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We study largeN SU(N) Yang-Mills theory in three and four dimensions using a one-parameter family of
supergravity models which originate from non-extremal rotating D-branes. We show explicitly that varying
this “angular momentum” parameter decouples the Kaluza-Klein modes associated with the compact D-brane
coordinate, while the mass ratios for ordinary glueballs are quite stable against this variation, and are in good
agreement with the latest lattice results. We also compute the topological susceptibility and the gluon conden-
sate as a function of the “angular momentum” paramdt®0556-282199)00906-9

PACS numbe(s): 12.38.Aw, 04.65+e, 11.25.Hf, 12.39.Mk

I. INTRODUCTION gime, a better understanding of string theory with Ramond-
Ramond(R-R) background fields is required.
Generalizing the conjectured duality] between largeN Glueball masses in the supergravity approximation have

superconformal field theories and superstring or M theory orbeen computed if4,5]. The Witten model2] contains in
anti—de Sitter(AdS) backgrounds, Witten proposed an ap- addition to the glueballs certain Kaluza-KlgiKK) particles
proach to studying largeN non-supersymmetric theories with masses of the order of the glueball masses. These KK
such as pure QCD using a dual supergravtying theory ~ modes do not correspond to any states in the Yang-Mills
description[2]. The basic idea is to start witti+1 dimen- ~ theory, and therefore they should decouple in the “con-
sional superconformal field theories at finite temperature—tinuum” limit. The KK states do not decouple with the in-
thus breaking the superconformal invariance—and obtaiin a ¢lusion of the leading A corrections[6]. Although such

dimensional non-supersymmetric gauge theory at zero tertates can dec_oup!e in a full st'ring theory treatment, there
may be generalizations of the Witten model that have a more

perature by dimensional reduction in the Euclidean time di- . ‘ i ith th i h ready at
rection. The AdS space is then replaced by a certain limit Oflrec connection wi € continuum gauge theory already a

the Schwarzschild geometry describing a black hole in a h? sipergrawty leve(at Ie_ast in the sectpr of sta'te§ with
AdS space spin <2 _that_can appear in a supergravity descrlpt_loh
Wh th. t fth . I dt thS|m|Iar situation arises in lattice gauge theory. It is well
Yvhen the curvature of the sSpace 1S small comparead to g, that the action one starts with has a significant effect
string scale(or, in the case of M theory, Planck scalsu-

) . ; s> on the speed at which one gets to the continuum limit. One
pergravity provides an adequate effective description that €5y a4 to the lattice action deformations which are irrel-

hibits a qualitative agreement with pure QCD in three andgyant in the continuum and arrive at an appropriate effective
four dimensiong$2,3]. The supergravity limit of string theory description of the continuum theory while having a larger
(|e |nf|n|te Stl’ing tension(l’,—>0 I|m|t) Corresponds to the lattice Spacing(such a deformed action is called an “im-
strong coupling limit of the gauge theor)?&(=g\2(MN>1), proved” lattice action. A similar strategy in the dual super-
with 1/x playing the role ofa’. In the approach of2], the  gravity picture would correspond to a suitable modification
gauge theory has an ultraviolet cutoff proportional to theof the background metric, so as to have an appropriate effec-
temperatureT; the supergravity approximation should de- tive description of the gauge theory while still having a finite
scribe the larg®N gauge theory in the strong coupling regime ultraviolet cutoff. An important test of the proposal is to
with a finite ultraviolet cutoff. This is analogous to a strong check that the KK modes in the supergravity description that
coupling lattice gauge theory with lattice spacird./T [3]. do not correspond to gauge degrees of freedom are heavy
In the limit that the ultraviolet cutoff is sent to infinity, one and decouple, and at the same time the infrared physics is
has to study the theory at smal] and the supergravity de- not significantly altered. In this paper we make the first step
scription breaks down. To calculate the spectrum in this rein this direction by examining a generalization of the Witten
model that has an additional parameter.
A more general approach to the conjectured correspon-

*Email address: csaki@thwk5.lbl.gov dence between gauge theories and M-theory requires the in-
TEmail address: yaron.oz@cern.ch vestigation of supergravity compactifications which asymp-
*Email address: j.russo@ic.ac.uk totically approach anti—de Sitter backgrounds, e.g. AdS
SEmail address: terning@alvin.lbl.gov X S° or AdS;x S* (see, e.g.[7,8]). There exist a few super-
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6

gravity backgrounds that generalize the Witten model and U2 8
1= 0o

5
which are regular everywhere. These are essentially obtainedis?,= A% —1@[ > dx+
by starting with the rotating version of the non-extremal D4 (mN)™ =
brane backgroundor rotating D3 brane background, in the

case of QCB) and taking a field theory limit as ifi1]. These

models were investigated if@]. The deformation of the +(mN)23
background proposed i2] is parametrized by an “angular
momentum” parametetthe supergravity background is ac-

dr?

