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We study largeN SU(N) Yang-Mills theory in three and four dimensions using a one-parameter family of
supergravity models which originate from non-extremal rotating D-branes. We show explicitly that varying
this ‘‘angular momentum’’ parameter decouples the Kaluza-Klein modes associated with the compact D-brane
coordinate, while the mass ratios for ordinary glueballs are quite stable against this variation, and are in good
agreement with the latest lattice results. We also compute the topological susceptibility and the gluon conden-
sate as a function of the ‘‘angular momentum’’ parameter.@S0556-2821~99!00906-6#
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I. INTRODUCTION

Generalizing the conjectured duality@1# between largeN
superconformal field theories and superstring or M theory
anti–de Sitter~AdS! backgrounds, Witten proposed an a
proach to studying largeN non-supersymmetric theorie
such as pure QCD using a dual supergravity~string theory!
description@2#. The basic idea is to start withd11 dimen-
sional superconformal field theories at finite temperatur
thus breaking the superconformal invariance—and obtaind
dimensional non-supersymmetric gauge theory at zero t
perature by dimensional reduction in the Euclidean time
rection. The AdS space is then replaced by a certain limi
the Schwarzschild geometry describing a black hole in
AdS space.

When the curvature of the space is small compared to
string scale~or, in the case of M theory, Planck scale!, su-
pergravity provides an adequate effective description that
hibits a qualitative agreement with pure QCD in three a
four dimensions@2,3#. The supergravity limit of string theory
~i.e. infinite string tension,a8→0 limit! corresponds to the
strong coupling limit of the gauge theory (l5gY M

2 N@1),
with 1/l playing the role ofa8. In the approach of@2#, the
gauge theory has an ultraviolet cutoff proportional to t
temperatureT; the supergravity approximation should d
scribe the largeN gauge theory in the strong coupling regim
with a finite ultraviolet cutoff. This is analogous to a stron
coupling lattice gauge theory with lattice spacing;1/T @3#.
In the limit that the ultraviolet cutoff is sent to infinity, on
has to study the theory at smalll, and the supergravity de
scription breaks down. To calculate the spectrum in this
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gime, a better understanding of string theory with Ramo
Ramond~R-R! background fields is required.

Glueball masses in the supergravity approximation h
been computed in@4,5#. The Witten model@2# contains in
addition to the glueballs certain Kaluza-Klein~KK ! particles
with masses of the order of the glueball masses. These
modes do not correspond to any states in the Yang-M
theory, and therefore they should decouple in the ‘‘co
tinuum’’ limit. The KK states do not decouple with the in
clusion of the leading 1/l corrections@6#. Although such
states can decouple in a full string theory treatment, th
may be generalizations of the Witten model that have a m
direct connection with the continuum gauge theory alread
the supergravity level~at least in the sector of states wit
spin <2 that can appear in a supergravity description!. A
similar situation arises in lattice gauge theory. It is w
known that the action one starts with has a significant eff
on the speed at which one gets to the continuum limit. O
can add to the lattice action deformations which are irr
evant in the continuum and arrive at an appropriate effec
description of the continuum theory while having a larg
lattice spacing~such a deformed action is called an ‘‘im
proved’’ lattice action!. A similar strategy in the dual super
gravity picture would correspond to a suitable modificati
of the background metric, so as to have an appropriate ef
tive description of the gauge theory while still having a fin
ultraviolet cutoff. An important test of the proposal is
check that the KK modes in the supergravity description t
do not correspond to gauge degrees of freedom are he
and decouple, and at the same time the infrared physic
not significantly altered. In this paper we make the first s
in this direction by examining a generalization of the Witt
model that has an additional parameter.

A more general approach to the conjectured corresp
dence between gauge theories and M-theory requires th
vestigation of supergravity compactifications which asym
totically approach anti–de Sitter backgrounds, e.g. Ad5
3S5 or AdS73S4 ~see, e.g.,@7,8#!. There exist a few super
©1999 The American Physical Society12-1
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CSÁKI, OZ, RUSSO, AND TERNING PHYSICAL REVIEW D59 065012
gravity backgrounds that generalize the Witten model a
which are regular everywhere. These are essentially obta
by starting with the rotating version of the non-extremal D
brane background~or rotating D3 brane background, in th
case of QCD3) and taking a field theory limit as in@1#. These
models were investigated in@9#. The deformation of the
background proposed in@2# is parametrized by an ‘‘angula
momentum’’ parameter~the supergravity background is a
tually static, with the Euclidean time playing the role of a
internal angle!. In this paper we determine numerically th
scalar and pseudoscalar spectrum of these models as a
tion of the angular momentum parameter and compare
results to those obtained by lattice calculations. We a
compute the gluon condensate and the topological susc
bility

The paper is organized as follows: Sec. II is devoted
the study of supergravity models for pure QCD in 311 di-
mensions. The models are described in Sec. II A. In Sec.
we compute the scalar glueball mass spectrum and ana
its dependence on the angular momentum. In Sec. II C
calculate the mass spectrum of some KK modes. It will
shown that the KK modes associated with the comp
D-brane coordinate decouple as the angular momentum
rameter is increased. This, however, is not the case for
SO~3! non-singlet KK modes with vanishing U~1! charge in
the compact D-brane coordinate. In Sec. II D we compute
gluon condensate from the free energy associated with
supergravity background. In Sec. II E we compute the to
logical susceptibility and its dependence on the angular
mentum parameter. Section III contains an analogous s
for the case of QCD in 211 dimensions. The conclusion
are similar in both cases, and they are summarized in
IV.

