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Statistical analysis is crucial for research and the choice of analytical technique should
take into account the specific distribution of data. Although the data obtained from
health, educational, and social sciences research are often not normally distributed,
there are very few studies detailing which distributions are most likely to represent data
in these disciplines. The aim of this systematic review was to determine the frequency of
appearance of the most common non-normal distributions in the health, educational,
and social sciences. The search was carried out in the Web of Science database,
from which we retrieved the abstracts of papers published between 2010 and 2015.
The selection was made on the basis of the title and the abstract, and was performed
independently by two reviewers. The inter-rater reliability for article selection was high
(Cohen’s kappa = 0.84), and agreement regarding the type of distribution reached
96.5%. A total of 262 abstracts were included in the final review. The distribution of
the response variable was reported in 231 of these abstracts, while in the remaining 31
it was merely stated that the distribution was non-normal. In terms of their frequency of
appearance, the most-common non-normal distributions can be ranked in descending
order as follows: gamma, negative binomial, multinomial, binomial, lognormal, and
exponential. In addition to identifying the distributions most commonly used in empirical
studies these results will help researchers to decide which distributions should be
included in simulation studies examining statistical procedures.

Keywords: non-normal distributions, gamma distribution, negative binomial distribution, multinomial distribution,
binomial distribution, lognormal distribution, exponential distribution, systematic review

INTRODUCTION

The data obtained in many fields of health, education, and the social sciences yield values of
skewness and kurtosis that clearly deviate from those of the normal distribution (Micceri, 1989; Lei
and Lomax, 2005; Bauer and Sterba, 2011; Blanca et al., 2013). In his imaginatively titled article ‘The
Unicorn, The Normal Curve, and Other Improbable Creatures,’ Micceri (1989) concluded that real
data commonly follow non-normal distributions. His analysis of the distributional characteristics
of over 440 large-sample achievement and psychometric measures revealed several classes of
deviation from the normal distribution, with the highest percentage corresponding to extreme
deviation. In a more recent study, Blanca et al. (2013) analyzed the shape of 693 distributions
from real psychological data by examining the values of the third and fourth central moments
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as a measurement of skewness and kurtosis in small samples.
They found that most distributions were non-normal;
considering skewness and kurtosis jointly the results indicated
that only 5.5% of the distributions were close to expected values
under normality. Overall, 74.4% of distributions presented either
slight or moderate deviation, while 20% showed more extreme
deviation.

Variables with skewed distributions are also commonly used
in a variety of psychological and social research. Arnau et al.
(2014) listed some of these variables: reaction times or response
latency in cognitive studies (Ulrich and Miller, 1993; Van der
Linden, 2006; Shang-Wen and Ming-Hua, 2010), survival data
from clinical trials (Qazi et al., 2007), clinical assessment indexes
in drug abuse research (Deluchi and Bostrom, 2004), physical
and verbal violence in couples (Szinovacz and Egley, 1995; Soler
et al., 2000), divorced parents’ satisfaction with co-parenting
relationships in family studies (McKenry et al., 1999), and labor
income (Diaz-Serrano, 2005) or health care costs (Zhou et al.,
2009) in sociological studies. More recent examples involving
non-normal data include neuropsychological data (Donnell
et al., 2011; Oosthuizen and Phipps, 2012), data about paranoid
ideation (Bebbington et al., 2013), fatigue symptoms of breast
cancer patients (Ho et al., 2014), data on violence or sexual
aggression (Swartout et al., 2015), and numerous studies on
the cost of health care, such as costs among patients with
depression or anxiety (Halpern et al., 2013; Vasiliadis et al., 2013),
costs following brief cognitive behavioral treatment for insomnia
(McCrae et al., 2014), and costs of anorexia nervosa (Stuhldreher
et al., 2015), among others. Campitelli et al. (2016) also showed
how the gamma distribution fits reaction times better than other
well-studied distributions.

Although there is a wide variety of probability distributions,
the most frequently used distributions involving real data are
much fewer in number. The set of exponential distributions
is very common in disciplines associated with the health
and social sciences. The exponential family includes the
normal, exponential, gamma, beta, and lognormal as continuous
distributions, and the binomial, multinomial, and negative
binomial as discrete distributions. The lognormal distribution,
for example, is frequently found in medicine, social sciences, and
economics (Limpert et al., 2001).