A 1
de’+ Ksmz 6d?+ Kcos’- 6dQ3

2113 2/3 2
Fually static, with thg Euclidean time plqying the r.oIe of an — %sz odrde | + A(mN) n du s
internal angle In this paper we determine numerically the U"A(7N) U2l 1- a ﬁ
scalar and pseudoscalar spectrum of these models as a func- u* u®
tion of the angular momentum parameter and compare the 2.1)

results to those obtained by lattice calculations. We also

E?"rtr;pute the gluon condensate and the topological SUSCE3pt'vx7here X1,....X5 are the coordinates along the M5 brane

Th . ved foll - Sec. Il is devoted tWhere the gauge theory lived, is the “radial” coordinate of
€ paper Is organized as Tollows: Sec. 11 1S devoted 1qn. ags space, while the remaining four coordinates param-
the study of supergravity models for pure QCD irn 3 di-

) i - etrize the angular variables &, and where we have intro-
mensions. The models are described in Sec. Il A. In Sec. Il By ,ceq

we compute the scalar glueball mass spectrum and analyze

its dependence on the angular momentum. In Sec. 1IC we a%cod 0 a4
calculate the mass spectrum of some KK modes. It will be A=1-——p, A=1— —. (2.2)
shown that the KK modes associated with the compact U U

D-brane coordinate decouple as the angular momentum pa-

rameter is increased. This, however, is not the case for theimensional reduction alongs (which will play the role of
SQ(3) non-singlet KK modes with vanishing(l) charge in  the “eleventh” dimensioh gives N rotating non-extremal
the compact D-brane coordinate. In Sec. Il D we compute th&4 branes, which in the low energy regime should be de-
gluon condensate from the free energy associated with thecribed by SUK) Yang-Mills theory at finite temperature
supergravity background. In Sec. Il E we compute the topod H . Perturbed by some operator associated with the rotation.
logical susceptibility and its dependence on the angular molhe 3+1 dimensional SU{) Yang-Mills theory at zero-
mentum parameter. Section Il contains an analogous studmperature can be described by makig-—ixo, and

for the case of QCD in 21 dimensions. The conclusions V'€WINg 7 asifarametrlzmg.a space-like circle with radius
are similar in both cases, and they are summarized in Se§o=(27Tw) ~, where fermions obey anti-periodic bound-
Vi ary conditions. At energies much lower thafRd/ the theory

is effectively 3+1 dimensional. Because of the boundary
conditions, fermions and scalar particles get masses propor-
tional to the inverse radius, so that, Rg— 0, they should
decouple from the low-energy physics, leaving pure Yang-
Mills theory as low-energy theory.

A. Supergravity models for QCD, The gauge coupling_gf1 in the 3+1 dimensional Yang-
O]J\llills theory is given by the ratio between the periods of the

o 1-dimensional coordinates; and 7 times 2. It is conve-
QCD based on supergravity is to start from the non-extremaﬂ;ient to introduce ordinary angular coordinaiés and 6,

D4 brane metric, and view the Euclidean time coordinate a§ pi-h are 2r-periodic by
an internal coordinate compactified on a circle of radius

II. QCD IN 3 +1 DIMENSIONS

One way to construct non-supersymmetric models

(27Ty) 1 [2]. Possible generalizations of this proposal are 2 N

constrained by the no-hair theorem, which implies that the 7=Ry0s, Xs:& Rof1=~ Ry0;, (2.3
most general regular manifold with only D4 brane charges 2m N

(and an isometry group containimRf) is given by the rotat-

ing version of the non-extremal D4 brane, which has two o, A ug

additional parameters representing angular momenta in two Ro=(27Ty) :3_u0' A= 1 ¢ 24
different planes. The Euclidean version of this meffie- uﬁ— §a4

lated to the rotating M5 brane metric by dimensional reduc-

tion) was used in9] to _construct m_odels for QCD with extra whereuy is the location of the horizon, and we have intro-
parameters. Here we investigate in detail the case when ther, ) :

: - . Uced the 't Hooft coupling

is one non-vanishing angular momentum, parametrizea. by
The field theory limit of the Euclidean rotating M5 brane 2
with angular momentum component in one plane is given by — 9N 2.5
the metric[9] 27’ '
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the coordinateu by U=2(w#N)¥2, and rescaleda
—2(wN)¥2a. By dimensional reduction im;, one obtains
the metric