II. QCD IN 3 11 DIMENSIONS

A. Supergravity models for QCD4

One way to construct non-supersymmetric models
QCD based on supergravity is to start from the non-extre
D4 brane metric, and view the Euclidean time coordinate
an internal coordinate compactified on a circle of rad
(2pTH)21 @2#. Possible generalizations of this proposal a
constrained by the no-hair theorem, which implies that
most general regular manifold with only D4 brane charg
~and an isometry group containingR4) is given by the rotat-
ing version of the non-extremal D4 brane, which has t
additional parameters representing angular momenta in
different planes. The Euclidean version of this metric~re-
lated to the rotating M5 brane metric by dimensional red
tion! was used in@9# to construct models for QCD with extr
parameters. Here we investigate in detail the case when t
is one non-vanishing angular momentum, parametrized ba.
The field theory limit of the Euclidean rotating M5 bran
with angular momentum component in one plane is given
the metric@9#
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ds11
2 5D1/3H U2

~pN!1/3F(
i 51

5

dxi
21S 12

U0
6

U6D Ddt2G
1~pN!2/3S du21

D̃

D
sin2 udw21

1

D
cos2 udV2

2

2
2a2U0

3

U4D~pN!1/2sin2 udtdw D 1
4~pN!2/3dU2

U2S 12
a4

U4 2
U0

6

U6D J ,

~2.1!

where x1 ,...,x5 are the coordinates along the M5 bra
where the gauge theory lives,U is the ‘‘radial’’ coordinate of
the AdS space, while the remaining four coordinates para
etrize the angular variables ofS4, and where we have intro
duced

D512
a4 cos2 u

U4 , D̃512
a4

U4 . ~2.2!

Dimensional reduction alongx5 ~which will play the role of
the ‘‘eleventh’’ dimension! gives N rotating non-extremal
D4 branes, which in the low energy regime should be
scribed by SU(N) Yang-Mills theory at finite temperature
TH , perturbed by some operator associated with the rotat
The 311 dimensional SU(N) Yang-Mills theory at zero-
temperature can be described by makingx4→2 ix0 , and
viewing t as parametrizing a space-like circle with radi
R05(2pTH)21, where fermions obey anti-periodic bound
ary conditions. At energies much lower than 1/R0 , the theory
is effectively 311 dimensional. Because of the bounda
conditions, fermions and scalar particles get masses pro
tional to the inverse radius, so that, asR0→0, they should
decouple from the low-energy physics, leaving pure Yan
Mills theory as low-energy theory.

The gauge couplingg4
2 in the 311 dimensional Yang-

Mills theory is given by the ratio between the periods of t
11-dimensional coordinatesx5 and t times 2p. It is conve-
nient to introduce ordinary angular coordinatesu1 , and u2
which are 2p-periodic by

t5R0u2 , x55
g4

2

2p
R0u15

l

N
R0u1 , ~2.3!

R05~2pTH!215
A

3u0
, A[

u0
4

uH
4 2

1

3
a4

, ~2.4!

whereuH is the location of the horizon, and we have intr
duced the ’t Hooft coupling

l[
g4

2N

2p
, ~2.5!
2-2
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LARGE N QCD FROM ROTATING BRANES PHYSICAL REVIEW D 59 065012
the coordinate u by U52(pN)1/2u, and rescaleda
→2(pN)1/2a. By dimensional reduction inu1 , one obtains
the metric

dsIIA
2 5

2plA

3u0

uD1/2F 4u2~2dx0
21dx1

21dx2
21dx3

2!

1
4A2

9u0
2 u2S 12

u0
6

u6D
D du2

21
4du2

u2S 12
a4

u4 2
u0

6

u6D
1du21

D̃

D
sin2 udw21

1

D
cos2 udV2

2

2
4a2Au0

2

3u4D
sin2 udu2dwG , ~2.6!

with a dilaton background

e2f5
8p

27

A3l3u3D1/2

u0
3

1

N2 . ~2.7!

With this normalization, the metric reduces to Eq.~4.8! of
Ref. @2# after settinga50. The string couplingef is of order
1/N, and the metric has become independent ofN, which is
consistent with the expectation that in the largeN limit the
string spectrum should be independent ofN. The metric is
regular, and the location of the horizon is given by

uH
6 2a4uH

2 2u0
650, ~2.8!

i.e.,

uH
2 5

a4

gu0
2 1

1

3
gu0

2 , g53F1

2
1

1

2
A12

4

27
S a

u0
D 12G 1/3

.

~2.9!

Note that for largea, one has the approximate expression

uH
2 'a21

u0
6

2a4 , A'
3u0

4

2a4 ~2.10!

(uH
2 is always real!. This shows, in particular, that the radiu

R05A/(3u0) can be made very small by increasinga/u0 .
This is essentially the mechanism that will make the cor
sponding KK modes decouple at largea/u0 . At small a,
such KK states have masses of the same order as the m
of the lightest glueball states.

The string tension is given by@9#

s5
4

3
lAu0

254l
u0

6

3uH
4 2a4

. ~2.11!
06501
-

ses

String excitations should have masses of orders1/2. The spin
<2 glueballs that remain in the supergravi
approximation—whose masses are determined from
Laplace equation—have masses which are independentl.
The supergravity approximation is valid forlA@1 so that
all curvature invariants are small@9#. In this limit the spin
.2 glueballs corresponding to string excitations will b
much heavier than the supergravity glueballs.

