCf5(Nc
221)/(2Nc) and we will setck5c451 ~we

will only eventually usec4 for tracking of the contribution
due to this term!. The propagator of the singlet is~formally!

1

E2hs
. ~3!

At leading order~within a strict expansion inas) the propa-
gator of the singlet reads

If we were interested in computing the spectrum
O(mas

6), one should consider the iteration of subleading p
tentials (dhs) in the propagator as follows:

Gc~E!dhsGc~E!•••dhsGc~E!. ~4!

In general, if these potentials are singular enough, these
tributions will produce logarithmic divergences due to pote
tial loops. These divergences can be absorbed in the ma
ing coefficientsDd,s

(2) andDS2,s
(2) of the local potentials@those

proportional to thed (3)(r )] providing the renormalization-
group equations of these matching coefficients in terms
np . Let us explain how it works in detail. Since the singu
behavior of the potential loops appears forupu@as/r , a per-
turbative expansion inas is licit in Gc(E), which can be
approximated by

Therefore, with the accuracy we aim at in this paper
practical simplification follows from the fact that the Co
lomb potential2Cfas/r can be considered to be a perturb
tion as far as the computation of the lnnp ultraviolet diver-
gences is concerned. This means that the computation o
t
-

n-
-
h-

f

a

-

he

anomalous dimension can be organized within an expan
in as and using the free propagatorsGc

(0) . Moreover, each
Gc

(0) produces a potential loop and one extra power ofm in
the numerator, which kills the powers in 1/m of the different
potentials. This allows the mixing of potentials with differe
powers in 1/m. One typical example would be the diagram
Fig. 1.3 The computation of this diagram would go as fo
lows:

1

E2p2/m

pCfDd,s
(2)

m2
d (3)~r !

1

E2p2/m
Cf

aVs

r

3
1

E2p2/m

pCfDd,s
(2)

m2
d (3)~r !

1

E2p2/m
. ~5!

Using d (3)(r )5ur50&^r50u, we can see that the relevan
computation reads~instead ofaVs

one could useas since the

nontrivial running ofaVs
is a subleading effect; nevertheles

we keepaVs
since it allows us to keep track of the contrib

tions due to the Coulomb potentials!

K r50U 1

E2p2/m
Cf

aVs

r

1

E2p2/m
Ur50L

;E ddp8

~2p!dE ddp

~2p!d

m

p822mE
Cf

4paVs

q2

m

p22mE

;2Cf

m2aVs

16p

1

e
, ~6!

3The diagram in Fig. 1 is also the relevant one in order to obt
the O(ma8ln a3) contribution to the hydrogen spectrum. See t
Appendix.
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whereD5412e andq5p2p8. This divergence is absorbe
in Dd,s

(2) contributing to its running at next-to-leading-lo
~NLL ! order as follows:

np

d

dnp
Dd,s

(2)~np!;aVs
~np!Dd,s

(2)2~np!1•••. ~7!

Therefore, even without knowing the running of thed ~which
needs to be known at NLL order in this case!, we can obtain
the running of the potential@one can also think of trading Eq
~7! into an equation ford, which is the only unknown param
eter within the potential#. This is so becauseDd,s

(2) is only
needed with LL accuracy in the right-hand side of Eq.~7!.

The above method deals with the resummation of lo
due to the hard, soft, and ultrasoft scales. Nevertheless
some specific kinematical situations even smaller sc
could appear. Their study, however, goes beyond the aim
this paper. In any case, pNRQCD can be considered to be
right starting point to study these kinematical situations.