2mAA
dsia=—— UAY? 4u2(—dxG+dxé+dx3+dxd)
Uo
4n? ug 4du?
+—2U2 1—TO d0§+ 3
9ug u°A a* ug
i 1-—-—
u* u

A 1
+de?+ Zsin2 0d?+ Zcos2 6dQ3

4a’Aud .
— ———sinr 6dé,do |, 2.6
3U4A U@ ( )
with a dilaton background
8 AS\3udA1? 1
eft=—r—— 2.7

27 u3  N¥
With this normalization, the metric reduces to E4.8) of
Ref.[2] after settinga=0. The string couplin@? is of order
1/N, and the metric has become independentpfvhich is
consistent with the expectation that in the lafgdimit the
string spectrum should be independentNof The metric is

regular, and the location of the horizon is given by

u—a*u? —us=0, (2.8

ie.,
at 1 11 [ afa\q”
uf,:y—u(z)Jrgyué, y=3 55 1—2—7(u—0) ] :
(2.9

Note that for largea, one has the approximate expressions

ug

2a*’

4
3ug

2 2
ui~a’+ ~=—
H 2a4

(2.10
(ua is always redl This shows, in particular, that the radius
Ro=A/(3uy) can be made very small by increasiafug.
This is essentially the mechanism that will make the corre
sponding KK modes decouple at largéu,. At small a,
such KK states have masses of the same order as the mas
of the lightest glueball states.
The string tension is given byg]

4 ug
g=— KAU(%:4)\4—4.
3 3uj—a

(2.1))
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String excitations should have masses of owf¥f. The spin

<2 (glueballs that remain in the supergravity
approximation—whose masses are determined from the
Laplace equation—have masses which are independent of
The supergravity approximation is valid farA>1 so that

all curvature invariants are smd®]. In this limit the spin

>2 glueballs corresponding to string excitations will be
much heavier than the supergravity glueballs.

B. Spectrum of glueball masses

The glueball masses are obtained by computing correla-
tion functions of gauge invariant local operators or the Wil-
son loops, and looking for particle poles. Followifig,8],
correlation functions of local operatof® are related at large
N and Iargeg%MN to tree level amplitudes of supergravity.
The generating functional for the correlation function(dfs
the string partition function evaluated with specified bound-
ary valuesg, of the string fields. When the supergravity
description is applicable we have

(e~ 1400000 ) — g~Isc(v0), (2.12
wherel ¢ is the supergravity action.

The spectrum of the scalar glueBall™ " is obtained by
finding the normalizable solution to the supergravity equa-
tion for the dilaton modeb that couples to TF?, which is
the lowest dimension operator with" 0 quantum numbers.

The equation fob reads

d,[\ge 2¢gLg,01=0,

whereg,,, is the string frame metric.
We look for #-independent solutions of the forrd
= y(u)e'* X, One obtains the equation

(2.13

1
Safu(Ut-al - WX (U)]= M), M7= i,

(2.19

where the eigenvaludd are the glueball masses. The solu-
tion of this (ordinary) differential equation has to be normal-
izable and regular both at—uy andu—«. The eigenval-
ues of this equation can be easily obtained numeriddlly
by using the “shooting” method. One first finds the
asymptotic behavior of(u) for largeu, and then numeri-
cally integrates this solution back to the horizon. The solu-
tions regular at the horizon will have a finite derivative at
Uy . This condition will determine the possible values of the
glueball masseM. The results of this numerical procedure
are presented in Table | and in Fig. 1. One can see from Fig.

1 that the ratios of the masses of the excited glueball states
compared to the ground state are very stable with respect to
%€ variation in the parametar even though both quantities

1In the following we will use the notatiodP® for the glueballs,
wherel is the glueball spin, anB, C refer to the parity and charge
conjugation quantum numbers, respectively.
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TABLE |. Masses of the first few 0% glueballs in QCDQ, in

GeV, from supergravity compared to the available lattice results. 1.6 ¢

The first column gives the lattice resyt0,11], the second gives

the supergravity result fa=0 while the third gives the supergrav-

ity result in thea—c limit. The authors of Ref[11] do not quote
an error on the preliminary lattice result foi ®*. Note that the
change froma=0 to a=< in the supergravity predictions is tiny.