B. Spectrum of glueball masses

The glueball masses are obtained by computing corr
tion functions of gauge invariant local operators or the W
son loops, and looking for particle poles. Following@7,8#,
correlation functions of local operatorsO are related at large
N and largegY M

2 N to tree level amplitudes of supergravity
The generating functional for the correlation function ofO is
the string partition function evaluated with specified boun
ary valuesw0 of the string fields. When the supergravi
description is applicable we have

^e2*d4xw0~x!O~x! &5e2I SG~w0!, ~2.12!

whereI SG is the supergravity action.
The spectrum of the scalar glueball1 011 is obtained by

finding the normalizable solution to the supergravity equ
tion for the dilaton modeF that couples to TrF2, which is
the lowest dimension operator with 011 quantum numbers.

The equation forF reads

]m@Age22fgmn]nF#50, ~2.13!

wheregmn is the string frame metric.
We look for u-independent solutions of the formF

5x(u)eik•x. One obtains the equation

1

u3 ]u@u~u62a4u22u0
6!x8~u!#52M2x~u!, M252k2,

~2.14!

where the eigenvaluesM are the glueball masses. The sol
tion of this ~ordinary! differential equation has to be norma
izable and regular both atu→uH andu→`. The eigenval-
ues of this equation can be easily obtained numerically@4#
by using the ‘‘shooting’’ method. One first finds th
asymptotic behavior ofx(u) for large u, and then numeri-
cally integrates this solution back to the horizon. The so
tions regular at the horizon will have a finite derivative
uH . This condition will determine the possible values of t
glueball massesM . The results of this numerical procedu
are presented in Table I and in Fig. 1. One can see from
1 that the ratios of the masses of the excited glueball st
compared to the ground state are very stable with respe
the variation in the parametera, even though both quantitie

1In the following we will use the notationJPC for the glueballs,
whereJ is the glueball spin, andP, C refer to the parity and charge
conjugation quantum numbers, respectively.
2-3
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CSÁKI, OZ, RUSSO, AND TERNING PHYSICAL REVIEW D59 065012
themselves grow likeM2}a2 for large a. The asymptotic
value of the mass ratios is taken on very quickly,a/u0'2 is
sufficiently large to be in the asymptotic region.A priori one
could have expected that these mass ratios may change
nificantly whena is varied. This leads one to suspect th
there is a dynamical reason for the stability of the ratios
masses.

Let us now consider the 021 glueballs. The lowest di-
mension operator with 021 quantum numbers is TrFF̃. On
the D4 brane worldvolume, the field that couples to this o
erator is the R-R 1-formAm . In order to find the 021 glue-
ball masses we have to solve its equation of motion

]n@Aggmrgns~]rAs2]sAr!#50, m,n51, . . . ,10.
~2.15!

Consider solutions of the form

Au2
5xu2

~u!eik•x, Am50 if mÞu2 . ~2.16!

Plugging this into Eq.~2.16!, we obtain

]n@Aggu2u2gns]sAu2
#50, ~2.17!

which reads

TABLE I. Masses of the first few 011 glueballs in QCD4, in
GeV, from supergravity compared to the available lattice resu
The first column gives the lattice result@10,11#, the second gives
the supergravity result fora50 while the third gives the supergrav
ity result in thea→` limit. The authors of Ref.@11# do not quote
an error on the preliminary lattice result for 011* . Note that the
change froma50 to a5` in the supergravity predictions is tiny

State Lattice,N53
Supergravity

a50
Supergravity

a→`

011 1.6160.15 1.61~input! 1.61~input!
011* 2.8 2.55 2.56
011** 3.46 3.48
011*** 4.36 4.40

FIG. 1. The dependence of the ratior 5M011* /M011 of the
masses of the first excited (011* ) glueball state to the lowest 011

glueball state on the parametera ~in units whereu051). The ratio
changes very little and takes on its asymptotic value quickly.
06501
ig-
t
f

-

1

u5 ~u62a4u22u0
6!]u@u3~u42a4!xu2

8 ~u!#

52M2~u42a4!xu2
~u!. ~2.18!

For a50, it yields Eq.~2.9! of @12#, as required. Whena
Þ0 there are no solutions of the form~2.16!. The reason is
that thegu2w component of the metric~2.6! is non-vanishing

for aÞ0 and, as a result, thew component of the Maxwell
equation is not satisfied automatically~solutions contain a
non-vanishing componentAw).

We will work in the approximationa/u0@1. In this ap-
proximation the non-diagonalgu2w part of the metric can be
neglected, and there are solutions of the form~2.16!. Effec-
tively, we can solve Eq.~2.18! in the limit a@u0 . We must
however keep in mind that we needu0Þ0 to regularize the
horizon, and the actual limit that is taken isa/u0 large at
fixed u0 ~so that curvature invariants are bounded fro
above and they are small for sufficiently large ’t Hooft co
pling l!.

The mass spectrum from Eq.~2.18! can be obtained using
a similar numerical method as for the 011 glueballs. The
dependence of the lightest 021 glueball mass ona is pre-
sented in Fig. 2, whereas the 021 glueball mass spectrum in
Table II. Note that while masses ratios are fairly stab
against the variation ofa ~they again grow likeM2}a2), the
actual values of the mass ratios compared to 011 increase by
a sizeable (;25%) value. The change is in the right dire
tion as suggested by recent improved lattice simulations@13#.
The mass of the second 021 state also increases and is
agreement with the new lattice results@13#.

We can directly compare the ratio of masses of the low
glueball states 021 and 011 with lattice results@10,11,13#.
Since one of the largest errors in the lattice calculation

s.