The matching scale between QCD and NRQCD isnp
;ns;m. On the other hand, the matching scale betwe
NRQCD and pNRQCD is also the hard scale:np;np

2/m
;m. Therefore, one could wonder about the necessity
using the intermediate theory NRQCD. This is indeed
attitude in Refs.@5–7,12#, where the authors directly perform
the matching between QCD and an effective field theo
VNRQCD which, once the RG evolution has been perform
and the soft degrees of freedom have been integrated
should be physically equivalent to pNRQCD withnp
;mas. One motivation for going through NRQCD is that
allows to one perform the factorization of the hard sc
within an effective field theory framework. In fact, a fu
factorization of the different regions of momentum th
ought to be integrated out is achieved within pNRQCD. T
extremely simplifies the matching process since one d
with only one scale~region of momentum! in the loops at
each step. In the matching between QCD and NRQCD o
hard loops need to be considered, whereas in the matc
between NRQCD and pNRQCD only soft loops need to
considered. Moreover, the structure of the UV cutoffs of
theory is better understood in this way. For instance, one
see that all theexplicit dependence of the potentials onnp is
inherited from thed matching coefficients. Within a diagram
matic approach the factorization of the different regions
momentum has been achieved using the threshold expan
@13#.

Let us now consider the case of the electromagnetic
rent, which will provide an example in which to apply th
above discussion. The procedure is analogous to the po
tials. We first do the matching from QCD to NRQCD:

Q̄gmQ~0!uQCD5̇b1,NRc†s ix~0!1O~1/m!uNRQCD. ~8!

We will just concentrate on the coefficientb1,NR. Within
NRQCD, it should be understood as a function ofnp andns ,
i.e., b1,NR(np ,ns). One should first obtain the matching co
ditions at the hard scale. This has been computed up to
loops @14# but we will only need the one-loop expressio
@15#
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b1,NR~m,m!5122Cf

as~m!

p
, ~9!

since we only aim at a NLL resummation in this paper. If w
compare with the previous discussion of the potentials,
matching coefficientsd play the role ofb1. Therefore, within
pNRQCD, we will needb1,NR(np ,np)[b1,NR(np). We first
have to considerb1,NR(np ,ns). In this case, unlike for the
d’s, there is no running due tons at the order of interest. This
can be easily seen in the Coulomb gauge. Moreover,
matching from NRQCD to pNRQCD creates the potenti
but leavesb1 unchanged since soft loops or HQET-like ca
culations give zero correction tob1 at the order of interest
Formally,

b1,NRc†s ix~0!uNRQCD5B1,pNRc
†s ix~0!upNRQCD, ~10!

or, in other words, the matching condition rea
B1,pNR„b1,NR(np),nus5np…5b1,NR(np). The running ofnus is
also trivial as there is none at the order of interest~this
has to do with the fact that we are dealing with an an
hilation process!. Therefore, we finally haveB1(np)
[B1,pNR„b1,NR(np),np

2/m…5b1,NR(np). We can see that we
are in the analogous situation to the running ofDd,s

(2)(np)
versus the running ofd(np ,np). We now need the RG equa
tion for B1(np). This requires us to obtain the ultraviole
corrections to the current within pNRQCD, keeping track
the contributions due to the different potentials. Fortunate
this calculation has already been done and we can extrac
relevant information from Ref.@16#. The computation goes
along the same lines as in the example of Fig. 1. The exp
diagrams to be computed for the RG running ofBs(np) are
given in Fig. 2~wheres denotes the spin!. From this figure,
we can clearly illustrate the structure of the computatio
O(1/m) corrections tohs

(0) only need one potential loop to

FIG. 1. One possible contribution to the running ofDd,s
(2) at NLL.