Supergravity ~ Supergravity
State LatticeN=3 a=0 a—oo
o++ 1.61+0.15 1.61input) 1.61(input)
o+t 2.8 2.55 2.56
Qft*= 3.46 3.48
QF tHxx 4.36 4.40

themselves grow likevi2«a? for large a. The asymptotic
value of the mass ratios is taken on very quiclditiy~2 is
sufficiently large to be in the asymptotic regigkpriori one

PHYSICAL REVIEW D69 065012
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FIG. 2. The dependence of the ratiee Mg-+/My++ on the
parametera (in units whereup=1). The change in the ratio is
stable against the variation af however it increases by about 25%
while going toa=. The change is in agreement with lattice simu-
lations. As explained in the text, this figure is reliable only for the
regionsa<<ug or a>uy which are shown in the plot with a solid

could have expected that these mass ratios may change Sigfe, while for the intermediate region denoted by a dashed line

nificantly whena is varied. This leads one to suspect thaty,ere are corrections due to the non-vanishing off-diagonal compo-
there is a dynamical reason for the stability of the ratios ofyent of the metrig, .-
2

masses.
Let us now consider the 0" glueballs. The lowest di-

mension operator with 0" quantum numbers is HF. On

the D4 brane worldvolume, the field that couples to this op-

erator is the R-R 1-fornd , . In order to find the 0" glue-
ball masses we have to solve its equation of motion

3,199 9" (9,A,— ,A,)1=0, u,v=1,...,10.

(2.15
Consider solutions of the form
Ag,=xo,(WENY,  A,=0 if u#6,. (216
Plugging this into Eq(2.16), we obtain
3,[\gg""29"73,A,,1=0, (2.17)
which reads
T
1.594
1.592
a
2 4 6 8 10
1.588
1.586

FIG. 1. The dependence of the ratie= My++« /My++ oOf the
masses of the first excited {0*) glueball state to the lowest'0
glueball state on the parametei(in units whereuy=1). The ratio
changes very little and takes on its asymptotic value quickly.

1
Fsut—atu?—ug)a fud(u—ah)x),(u)]

=—M?(u*=a*) xy,(u). (2.18

For a=0, it yields Eq.(2.9 of [12], as required. Whem
#0 there are no solutions of the for(@.16. The reason is
that theg,,, component of the metri€2.6) is non-vanishing

for a#0 and, as a result, the component of the Maxwell
equation is not satisfied automaticallgolutions contain a
non-vanishing componer,).

We will work in the approximatiora/uy>1. In this ap-
proximation the non—diagonaygﬂ part of the metric can be

neglected, and there are solutions of the fqehi6. Effec-
tively, we can solve Eg2.18) in the limit a>uy. We must
however keep in mind that we neeg+ 0 to regularize the
horizon, and the actual limit that is taken agu, large at
fixed uy (so that curvature invariants are bounded from
above and they are small for sufficiently large 't Hooft cou-
pling A).

The mass spectrum from E(.18 can be obtained using
a similar numerical method as for the" 0 glueballs. The
dependence of the lightest 0 glueball mass ora is pre-
sented in Fig. 2, whereas thé 0 glueball mass spectrum in
Table Il. Note that while masses ratios are fairly stable
against the variation ad (they again grow likeM?«a?), the
actual values of the mass ratios compared td @hcrease by
a sizeable ~25%) value. The change is in the right direc-
tion as suggested by recent improved lattice simulati@B8k
The mass of the second 0 state also increases and is in
agreement with the new lattice resulis3].

We can directly compare the ratio of masses of the lowest
glueball states 0" and 0" * with lattice resultd10,11,13.
Since one of the largest errors in the lattice calculation of
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TABLE Il. Masses of the first few 0" glueballs in QCD, in TABLE lll. Masses of the KK modes which wrap around the
GeV, from supergravity compared to the available lattice resultscircle and have no corresponding states in QOB GeV. The first
The first column gives the lattice result, the second is the supergraxcolumn gives the masses far=0 while the second the masses for
ity result fora=0 while the third is the supergravity result in the a=3. Note that even foa= 3 these states are heavier by a factor of
a—oe limit. Note that the change frorma=0 to a= in the super- 10 than the 0* glueball mass and are effectively decoupled from

gravity predictions is sizeable, of the orde25%. the spectrum even in the supergravity limit.
Supergravity ~ Supergravity State Value foa=0 Value fora=3
State LatticeN=3 a=0 a— o
KK 2.24 20.25
(O 2.59+0.13 2.00 2.56 KK* 3.12 20.37
0~ ** 3.64+0.18 2.98 3.49 KK** 4.01 20.52
0~ 3.91 4.40 KK *** 4.89 20.72
Q™ THx 4.83 5.30

C. Masses of Kaluza-Klein states
glueball masses comes from setting the overall $ctie
ratios of masses are even more accurately known from the,,
lattice than the masses themselves. Using the lattice resul;ﬁ
[11,13,14 in the more accurate “lattice unitsty:

In the supergravity approximation ttee=0 model con-

ns additional light KK modes in the spectrum whose
asses are of the same order as those of the glueball states
[6]. In this section we investigate whether the additional pa-