FIG. 2. The dependence of the ratior 5M021 /M011 on the
parametera ~in units whereu051). The change in the ratio is
stable against the variation ofa, however it increases by about 25%
while going toa5`. The change is in agreement with lattice sim
lations. As explained in the text, this figure is reliable only for t
regionsa!u0 or a@u0 which are shown in the plot with a solid
line, while for the intermediate region denoted by a dashed
there are corrections due to the non-vanishing off-diagonal com
nent of the metricgu2w .
2-4
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LARGE N QCD FROM ROTATING BRANES PHYSICAL REVIEW D 59 065012
glueball masses comes from setting the overall scale2 the
ratios of masses are even more accurately known from
lattice than the masses themselves. Using the lattice re
@11,13,14# in the more accurate ‘‘lattice units’’r 0 :

r 0M01154.3360.05, r 0M02156.3360.07,

r 0M021* 58.960.1, ~2.19!

we find

S M021

M011
D

supergravity

a50

51.24,

S M021

M011
D

supergravity

a→`

51.59,

S M021

M011
D

lattice

51.4660.03, ~2.20!

S M021*
M011

D
supergravity

a50

51.85,

S M021*
M011

D
supergravity

a→`

52.17,

S M021*
M011

D
lattice

52.0660.05. ~2.21!

One can see that taking thea→` improves the agreemen
between the supergravity and lattice predictions significan
One should however keep in mind that the supergravity
sults presented here are for the limitN→` andl→`, while
the lattice results are forN53 andl small.3 Direct lattice
calculations for the largeN limit have just started to becom
available @15#, however no reliable direct estimate for th
mass of the 021 is known yet.

2We thank M. Peardon for emphasizing this point to us.
3For example, in Ref.@11# the results are extrapolated tol50

from calculations in the region 7.5,g2N,10.

TABLE II. Masses of the first few 021 glueballs in QCD4, in
GeV, from supergravity compared to the available lattice resu
The first column gives the lattice result, the second is the superg
ity result for a50 while the third is the supergravity result in th
a→` limit. Note that the change froma50 to a5` in the super-
gravity predictions is sizeable, of the order;25%.

State Lattice,N53
Supergravity

a50
Supergravity

a→`

021 2.5960.13 2.00 2.56
021* 3.6460.18 2.98 3.49
021** 3.91 4.40
021*** 4.83 5.30
06501
e
lts

y.
-

C. Masses of Kaluza-Klein states

In the supergravity approximation thea50 model con-
tains additional light KK modes in the spectrum who
masses are of the same order as those of the glueball s
@6#. In this section we investigate whether the additional p
rameter of the model considered here can be tuned to
couple the KK modes already at the supergravity tree-le
In the following, it will be shown that this is indeed the ca
for the KK modes wrapped around theu2 direction, which
become very heavy fora/u0@1. We thus look for solutions
of the dilaton equation~2.14! of the form

F5x~u!eik•xeinu2. ~2.22!

One finds the following equation:

1

u3 ]u@u~u62a4u22u0
6!x8~u!#

5S 2M21
n2

R0
2

u42a4

u42a42
u0

6

u2
D x~u!, ~2.23!

whereR0 is given in Eq.~2.4!. This generalizes Eq.~2.14! to
the casenÞ0. We want to compareM0[M (n50) with
MKK[M (n51). The question is howM0 /MKK behaves as
a function ofa ~we can setu051). The extra term propor-
tional to 1/R0

2 gives a positive contribution to the mass,
that MKK should increase asMKK

2 }a8 asa is increased~the
KK radius R05A/3u0 shrinks to zero asa→`). Thus one
expects thatM0 /MKK}1/a3→0 asa increases. The numeri
cal values of the masses of these KK modes are displaye
Table III and Fig. 3. Note that the numerical evaluation
the masses of these KK modes becomes more and more
ficult as a increases. This is because the term with 1/R0

2

causes an overall shift of the masses, while the splitti
between the excited KK modes still remain of the same or
as for the ordinary glueballs. As a result, the solutions
come more and more quickly oscillating asa increases, mak-
ing numerical treatments increasingly difficult. For this re
son we display only values up toa/u053.

Above we have demonstrated that the KK modes wh
correspond to states that wrap theu2 direction are effectively
decoupled from the spectrum even in the supergravity

s.
v-

TABLE III. Masses of the KK modes which wrap around theu2

circle and have no corresponding states in QCD4, in GeV. The first
column gives the masses fora50 while the second the masses f
a53. Note that even fora53 these states are heavier by a factor
10 than the 011 glueball mass and are effectively decoupled fro
the spectrum even in the supergravity limit.

State Value fora50 Value fora53

KK 2.24 20.25
KK* 3.12 20.37
KK** 4.01 20.52
KK*** 4.89 20.72
2-5
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CSÁKI, OZ, RUSSO, AND TERNING PHYSICAL REVIEW D59 065012
proximation. However, there are other KK modes in th
theory, and one would like to know whether these are dec
pled as well. The reason for the decoupling of the modes
u2 is clear: the radius of this direction shrinks to zero wh
a→`. However, the radii of the other compact directions
not behave similarly. Therefore it is reasonable to expect
these states will not decouple at the level of supergra
from the spectrum~but they could decouple once strin
theory corrections are incorporated!. We now demonstrate by
explicit calculation of the corresponding mass spectrum
this is indeed the case.

Consider non-singlet modes which are independent ofu2 ,
of the form f (u)eik•x cosw sinu. This corresponds to spher
cal harmonics onS4 with angular momentuml 51. Plugging
this ansatz into the dilaton equation~2.13! we find thatf (u)
satisfies the equation (u051)

1

u3 ]u@~u72a4u32u! f 8~u!#

2 f ~u!S k21
4u2~413a4u224u6!

11a4u22u6 D50. ~2.24!