The first picture represents the calculation in terms of the f
quark-antiquark propagatorGc

(0) and the small rectangles the pote
tials. The picture below is the representation within a more stand
diagrammatic interpretation in terms of quarks and antiquarks.
delta potentials are displayed as local interactions and the Coul
potential as an object extended in space~but not in time!.
2-4
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kill the 1/m coefficient. O(1/m2) corrections tohs
(0) need

two potential loops to kill the 1/m2 coefficient, and so on. In
the situation with more than one potential loop, the ad
tional potential loops can be produced without additio
1/m factors coming from the potential only if Coulomb po
tentials are introduced. This explains why the 1/m potential
needs zero Coulomb potential insertions, the 1/m2 potentials
need one Coulomb potential insertion, and the 1/m3 term
needs two Coulomb potential insertions~for the running of
Dd,s

(2) and DS2,s
(2) we expect a similar structure!. In principle,

this would be be a never ending story unless there is an s
parameter that tells us how far we have to go in the calc
tion in order to achieve some given accuracy. This is ind
so. The 1/m potential is a NLL effect@8# and therefore highe
powers inDs

(1) produce NNLL effects or beyond. On th
other hand, the introduction of Coulomb potentials brin
powers inas, which suppresses the order of the calculati
In our case, for a NLL calculation, the maximum power
the anomalous dimension should beas

2 . This means that
with zero aVs

insertions@O(1/m) potentials# the matching

coefficient (Ds
(1)) has to be known with NLL accuracy, with

oneaVs
insertion@O(1/m2) potentials# the matching coeffi-

cients (D (2)) have to be known with LL accuracy, and wit
two aVs

insertions@O(1/m3) potentials# the matching coef-

FIG. 2. Diagrams, up to permutations, that contribute to the
running ofBs .
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ficients must have no running~this explains why onlyc4 is
considered at this order!. From the above discussion, the R
equation reads4

np

d

dnp
Bs5BsF2

CACf

2
Ds

(1)2
Cf

2

4
aVs

3$aVs
2 4

3 s~s11!DS2,s
(2)

2Dd,s
(2)14D1,s

(2)%G
~11!

whereCA5Nc , and the RG-improved matching coefficien
of the potentials can be read from Refs.@8,11# with the as-
signment 1/r→np andnus→np

2/m ~see also@17,4# for calcu-
lations of the potentials at finite orders inas). We have kept
the spin explicit so our results will also be valid for th
pseudoscalar current:

Q̄g0g5Q~0!uQCD5̇b0,NRc†x~0!1O~1/m!uNRQCD,
~12!

with the matching condition@18#:

b0~m!511S p2

4
25D Cf

2

as~m!

p
. ~13!

Equation~11! gives subleading effects within a strict expa
sion in as. Therefore, it can be approximated to

np

d

dnp
Bs52

CACf

2
Ds

(1)2
Cf

2

4
as

3$as2
4
3 s~s11!DS2,s

(2)
2Dd,s

(2)14D1,s
(2)%,

~14!

and the solution reads

Bs~np!5bs~m!1A1

as~m!

wb0
ln~wb0!

1A2as~m!@zb021#1A3as~m!@zb022CA21#

1A4as~m!@zb0213CA/621#1A5as~m!ln~zb0!,

~15!

where b05 11
3 CA2 4

3 TFnf , z5@as(np)/as(m)#1/b0, and w
5@as(np

2/m)/as(np)#1/b0. The coefficientsAi in Eq. ~15!
read

4The RG equations ofBs within vNRQCD has been computed i
Refs. @5,7#. In principle, they are different. Nevertheless, it ma
happen that field redefinitions of the potentials may make th
equal. We have not checked that but it is plausible since, as we
see, for the leading and subleading logs~but not beyond! both cal-
culations will agree.
2-5
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A15
8pCf

3b0
2 ~CA

212Cf
213CfCA!,

A25
pCf@3b0~26CA

2119CACf232Cf
2!2CA~208CA

21651CACf1116Cf
2!#

78b0
2CA

,

A352
pCf

2$b0@4s~s11!23#1CA@15214s~s11!#%

6~b022CA!2
,

A45
24pCf

2~3b0211CA!~5CA18Cf !

13CA~6b0213CA!2 ,

A55
2pCf

2

b0
2~6b0213CA!~b022CA!

„CA
2~29CA1100Cf !1b0CA$274Cf1CA@42213s~s11!#%

16b0
2$2Cf1CA@231s~s11!#%…. ~16!