FoMo++=4.330.05, roMg-+=6.33+0.07, rameter of the model considered here can be tuned to de-
couple the KK modes already at the supergravity tree-level.
FoMo-+x=8.9+0.1, (2.19 In the following, it will be shown that this i§ ind_eed the_ case
for the KK modes wrapped around ti#g direction, which
we find become very heavy faa/ug>1. We thus look for solutions
o of the dilaton equatioii2.14) of the form
Mo-+\2= Lo
(Mo +> _1204 ® = y(u)e'k-*ein?:, (2.22
0*+ supergravity
. One finds the following equation:
M _ — 00
(MO +> =1.59, 1
0"/ supergravity —afu(ub—a*u®~ud)x' (u)]
u
M -
(MO ) =1.46+0.03, (2.20 , n?out-at
0%/ jattice =| —M°+ P x(u), (2.23
0 0
(MO+*)a0 U4_a4 F
=1.85
Mo++ . ’
supergravity whereR, is given in Eq.(2.4). This generalizes Eq2.14) to
Mg x| 2% the casen#0. We want to compard =M (n=0) with
( 7 ) =2.17, Mkk=M(n=1). The question is howl /My x behaves as
0% / supergravity a function ofa (we can seug=1). The extra term propor-
M tional to 1R§ gives a positive contribution to the mass, so
( °+*) =206+ 0.05. (2.21) thatMK.K should increasg ad g ~a® asa is increasedthe
Mo+ + lattice KK radius Ry=A/3ug shrinks to zero as— ). Thus one

) ) expects thaM /M > 1/a3—0 asa increases. The numeri-

One can see that taking tkee—c improves the agreement cgj values of the masses of these KK modes are displayed in
between the supergravity and lattice predictions significantlyTaple 111 and Fig. 3. Note that the numerical evaluation of
One should however keep in mind that the supergravity rethe masses of these KK modes becomes more and more dif-
sults presented here are for the limit- aﬂsd)\__’w’ while  ficult as a increases. This is because the term witR2L/
the lattice results are fdN=3 and\ small” Direct lattice  cayses an overall shift of the masses, while the splitings
calculations for the larghl limit have just started to become petween the excited KK modes still remain of the same order
available[15], however no reliable direct estimate for the 45 for the ordinary glueballs. As a result, the solutions be-
mass of the 0™ is known yet. come more and more quickly oscillating asncreases, mak-

ing numerical treatments increasingly difficult. For this rea-

son we display only values up &/uy=3.

2We thank M. Peardon for emphasizing this point to us. Above we have demonstrated that the KK modes which
3For example, in Ref[11] the results are extrapolated ¥0=0 correspond to states that wrap thedirection are effectively
from calculations in the region 75g2N<10. decoupled from the spectrum even in the supergravity ap-
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FIG. 4. The dependence of the ratie=Myy /My++ of KK
FIG. 3. The dependence of the ratie M y++ /My of the low- modes (corresponding to spherical harmonics witk1 on S*)
est 0" * glueball state compared to the KK mode wrapping the compared to the lowest’0" glueball state on the parametarin
circle on the parametea in units whereup=1. This KK mode  units whereuy=1. This KK mode does not decouple from the
decouples very quickly from the spectrum even in the supergravityspectrum in the supergravity approximation even inghe limit.
approximation.

a

a

05 1 15 2 25 3

states do not decouple from the spectrum at the supergravity

proximation. However, there are other KK modes in this|eyel, instead their masses remain comparable to the ordinary
theory, and one would like to know whether these are decoug|yeball masses.

pled as well. The reason for the decoupling of the modes on
0, is clear: the radius of this direction shrinks to zero when
a—oo, However, the radii of the other compact directions do
not behave similarly. Therefore it is reasonable to expect that The standard relation between the thermal partition func-
these states will not decouple at the level of supergravityion and free energy (T)=exp(—F/T) relates the free en-
from the spectrum(but they could decouple once string ergy associated with the supergravity background to the ex-
theory corrections are incorporaje/e now demonstrate by pectation value of the operator FFfw. This relation was
explicit calculation of the corresponding mass spectrum thagxploited in[12] to obtain a prediction for the gluon conden-
this is indeed the case. sate in the Witten §=0) supergravity model. Let us now
Consider non-singlet modes which are independedtbof  derive the corresponding supergravity result for genaral
of the formf(u)e'™® * cosgsin 6. This corresponds to spheri- From the rotating M5 brane metrigiven in Eq.(3.1) of
cal harmonics ors* with angular momenturh=1. Plugging  [9]], one can obtain the following formulas for the Arnowitt-
this ansatz into the dilaton equati¢2.13 we find thatf (u) Deser-MisneADM) mass, entropy and angular momentum