The results of the numerical analysis of the eigenval
are presented in Table IV and Fig. 4. One can see that t

FIG. 3. The dependence of the ratior 5M011 /MKK of the low-
est 011 glueball state compared to the KK mode wrapping theu2

circle on the parametera in units whereu051. This KK mode
decouples very quickly from the spectrum even in the supergra
approximation.

TABLE IV. Masses of the KK modes corresponding tol 51
angular momentum on theS4, in GeV. The first column gives the
masses fora50 while the second the masses in thea→` limit.
Note that the change froma50 to a5` in the supergravity pre-
dictions is not sufficiently large in order to decouple these particu
states from the spectrum in the supergravity limit.

State Value fora50 Value fora→`

KK 2.30 2.84
KK* 3.29 3.80
KK** 4.23 4.74
KK*** 5.15 5.65
06501
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states do not decouple from the spectrum at the supergra
level, instead their masses remain comparable to the ordi
glueball masses.

D. Free energy and gluon condensation

The standard relation between the thermal partition fu
tion and free energyZ(T)5exp(2F/T) relates the free en
ergy associated with the supergravity background to the
pectation value of the operator TrFmn

2 . This relation was
exploited in@12# to obtain a prediction for the gluon conden
sate in the Witten (a50) supergravity model. Let us now
derive the corresponding supergravity result for generala.
From the rotating M5 brane metric@given in Eq. ~3.1! of
@9##, one can obtain the following formulas for the Arnowit
Deser-Misner~ADM ! mass, entropy and angular momentu
~see also@16,17#!:

MADM5
V5V~V4!

4pGN
2mS 11

3

4
sinh2 a D , V~V4!5

8p2

3
,

~2.25!

S5
V5V~V4!

4GN
2mrH cosha, ~2.26!

JH5
V5V~V4!

4pGN
ml cosha, ~2.27!

GN5
k11

2

8p
524p7l P

9 , ~2.28!

whereGN is Newton’s constant in 11 dimensions, andl P is
the 11 dimensional Planck length. The~magnetic! chargeN
is related toa andm by

2m cosha sinha5pNlP
3 . ~2.29!

The Hawking temperature and angular velocity are given

ty

r

FIG. 4. The dependence of the ratior 5MKK /M011 of KK
modes ~corresponding to spherical harmonics withl 51 on S4)
compared to the lowest 011 glueball state on the parametera in
units whereu051. This KK mode does not decouple from th
spectrum in the supergravity approximation even in thea→` limit.
2-6
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TH5
3r H

2 1 l 2

8pm cosha
, VH5

lr H

2m cosha
. ~2.30!

These quantities satisfy the first law of black hole thermo
namics:

dMADM5THdS1VHdJH . ~2.31!

We are interested in the field theory limitl P→0, obtained by
rescaling variables as follows:

r 5u2l P
3 ~4pN!, m5

1

2
u0

6l P
9 ~4pN!3, l 5 ia2l P

3 ~4pN!.

~2.32!

We get

E[MADM2Mextremal5
5

3p3 V5N3u0
6 , ~2.33!

TH5
3u0

2pA
, S5

4

3p2 V5N3uH
2 u0

3 , ~2.34!

VH5 i
2a2uH

2

u0
3 , JH5 i

2

3p3 V5N3a2u0
3 , ~2.35!

with

A5
3u0

4

3uH
4 2a4

, uH
4 2a45

u0
6

uH
2 . ~2.36!

The free energy is given by

F5E2THS2VHJH52
V5

3p3 N3u0
6 . ~2.37!

For a50 this reproduces the result of@18# (u0
52pATH/3). The M5 brane coordinatex5 is compactified
on a circle with radiusR0l/N, given by Eq.~2.4!, so that

V55
V4l

THN
. ~2.38!

The gluon condensate is then given by

K 1

4gYM
2 Tr Fmn

2 ~0!L 52
F

V4TH

5
4

27p
lN2u0

4A2. ~2.39!

For a50 this reduces to the corresponding result in@12#
~settingA51 andu052pTH/3). Expressingu0 in terms of
the string tension~2.11! we obtain

K 1

4gYM
2 Tr Fmn

2 ~0!L 5
1

12p

N2

l
s2. ~2.40!

Note that this relation is independent ofa ~in particular, it
applies to thea50 case as well!. It has the expected depen
dence onN, and a simple dependence onl.
06501
-

E. Topological susceptibility

The topological susceptibilityx t is defined by

x t5
1

~16p2!2 E d4x^Tr FF̃~x!Tr FF̃~0!&. ~2.41!

The topological susceptibility measures the fluctuations
the topological charge of the vacuum. At largeN the Witten-
Veneziano formula@19,20# relates the massmh8 in SU(N)
with Nf quarks to the topological susceptibility of SU(N)
without quarks:

mh8
2

5
4Nf

f p
2 x t . ~2.42!

The effective low-energy four dimensional brane theo
contains the coupling

1

16p2 E d4xdu2 Au2
Tr FmnFlsemnls, ~2.43!

whereAu2
is the component along the coordinateu2 of the

R-R 1-formAm . We will consider zero mode (M250) con-
figurations whereAu2

is independent of the world-volum
coordinates. Comparing to the standard Yang-Mills co
pling,

1

16p2 E d4xû Tr FF̃, ~2.44!

one obtains the relation

û5E
0

2p

du2Au2
52pAu2

. ~2.45!

The action of the R-R 1-form is given by

I 5
1

2k10
2 E d10xAg

1

4
~]mAn2]nAm!

3~]m8An82]n8Am8!g
mm8gnn8. ~2.46!