The normal distribution is the most well-known distribution
and the most frequently used in statistical theory and
applications. In fact, normality is one of the underlying
assumptions of parametric statistical analysis. In practice,
however, data can be drawn from other types of distribution,
and in order to obtain accurate results researchers have
to decide which statistical technique is best suited to the
specific distribution of data. Monte Carlo simulation studies are
commonly used to identify the robustness of statistical techniques
under violation of underlying assumptions. In relation to
continuous distributions, numerous simulation studies have
analyzed the lognormal distribution (Algina and Keselman, 1998;
Keselman et al., 2000; Kowalchuk et al., 2004; Arnau et al., 2012;
Oberfeld and Franque, 2013; Bono et al., 2016, among others),
and also the exponential distribution (Lix et al., 2003; Arnau
et al., 2012). Among discrete distributions, simulation studies

have been conducted with binomial (Wu and Wu, 2007; Fang and
Louchin, 2013) and multinomial distributions (Kuo-Chin, 2010;
Bauer and Sterba, 2011; Jiang and Oleson, 2011). If the results
of simulation studies are to be truly useful they need to include
the distributions most commonly used in empirical contexts.
However, there are very few studies detailing which distributions
are most likely to represent data in different disciplines.

The aim of the present study was to determine the frequency of
appearance of the most common non-normal distributions used
in the health, educational, and social sciences. To this end, we
conducted a systematic review of papers published between 2010
and 2015, coding two variables: shape of the distribution and field
of study.

METHODS

Selection of Studies for Inclusion in the
Review
The search was carried out in the Web of Science (WOS) database
and used the following terms: ‘nonnormal distribution’ OR
‘non-normal distribution’ OR ‘nonnormal data’ OR ‘non-normal
data’ OR ‘ordinal data’ OR ‘categorical data’ OR ‘multinomial
data’ OR ‘binary data’ OR ‘binomial data’ OR ‘gamma
distribution’ OR ‘beta distribution’ OR ‘lognormal distribution’
OR ‘log-normal distribution’ OR ‘log normal distribution’ OR
‘exponential distribution’ OR ‘binary distribution’ OR ‘binomial
distribution’ OR ‘multinomial distribution’ OR ‘nonnormal
distributions’ OR ‘non-normal distributions’ OR ‘gamma
distributions’ OR ‘beta distributions’ OR ‘lognormal distributions’
OR ‘log-normal distributions’ OR ‘log normal distributions’ OR
‘exponential distributions’ OR ‘binary distributions’ OR ‘binomial
distributions’ OR ‘multinomial distributions.’ The use of these
terms was agreed by two reviewers (first and third author),
such that the search strategy employed general descriptors of
non-normal distributions, descriptors for ordinal or categorical
data, and specific descriptors of the most common non-normal
distributions. The term ‘negative binomial distribution’ was
not included as it was encapsulated by the term ‘binomial
distribution.’ No restriction on the language of publication
was made. The terms included were refined to the following
WOS research areas: Psychology, Health Care Sciences Services,
Education and Educational Research, Social Sciences Other Topics,
Psychiatry, Social Issues, Behavioral Sciences, and Biomedical
Social Sciences.

The selection of studies, based on title and abstract, was
performed independently by two reviewers (first and second
author). The following kinds of study were excluded from the
review: theoretical studies of a statistical test, new procedures,
mathematical development, comparison of models, simulation
studies, tutorials, reviews of other authors’ work, comments on
other articles, systematic reviews, meta-analyses, studies about
the teaching/learning of distributions, software, and studies
carried out in areas other than health, education, or social
sciences. We also excluded conference abstracts and proceedings,
and book reviews. Any articles that did not specify the type
of distribution or which referred to the normal distribution
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were likewise excluded. The inter-rater reliability for selection
of articles was assessed with Cohen’s kappa (Cohen, 1968). The
weighted kappa was 0.84, which can be interpreted as almost
perfect agreement (Landis and Koch, 1977). Disagreements were
resolved by discussion.

Data Extraction
Information about the type of distribution and the field of
study was extracted from the content of the abstract and
title of the included articles. In the event that more than
one distribution was mentioned in an abstract, they were all

recorded. Data were extracted independently by two reviewers
(first and second author). The inter-rater reliability regarding the
type of distribution was 96.5%. Discrepancies were resolved by
consensus after reviewing again the abstracts in question; in the
event that a consensus could not be reached, the final decision
was taken by a third reviewer (fourth author).