D. Free energy and gluon condensation

satisfies the equatiorug=1) (see alsd16,17):
1 VsV(Qy) 3 8
7_ 483\ f/ _s¥\na) + s _->"
Ugau[(u atu®—u)f'(u)] M Apm 4G, 2m| 1 4smI"Fa . V(Qy) 3
2.2
ool ke 4u*(4+3a’u®-4u®) 0 - .25
(u) 1+a*u?—u® e (2.29 VsV(Qy)
S= TZmrH cosha, (2.26
The results of the numerical analysis of the eigenvalues N
are presented in Table IV and Fig. 4. One can see that these
_VsV(Qy)
TABLE IV. Masses of the KK modes corresponding Ite 1 JH_TGNmI coshe, (2.2
angular momentum on th®*, in GeV. The first column gives the
masses foma=0 while the second the masses in the>o limit. 2
Note that the change from=0 to a=< in the supergravity pre- :"_11: 24,719 (2.28
dictions is not sufficiently large in order to decouple these particular N g P '

states from the spectrum in the supergravity limit.

whereGy is Newton’s constant in 11 dimensions, ardis

State Value fom=0 Value fora—e the 11 dimensional Planck length. Thmagneti¢ chargeN
KK 2.30 2.84 is related toa andm by
KK* 3.29 3.80 _ ,
KK** 4.23 4.74 2mcosha sinha=7NI3. (2.29
KK *** 5.15 5.65

The Hawking temperature and angular velocity are given by
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3rZ+12
H™ 8mmcosha’

Ir
2mecosha’

(2.30

H=

These quantities satisfy the first law of black hole thermody-

namics:

dMADM:THdS+QHd‘]H' (23])

We are interested in the field theory linhg— 0, obtained by
rescaling variables as follows:

1
r=u?3(4mN), m——uol 2(4wN)3,  I=ia?l3(4mN).
(2.32
We get
E=M apm —Mextremar —3V5N3U8, (2.33
3
3ug 4 .
= , S=-—=VsN uus, 2.3
HoomA 372 ° H™o (2.34
2a2uf,
Qu=i—3—, Jy=iz—VsN%’u;, (2.39
Up
with
3ug ug
4_ o4
=— u,—a‘=—. (2.36
3uf—at’ " ug

The free energy is given by

Vs
F=E-TyS—Quly=— FN?’ug. (2.37
ar

For a=0 this reproduces the result of18] (ug
=2mATyx/3). The M5 brane coordinate; is compactified
on a circle with radiuskgA/N, given by Eq.(2.4), so that

VA

5=TH—N. (2.38
The gluon condensate is then given by
1 F 4
<49$M Tr Fiv(0)> =T 7 AN2UGAZ.  (2.39

For a=0 this reduces to the corresponding result[12]
(settingA=1 anduy=27T,/3). Expressingi, in terms of
the string tensiori2.11) we obtain

< 1
49$M

Note that this relation is independent @f(in particular, it
applies to thea=0 case as well It has the expected depen-
dence onN, and a simple dependence Bn

2
TrF2 ,(0) :iN—O'Z.
# 127 N

(2.40

PHYSICAL REVIEW D 59 065012

E. Topological susceptibility
The topological susceptibility; is defined by

Xt= fd“x(TrFF(x)TrFF(O)) (2.4))

(16772)2

The topological susceptibility measures the fluctuations of
the topological charge of the vacuum. At lafgehe Witten-
Veneziano formuld19,2( relates the masm,, in SU(N)
with N quarks to the topological susceptibility of SN
without quarks:

4Ny

2 _
mn/— f2 Xt
™

(2.42

The effective low-energy four dimensional brane theory
contains the coupling

AHZ Tr F'U'VF)\U.GMV)\U, (2.43

WhereAf,2 is the component along the coordinatg of the

R-R 1-formA,. We will consider zero modeM2=0) con-
figurations whereA, is independent of the world-volume

coordinates. Comparing to the standard Yang-Mills cou-
pling,

X0 TrFFE, (2.44
one obtains the relation
~ 27
0= do,Ay =27A,. . (2.49
0 2 2
The action of the R-R 1-form is given by
1 1
= l — -
| Zijd °><J§4((9MA,, 9,A,)
X(&N/A,,,—ﬁv/AM/)g’“"g’”’,. (24@

As discussed in Sec. Il B, in the approximation thatl, is
either very large or very small, the metric is diagonal and
there are zero mode solutions of the foAy,=A, (u).A,