As discussed in Sec. II B, in the approximation thata/u0 is
either very large or very small, the metric is diagonal a
there are zero mode solutions of the formAu2

5Au2
(u),Am

50, mÞu2 . The action reduces to

I 5
1

4k10
2 E d10xAg S dAu2

~u!

du
D 2

guugu2u2. ~2.47!

Using Eq.~2.6! and integrating over the angular coordinate
this becomes

I 5
27p6A2l3

27u0
2k10

2 V4E
uH

`

duu3~u42a4!S dAu2
~u!

du
D 2

.

~2.48!
2-7



t

y

d

g

s

d-
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The equation of motion is then given by

]u@u3~u42a4!]uAu2
#50. ~2.49!

Therefore,

]uAu2
56Au2

` C~a!
u0

6

u3~u42a4!
, ~2.50!

Au2
5Au2

` F116C~a!S u0
6

2a4u2 1
u0

6

4a6 log
u22a2

u21a2D G .

~2.51!

The integration constantC(a) will be fixed by assuming tha
Au2

(u) vanishes at the horizon@21#. This gives

1

C~a!
52

3u0
6

a4uH
2 1

3u0
6

2a6 log
uH

2 1a2

uH
2 2a2

. ~2.52!

The other integration constantAu2

` is related to the

û-parameter by Eq.~2.45!, 2pAu2

` 5 û. Note that in the limit

a50 one getsC(0)51 andAu2
(u)5Au2

` (12 u0
6/u6).

Usingk10
2 5k11

2 /2p526p7 andu052pATH/3, we obtain

I 5 û2V4

16p

729
A6C~a!l3TH

4 . ~2.53!

The topological susceptibility~2.41! can then be obtained b
differentiating twice with respect toû:

x t5
32p

729
A6C~a!l3TH

4 , ~2.54!

or, in terms of the string tension~2.11!,

x t5
C~a!

8p3 ls2. ~2.55!

The û-dependence of the vacuum energy of the formû2 is
the result anticipated in@21# for the a50 model, and Eq.
~2.53! shows that it holds for largea too. In the largeN limit,
this must be the case for consistency@21#. For a50, one has
A515C(a), and Eq.~2.54! reproduces the result obtaine
in @12#. In the largea limit we have@see Eq.~2.10!#

C~a!'
a6

9u0
6 log

a

u0

, ~2.56!

so that

x t'
1

18p3 l3
u0

6

a2 log
a

u0

5
1

72p3

a6

u0
6 log

a

u0

ls2. ~2.57!

This decreases if we increasea/u0 at fixedl andu0 .
06501
III. QCD IN 2 11 DIMENSIONS

A. Supergravity Models for QCD3

Analogous models for QCD3 can be obtained by startin
with the Euclidean rotating D3 brane@Eq. ~3.16! in @9# with
x0→2 i t,l→ i l ] and takinga8→0 by rescaling variables a
follows:

r 5Ua8, 2m5U0
4a84, l 5aa8. ~3.1!

In the limit a8→0 at fixedU,a,U0 we obtain

dsIIB
2 5a8D0

1/2F U2

A4pgsN
~h0dt21dx1

21dx2
21dx3

2!

1
A4pgsNdU2

U2S 12
a2

U22
U0

4

U4D
1A4pgsN

3S du21
D̃0

D0

sin2 udw21
cos2 u

D0

dV3
2D

2
2aU0

2

U2D0

sin2 udtdwG , ~3.2!

where

h0512
U0

4

U4D0
, D0512

a2 cos2 u

U2 , D̃0512
a2

U2 ,

~3.3!

dV3
25dc1

21sin2 c1dc2
21cos2 c1dc3

2 . ~3.4!

The theory describes fermions with anti-periodic boun
ary conditions on the circle parametrized byt, which has
radius (2pTH)21 with

TH5
u0

pB
, B[

2u0
3

uH~2uH
2 2a2!

, ~3.5!

uH
2 5

1

2
~a21Aa414u0

4!. ~3.6!

For convenience, we have rescaled variables byU
5(4pgsN)1/2u,a→(4pgsN)1/2a. At energies much lower
than TH the theory should be effectively 211 dimensional
~with x05 ix3 playing the role of time!. The gauge coupling
of the 211 dimensional field theory is given by

gYM3

2 5gYM4

2 TH , gYM4

2 52pgs , ~3.7!

l[
gYM3

2 N

2p
5gsN

u0

pB
. ~3.8!
2-8
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In this model Wilson loops exhibit an area-law behavior w
string tension

s5
1

2p
A4pgsNu0

25AlBu0
3/2. ~3.9!

This can be obtained by minimizing the Nambu-Goto act
@22#, and it is essentially given by the coefficient of( i 51

3 dxi
2

at the horizon times 1/(2p) @2,23,24#. In the limit of large ’t
Hooft coupling, the light physical states are the supergra
modes, whose masses can be determined from the equa
of motion of the string theory effective action. In the ne
sections we calculate the mass spectrum of the light phys
states and of KK modes.

B. Spectrum of glueball masses

In order to find the spectrum of the 011 glueball states
one has to consider the supergravity equation for the dila
modeF that couples to the operator TrF2

]m@Aggmn]nF#50, ~3.10!

evaluated in the above background. For functions of the fo
F5x(U)eik•x, we obtain

]u@~u42u0
42a2u2!ux8~u!#1M2ux~u!50, M252k2.

~3.11!

The eigenvalues of this equation can again be determ
numerically. The results are presented in Table V and Fig
Figure 5 gives the dependence ona of the mass ratio of the
first excited 011 glueball state compared to the ground st
011. One obtains a very similar behavior to the case
QCD4, that is the mass ratio changes very little, and takes
its asymptotic value quickly. The comparison to the availa
lattice results@25# are given in Table V.