Our evaluation can be compared with the result obtained using the vNRQCD formalism@7#. We agree for the spin-depende
terms but differ for the spin-independent ones. The disagreement still holds if we consider QED with light fermioCf
→1,CA→0,TF→1). Agreement is found if we consider QED without light fermions (Cf→1,CA→0,nf→0,TF→1). If we
expand our results inas, we can compare with earlier results in the literature. By following the discussion in Ref.@7#, we can
relate our results to the correction to the wave function at the origin as defined in Ref.@16#. We obtain

Dc2~0!5UBs~np!

Bs~m!
U2

2152Cfas
2ln~as!H F22

2

3
s~s11!GCf1CAJ 2

Cf

p
as

3ln2~as!H 3

2
Cf

21F41

12
2

7

12
s~s11!GCfCA1

2

3
CA

2

1
b0

2 F S 22
2

3
s~s11! DCf1CAG J 1•••, ~17!

where we have expanded up to second order in ln(np)5ln(mas) with as[as(np). The first term reproduces the leading lo
term @14,19# ~see also@20#!, theb0-independentO(as

3ln2as) terms reproduce the Kniehl and Penin results@16# and we agree
with the completeO(as

3ln2as) term computed by Manohar and Stewart@7# @the sign of difference for theb0-dependent terms
displayed in Ref.@7# is due to the fact that in Ref.@7# the expansion was made withas(m) whereas here we have chose
as(mas)]. Nevertheless, disagreement with this last evaluation appears at higher orders in the expansion inas @we have
explicitly checked this for theO(as

4ln3as) terms#. As far as we can see, the disagreement seems to be due to the fact th
have different expressions for the RG improved potentials@6,7#.5

By settingnp;mas, Bs(np) includes all the large logs at NLL order in any~inclusive enough! S-wave heavy-quarkonium
production observable that we can think of. For instance, the decays toe1e2 and to two photons at NLL order read

G„VQ~nS!→e1e2
…52F aemQ

MVQ(nS)
G2S mQCfas

n D 3

$B1~np!~11dfn!%2 ~18!

.2F aemQ

MVQ(nS)
G2S mQCfas

n D 3

$112@B1~np!21#12dfn%,

5The running of the Coulomb potential is not needed for the precision of the above calculation. Nevertheless, the running ob
vNRQCD @21# also disagrees with the one obtained in pNRQCD@11#. At this respect, we would like to report on a recent computation@22#
of the four-loop double log term of the Coulomb potential proportional toCA

3b0 which agrees with the pNRQCD result and disagrees w
the vNRQCD one.
054022-6
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G~PQ~nS!→gg!56F aemQ2

M PQ(nS)
G2S mQCfas

n D 3

$B0~np!~11dfn!%2 ~19!

.6F aemQ2

M PQ(nS)
G2S mQCfas

n D 3

$112@B0~np!21#12dfn%,
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whereV andP stand for the vector and pseudoscalar hea
quarkonium, we have fixednp5mQCfas/n, as5as(np),
and@Cn(z)5dnln G(z)/dzn andG(z) is the EulerG function#

dfn5
as

p F2CA1
b0

4 S C1~n11!22nC2~n!

1
3

2
1gE1

2

nD G , ~20!

which has been taken from Ref.@19# ~see also@23#!. Working
along similar lines one could easily obtain NLL expressio
for other heavy-quarkonium observables in the study oft- t̄
production near threshold or in sum rules of bottomoniu
Note that fort- t̄ production near threshold there already e
ists a ~partial! NNLL RG improved evaluation within the
vNRQCD formalism@24#. Since we disagree for the RG im
proved expression for the electromagnetic current match
coefficient, this discrepancy would also propagate to t
evaluation.