=0, u# 6,. The action reduces to

dAaz(U)

d'%g

(2.47

Uu~ 656
g g 292,
K10

Using Eq.(2.6) and integrating over the angular coordinates,
this becomes

dAy,(u) 2
du

27 6A2)\3

—V4f duud(u*—a%)

(2.48
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The equation of motion is then given by

au[u3(u4—a4)auA02]=0. (2.49
Therefore,
us
ﬁuAHZIGAHZC(a)m, (2.50
) ug u0 u?—a?
Ao, =Ry 1+6C(a) 2a"’u2 4a° gu2+a
(2.5

The integration constar@(a) will be fixed by assuming that
Ay, (u) vanishes at the horizof21]. This gives

1 3u 3uS  ui+a’?
e 0 g, (25
C(a) a%uf 2a° gu,ﬂ—a2 (252

The other integration constanl:\jj2 is related to the
f-parameter by Eq2.45), 2wAj = 6. Note that in the limit
a=0 one get<C(0)=1 andA,,(u)=Aj (1- us/u®).

Using «%,= k3,/2r=257" andu,=2mwAT,/3, we obtain

.. 16w
| =02V, == =55 ASC(a)\3T},. (2.53

The topological susceptibilit{2.41) can then be obtained by
differentiating twice with respect te:

2
—==ASC(a)\3T},,

or, in terms of the string tensiof2.11),
_C(a) N 25
Xt= 8773 g ( . 5

The 6-dependence of the vacuum energy of the faitnis
the result anticipated ifi21] for the a=0 model, and Eq.
(2.53 shows that it holds for large too. In the largeN limit,
this must be the case for consisterf2g]. Fora=0, one has

A=1=C(a), and Eq.(2.54 reproduces the result obtained

in [12]. In the largea limit we have[see Eq.(2.10]

6

a
Cla)y~ ———, (2.56
9ullo a
0 gUo
so that
1 ug 1 a® ,
~ A = . (25
X 1843 a 120 o (259
a’log— uglog—
Up Uo

This decreases if we increaaéu, at fixed\ andug.
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I1l. QCD IN 2 +1 DIMENSIONS
A. Supergravity Models for QCD4

Analogous models for QCpcan be obtained by starting
with the Euclidean rotating D3 brar&q. (3.16) in [9] with
Xo— —i7,l—il] and takinga’ — 0 by rescaling variables as
follows:
2m=Uga'4, |=aa’.

r=Ua’, (3.1

In the limit &’ —0 at fixedU,a,Uy we obtain

UZ

v4mgsN

1A1/2

dsjg =

(hod 72+ dXé+ dx5+ dx3)

0 cog 0
d6?+ —sir? dp?+
Ao 0

2au2
%A, Sln2 odrde |,

(3.2

where

ug a’cog 9 . a

ho:l_—U4Ao, Aozl_—uz y AO: _m,
3.3

2

dQ3=dy2+sir? y,dyd+cod ¢, dy3. (3.9

The theory describes fermions with anti-periodic bound-
ary conditions on the circle parametrized bywhich has
radius (27 Ty) ! with

Tu=— B= 245 3.5

B T uy2ui—ad)’ '
1

uﬁ=5(a2+ Va*+aug). (3.6

For convenience, we have rescaled variables WUy
=(4mgN)Yu,a— (4mgN)*%a. At energies much lower
than Ty the theory should be effectively+21 dimensional
(with xo=1ix3 playing the role of timg The gauge coupling
of the 2+ 1 dimensional field theory is given by

g$M3:g$M4THv 9$M4:27Tgs- (3.7
2

x=gYM3N= N— (3.8

=~ 2n  9Nme '
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TABLE V. Masses of the 0" glueballs and their excited states r
in QCDs. The first column gives the lattice results extrapolated to 1,732
N—oo, the second column the supergravity resultsaferO and the
third column the supergravity lima—o. The lattice results are in 1,731
the units of the square root of the string tension. The error given is
statistical and does not include the systematic error. a
2 4 6 8 10
State LatticeN—o Value fora=0 Value fora—® 1.729
ot+ 4.065+0.055 4.07(input) 4.07 (input) 1.728
ot** 6.18+0.13 7.03 7.05
QfFx* 7.99+0.22 9.93 9.97 1.727
QF Fawx - 12.82 12.87

FIG. 5. The dependence anof the ratior =Mg+++ /Mgy++ in
In this model Wilson loops exhibit an area-law behavior with QCD,. One can see that the ratio is very stable to changes &md

string tension reaches its asymptotic value quickly.is given in units ofug.