C. Masses of KK states

Just like in the case of QCD4, we would like to analyze
the behavior of the masses of the different KK modes.
will find very similar results: the KK modes wrapping th
coordinatet are decoupling~even though a bit slower than i

TABLE V. Masses of the 011 glueballs and their excited state
in QCD3. The first column gives the lattice results extrapolated
N→`, the second column the supergravity results fora50 and the
third column the supergravity limita→`. The lattice results are in
the units of the square root of the string tension. The error give
statistical and does not include the systematic error.

State LatticeN→` Value for a50 Value fora→`

011 4.06560.055 4.07~input! 4.07 ~input!
011* 6.1860.13 7.03 7.05
011** 7.9960.22 9.93 9.97
011*** – 12.82 12.87
06501
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QCD4), while the other KK modes corresponding to stat
with angular momentum on theS5 are not decoupling in the
supergravity limit.

First we consider the KK modes wrapping the compact
direction. Let us consider solutions to the Laplace equat
¹2F50 of the form

F5x~u!eik•xeibt. ~3.12!

The coordinatet is periodic with periodTH
21 , whereTH is

given in Eq.~3.5!. Therefore

b52pTHn, ~3.13!

wheren is an integer. Using the metric~3.2! we find

]u@~u42u0
42a2u2!ux8~u!#

5uS 2M21n24p2TH
2

u22a2

u22a22
u0

4

u2
D x~u!. ~3.14!

One can see that just like in the case of QCD4 there is an
additional positive contribution to the masses, which gro
like a4, therefore the masses of these KK states should g
asMKK

2 'a4. Thus these KK modes decouple from the spe
trum, but slower than the corresponding KK modes
QCD4. The results of the numerical analysis are summari
in Table VI and Fig. 6.

is

FIG. 5. The dependence ona of the ratior 5M011* /M011 in
QCD3. One can see that the ratio is very stable to changes ina, and
reaches its asymptotic value quickly.a is given in units ofu0 .

TABLE VI. Masses of the KK modes wrapping the circlet in
QCD3, using the same normalization as in Table V. The first c
umn gives the masses fora50 while the second the masses fora
54. Note that these states decouple quickly from the spectrum e
in the supergravity approximation.

State Value fora50 Value fora54

KK 5.79 23.77
KK* 8.64 24.63
KK** 11.50 25.78
KK*** 14.36 27.19
2-9
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Next we analyze the KK modes which correspond
states with angular momentuml 51 on S5 in the a50 case.
For a50 these states have been examined in@6#, and found
to be non-decoupling in the supergravity limit and includi
the lowest ordera8 corrections. Here we repeat this analys
and find ~just like in the case of QCD4) them to be non-
decoupling even in thea→` case, in the supergravity limit

In order to do the analysis of these KK modes one ne
to find the explicit form of the spherical harmonics. Th
spherical harmonics onSd can be constructed in the follow
ing way. One takesSd embedded inRd11, and expresses th
Cartesian coordinatesyi in terms of the angles. Then th
spherical harmonics are just the functio
Ci 1 , . . . ,i kyi 1

. . . .yi k
, whereC is a symmetric traceless tens

@26#. This way, the simplest non-trivial spherical harmonic
just the coordinateyi itself. In the case of our QCD3 theory,
we actually have to use the ‘‘spheroidal coordinates’’yi
given in @9# on p. 9. Thus one looks for solutions of th
dilaton equation of the formf (u)eik•xyi , i 51,2,3,4,5,6. For
a50 the isometry group ofS5 is SO~6!, and thel 51 KK
mode is in the representation6 of SO~6!. Introducing the
angular momentuma breaks SO~6! to SO~4!3U~1!3U~1!,
and the6 decomposes into41111. These states satisfy dif
ferent eigenvalue equations. Fori 51,2 ~the two singlets are
degenerate! the equation one gets is

]u@u~u42a2u221! f 8~u!#

2 f ~u!S k2u1
5u314a2u525u7

11a2u22u4 D 50. ~3.15!

Note that fora50 this indeed reduces to the equation giv
in @6# for l 51. We have numerically solved this equatio
and find that the mass of these KK modes is grow
slightly, until it becomes degenerate with the first excit
state of the 011 glueball. Thus it does not decouple from th
spectrum in the supergravity limit. The results are summ
rized in Table VII and Fig. 7.

FIG. 6. The dependence ona of the ratior 5M011 /MKK of the
lowest 011 glueball state compared to the KK states wrapping
t circle in units whereu051. These KK modes decouple from th
spectrum in the supergravity approximation very quickly.
06501
s

g
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For the other 4 KK states which are in the4 of SO~4! one
finds the equation

]u@u~u42a2u221! f 8~u!#2 f ~u!~k2u15u323a2u!50,
~3.16!

which for a50 reproduces the equation in@6# with l 51. The
additional mass term is now negative, which actually ma
these KK modes lighter in thea→` limit than for a50.
However, they are still of the same order~and slightly
heavier! than the 011 glueballs. The numerical results fo
this state are summarized in Table VIII and Fig. 8.