In conclusion, by using the method of Ref.@8# and incor-
porating the idea@5# of correlating the cutoffs of the effectiv
theory, we have taken the first steps toward the creation
comprehensive system of RG equations in pNRQCD o
the scalenp enters into the game. We have used this form
ism to compute the running of the matching coefficients
the vector and pseudoscalar currents and disagreement
the results obtained using the vNRQCD framework@7# has
been found. Our results allow us to obtainS-wave heavy-
quarkonium production observables with NLL accuracy. W
have explicitly illustrated this point for heavy-quarkoniu
decays toe1e2 and to two photons. We have also comput
theO(ma8ln3a) corrections to the hydrogen spectrum in t
Appendix.

We thank A. Hoang, A. V. Manohar, and specially J. So
for useful discussions. We also thank J. Soto for comme
on the manuscript.

APPENDIX: O„ma8ln3a… CONTRIBUTIONS
TO THE HYDROGEN ENERGY

With the above discussion, we may also try to see whe
we are able to obtain theO(ma8ln3a) contributions to the
hydrogen spectrum. It goes beyond the scope of this pap
perform a detailed analysis. Here, we will just see that un
some assumptions from Ref.@12#, we are able to obtain the
O(ma8ln3a) correction to the hydrogen spectrum.

We will use the notation of Ref.@25#. In that paper, hy-
drogenlike atoms with light fermions were considered. He
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we will use their results on the strict hydrogen limit~no light
fermions:nf50).

According to Ref.@12#, theO(ma8ln3a) correction to the
hydrogen energy can be obtained from the anomalous dim
sion due to diagrams of the type of Fig. 2a in Ref.@12# or, in
our case, to the diagram in Fig. 1. The argument that led
this conclusion was that theO(ma8ln3a) terms had the high-
est possible log power that could appear from a NNN
evaluation of the energy and that, in order to achieve s
power, it was necessary to mix with NNLL logs. The latt
only appear in the LL evaluation ofDd

(2) , which, indeed,
only produces a single log@12# ~see also@8#!. The other point
was that the NLL evaluation of the potentials would on
produce single logs unless mixed with LL running. Ther
fore, the diagrams with the highest possible power ofDd

(2)

will give the highest possible log power of the hydrog
energy at NNNLL.

The RG equation for the coefficient of the delta potent
due to Fig. 1 reads

np

d

dnp
Dd

(2)~np!5̇Z2aDd
(2)2~np!. ~A1!

The loop integral of the diagram of Fig. 1 is just equal to t
one that gives the running ofcs due toDd,s . Therefore, we
can obtain Eq.~A1! from Eq. ~11! by just introducing a fac-
tor 4 due to the fact that we have to change the reduced m
m/2 from the equal mass case to the reduced massm from
the hydrogenlike case. The left-hand side of Eq.~A1! gives
the relevant running ofDd

(2) with NLL accuracy for our case
Therefore, on the right-hand side we only needDd

(2) with LL
accuracy, which we read from Ref.@25# in the limit nf50:

Dd
(2)~np!5

a

2
cD~np

2/m!, ~A2!

where

cD~np
2/m!512

16

3

a

p
ln

np

m
. ~A3!

Therefore, Eq.~A1! approximates to

np

d

dnp
Dd

(2)~np!5̇Z2
a3

4
cD

2 ~np
2/m!. ~A4!

The above equation gives the following correction
O(a5ln3):
2-7
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dDd
(2)5

64

27
Z2a3S a

p D 2

ln3
np

m
. ~A5!

This contribution gives the following correction to the h
drogen spectrum (np;mZa):

dE5
64

27
m~Za!6S a

p D 2d l0

n3
ln3Za. ~A6!
D

D

05402
This result agrees with the analytical result of Karshenbo
@26#, the numerical computation of Goidenko etal. @27#, and
the analytical result of Manohar and Stewart@12#. It dis-
agrees with the numerical computations of Malampalli a
Sapirstein@28# and Yerokhin@29#, which agree with each
other. Nevertheless, it may happen that the latter comp
tions are not complete for the desired accuracy@30#.
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