RESULTS

Of the 984 articles that were initially retrieved we eliminated,
in stage 1, three duplicate records, three articles from

FIGURE 1 | Flow chart of the study selection process.
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journals without abstracts, and 423 articles according to the
abovementioned exclusion criteria (see Selection of Studies for
Inclusion in the Review). In stage 2 we eliminated a further
292 abstracts that made no mention of the type of distribution
and one which referred to a normal distribution. Figure 1
summarizes the numbers of records identified and the reasons
for exclusion at each stage. It can be seen that of the 984 records
retrieved from the WOS, 262 were included in the review (148
from the area of health, 18 from education, and 96 from the social
sciences). Seventeen abstracts referred to two distributions, all of
which were counted, and therefore a total of 279 distributions
were considered.

Across the reviewed studies the most common distributions
were gamma (n = 57), negative binomial (n = 51), multinomial
(n= 36), binomial (n= 33), lognormal (n= 29), and exponential
(n= 20). The beta distribution fitted to very few data sets (n= 5).
Other distributions identified but which had not been considered
as search terms were the Poisson (n = 12), Weibull (n = 2),
Pareto (n = 1), Lomax (n = 1), and exGaussian (n = 1). In
addition to these distributions, 31 abstracts only indicated that
the distribution was non-normal. Figure 2 shows the percentage
of the different types of distribution across the articles included
in the review.

DISCUSSION

The aim of this systematic review of papers published between
2010 and 2015 was to determine the frequency of appearance
of the most common non-normal distributions used in the
health, educational, and social sciences. The results show
that the most frequent distributions are the gamma and the
negative binomial, followed by the multinomial, the binomial, the
lognormal, and the exponential. The multinomial and binomial
distributions show a good fit to data derived from discrete
measurement scales, whereas the gamma and negative binomial
distributions fit to variables related to health costs or income
in social research. These findings extend those obtained by
Micceri (1989) and Blanca et al. (2013), who analyzed the

FIGURE 2 | Percentage of the different distributions across the articles
retrieved from the Web of Science (WOS) database for the period 2010–2015.

distributional characteristics of real data and noted that non-
normal distributions are commonly found when working with
psychological variables and psychometric measures. Knowing
which distributions are most common is important because the
type of distribution is a key aspect to consider when choosing an
analytical technique.

When researchers know that the distribution which fits their
data is non-normal, they should consider using alternatives to
classical procedures. One way of modeling the response variable
in order to find the type of distribution that best represents the
data is to apply what are known as generalized additive models for
location, scale, and shape (GAMLSS; Rigby and Stasinopoulos,
2005). This method provides the foundations for further analyses
(Campitelli et al., 2016). Other data analysis procedures include
robust statistical methods (Wilcox, 2012), generalized linear
models (McCullagh and Nelder, 1989) and their extension to
mixed models (Stroup, 2013), and linear quantile mixed models
(Geraci and Bottai, 2014).

As regards the limitations of this study the search was limited
to a specific set of distributions, those considered to be the
most common, and it is possible that the type of distributions
identified by the review was biased somewhat by the search
terms used. However, with the descriptors used we located the
most well-known distributions from the exponential family. In
order to access the full range of distributions, including the less
common ones, we would have had to have applied the search
term ‘distribution,’ which would have yielded many more types of
distribution with a low or very low percentage across studies. One
distribution of the exponential family that is of interest but which
is not analyzed in our study is the Poisson distribution. This
distribution was not included in the systematic review because
it is more directly associated with count data and, in such cases,
the negative binomial distribution can be used as an alternative
(Faddy and Smith, 2011; Smith and Faddy, 2016).

Another limitation is that it is difficult to know whether the
data are actually distributed as identified in the title and/or
abstract. That is, researchers may have simply assumed particular
non-normal distributions based on histograms or frequency
distributions, or on a prior decision to apply a particular
statistical technique or software. Empirical studies do not always
indicate the distribution shape, or the procedure used to identify
which distribution fits the data, and neither is a rationale
usually given for why a particular non-normal distribution was
used. Ideally, studies would report this kind of information so
that other researchers from the same applied field have clear
knowledge about the distributional properties of the variables
under study.

Finally, and as noted in the introduction, the known
distributions most widely used in simulation studies are the
lognormal and the exponential, although discrete distributions
such as the binomial and the multinomial have also been
analyzed. In light of the results of this systematic review, future
simulation studies examining the robustness and power of
different statistical tests should also use the gamma and negative
binomial distributions, the two most common forms according
to our review. This is important because simulation studies need
to include the distributions used in real-world data. Thus, we
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suggest that researchers who conduct Monte Carlo studies should
generate data according to the distributions that are most relevant
to the empirical reality of different disciplines.
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