D. Free energy and gluon condensation

From the rotating D3 brane metric@see Eq.~3.16! in @9##,
one can find the following formulas for the thermodynam
variables:

FIG. 7. The dependence of the ratior 5MKK /M011 of the KK
modes corresponding to the two singletl 51 states compared to th
lowest 011 glueball state on the parametera in units whereu0

51. This KK mode does not decouple from the spectrum in
supergravity approximation even in thea→` limit, even though it
increases slightly and becomes exactly degenerate with the
excited glueball state 011* .

e

TABLE VII. Masses of the KK modes corresponding to the tw
degenerate singlet pieces of thel 51 sextet of the original SO~6!
isometry in QCD3, using the same normalization as in Table V. T
first column gives the masses fora50 while the second the masse
in the a→` limit. Note that these states do not decouple from t
spectrum in the supergravity approximation.

State Value fora50 Value fora→`

KK 5.27 7.05
KK* 8.29 9.97
KK** 11.23 12.87
KK*** 14.14 15.76
2-10
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MADM5
V3V~V5!

4pGN

5

4
2mS 11

4

5
sinh2a D , V~V5!5p3,

~3.17!

S5
V3V~V5!

4GN
2mrH cosha, ~3.18!

JH5
V3V~V5!

4pGN
ml cosha, ~3.19!

TH5
r H~2r H

2 1 l 2!

4pm cosha
, VH5

lr H
2

2m cosha
, ~3.20!

GN5
k10

2

8p
58gs

2p6~a8!4, ~3.21!

where

2m cosha sina54pgsNa82. ~3.22!

One can check that they satisfy the first law of black h
thermodynamics Eq.~2.31!. In the limit a8→0 @rescaling
variables as in Eq.~3.1!#, we get

TABLE VIII. Masses of the KK modes corresponding to th
quartet piece of thel 51 sextet of the original SO~6! in QCD3,
using the same normalization as in Table V. The first column gi
the masses fora50 while the second the masses in thea→` limit.
Note that these states actually get lighter froma50 to a5` in the
supergravity approximation.

State Value fora50 Value fora→`

KK 5.27 4.98
KK* 8.29 8.14
KK** 11.23 11.15
KK*** 14.14 14.10

FIG. 8. The dependence of the ratior 5MKK /M011 of the KK
states compared to the lowest 011 glueball state on the parametera
in units whereu051. This KK mode does not decouple from th
spectrum in the supergravity approximation even in thea→` limit,
they instead get even slightly lighter than fora50.
06501
e

E[MADM2Mext5
3

8p2 V3N2u0
4 , ~3.23!

TH5
u0

pB
, S5

1

2p
V3N2uHu0

2 , ~3.24!

VH5 i
auH

2

u0
2 , JH5 i

1

4p2 V3N2au0
2 , ~3.25!

uH
2 2a25

u0
4

uH
4 , B5

2u0
3

uH~2uH
2 2a2!

. ~3.26!

The free energy is then given by

F5E2THS2VHJH52V3

N2u0
4

8p2 . ~3.27!

This gives for the gluon condensate the following expr
sion:

K 1

4gYM
2 Tr Fmn

2 ~0!L 52
F

V3TH

5
1

8p
N2Bu0

3 . ~3.28!

In terms of the Yang-Mills string tension, this is

K 1

4gYM
2 Tr Fmn

2 ~0!L 5
1

8p

N2

l
s2. ~3.29!

We find again that supergravity predicts that the gluon c
densate is proportional toN2/l times the string tension
squared. The result expressed in terms of the string tensio
thus independent ofa.

IV. CONCLUSIONS

In this paper we investigated quantitative aspects of la
N SU(N) Yang-Mills theory in three and four dimension
using a one-parameter family of supergravity models rela
to non-extremal rotating D-branes. The new feature of t
class of models is the decoupling of the KK modes asso
ated with the compact D-brane coordinate as the angular
mentum parameter is increased. The mass ratios for ordi
glueballs were found to be very stable against this variati
While the mass ratios of the 011 glueballs change only
slightly compared to the case with zero angular momentu
there is a substantial change in the mass ratios of 021,
021* given in Eqs.~2.20!,~2.21!, which for largea are in
better agreement with the lattice values than fora50.

It is worth emphasizing that the ratioa/u0 should be large
enough to haveMKK@Mglueball, but not infinite, since there
are also string states winding around the compact D-br
coordinate with masses of ordersR0 that should decouple
i.e., Mwind@Mglueball. This requireslu0

8/a8@1, which is
consistent with the condition that curvature invariants
small compared to the string scale@9#. In general, for any
given ratioa/u0 which is large enough to decouple KK stat

s
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from the low-energy physics, it is possible to choosel suf-
ficiently large so that string winding states also decouple

We have found that the@SO~3! or SO~4!# non-singlet KK
modes with vanishing U~1! charge in the compact D-bran
coordinate do not decouple in this class of models. One
hope that those KK modes may decouple in a model w
more angular momenta~since there is room to take othe
limits!. In this case the isometry group of the internal spa
is smaller. For example, in QCD3, for a50 it is given by
SO~6!3U~1!, whereas foraÞ0 it is SO~4!3U~1!3U~1!.
The isometry group of the model with the maximum numb
of angular momenta only contains U~1! factors. This is con-
sistent with the fact that in pure QCD there can only
singlets of the original R-symmetry.

We have also found some features which seem to be
versal, i.e., which do not depend on the extra supergra
parameter. In particular, both in QCD3 and QCD4 supergrav-
ity gives a gluon condensate of the form (N2/l)s2, with a
coefficient which is the same for all models parametrized
s

s,

tt

nd

:

m

06501
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a. Another feature that seems to be common to all sup
gravity models is a topological susceptibility of the for
ls2, with a coefficient which is independent ofN but de-
pends ona/u0 . This result suggests that in the regimel
@1 theh8 particle of QCD4 with N53 is much heavier than
other mesons~whose masses are proportional to the str
tension!.
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