1 QCD,), while the other KK modes corresponding to states
iy vamgsN US: \/ﬁug/z. (3.9  with angular momentum on th® are not decoupling in the
supergravity limit.
First we consider the KK modes wrapping the compact
irection. Let us consider solutions to the Laplace equation
V2d =0 of the form

This can be obtained by minimizing the Nambu-Goto actiond
[22], and it is essentially given by the coefficient®i_,dx?
at the horizon times 1/(2) [2,23,24. In the limit of large 't
Hooft coupling, the light physical states are the supergravity O = y(u)e'k X7, (3.12
modes, whose masses can be determined from the equations

of motion of the string theory effective action. In the next The coordinater is periodic with periodT;l, whereTy is
sections we calculate the mass spectrum of the light physicaliven in Eq.(3.5). Therefore

states and of KK modes.
B=27Tyn, (3.13

B. Spectrum of glueball masses wheren is an integer. Using the metri@.2) we find

In order to find the spectrum of the*0 glueball states

4_ A4 2,2 ’
one has to consider the supergravity equation for the dilaton dul (U= Up—aTufuy ' (u)]

mode® that couples to the operator Ff ul—a?
=u[ —M2+n?47?Ti—— | x(u). (3.19
9,9ga,0]1=0, (3.10 , , Uo
u‘—a Y
evaluated in the above background. For functions of the form
d=y(U)e'**, we obtain One can see that just like in the case of QQBere is an
additional positive contribution to the masses, which grows
a[(u*—ug—auduy’ (u)]+M2ux(u)=0, M?=—Kk> like a*, therefore the masses of these KK states should grow

(3.11) asMﬁK~a4. Thus these KK modes decouple from the spec-
trum, but slower than the corresponding KK modes in

The eigenvalues of this equation can again be determine®CDa The results_ of the numerical analysis are summarized
numerically. The results are presented in Table V and Fig. 5 Table VI and Fig. 6.
Figure 5 gives the dependence arf the mass ratio of the TABLE VI. M  the KK mod ing the cifcle
first excited 0" * glueball state compared to the ground state - VI, Masses of Ine 1 Modes wrapping fhe cireran

i . . . CDs, using the same normalization as in Table V. The first col-
0™ ™. One obtains a very similar behavior to the case on . :

CD.. that is th tio ch littl d tak umn gives the masses far=0 while the second the masses for
.Q 4, that IS el mass rillo Changes very e, in a _?Sb?'l 4. Note that these states decouple quickly from the spectrum even
its asymptotic value quic y..T e comparison to the availablg,, e supergravity approximation.
lattice resultd25] are given in Table V.

State Value foa=0 Value fora=4
C. Masses of KK states KK 579 23.77
Just like in the case of QCDwe would like to analyze KK* 8.64 24.63
the behavior of the masses of the different KK modes. We kk** 11.50 25.78
will find very similar results: the KK modes wrapping the g *** 14.36 27.19

coordinater are decouplingeven though a bit slower than in
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r TABLE VII. Masses of the KK modes corresponding to the two
0.8 degenerate singlet pieces of the 1 sextet of the original S@®)
isometry in QCL, using the same normalization as in Table V. The
first column gives the masses far=0 while the second the masses
in thea— limit. Note that these states do not decouple from the
spectrum in the supergravity approximation.

State Value fom=0 Value fora—
KK 5.27 7.05
KK* 8.29 9.97
KK** 11.23 12.87
KK *** 14.14 15.76
a
1 2 3 4
FIG. 6. The dependence @nof the ratior =M+ /M« of the For the other 4 KK states which are in thef SO4) one

lowest 0" * glueball state compared to the KK states wrapping thefinds the equation
7 circle in units whereug=1. These KK modes decouple from the
spectrum in the supergravity approximation very quickly.
dfu(ut—a2u?—1)f'(u)]—f(u)(k?u+5u®*-3au)=0,

Next we analyze the KK modes which correspond to (3.19
states with angular momentuis1 on S® in thea=0 case.
For a=0 these states have been examinefbipand found
to be non-decoupling in the supergravity limit and includingwhich fora= 0 reproduces the equation|[i@] with | =1. The
the lowest order’ corrections. Here we repeat this analysisadditional mass term is now negative, which actually makes
and find (just like in the case of QCl them to be non- these KK modes lighter in tha— limit than for a=0.
decoupling even in tha— case, in the supergravity limit. However, they are still of the same ordéand slightly

In order to do the analysis of these KK modes one needgeaviej than the 0 * glueballs. The numerical results for
to find the explicit form of the spherical harmonics. The this state are summarized in Table VIII and Fig. 8.

spherical harmonics 08 can be constructed in the follow-
ing way. One takeS§" embedded ilRY*1, and expresses the
Cartesian coordinateg; in terms of the angles. Then the D. Free energy and gluon condensation

spherical ~ harmonics are just the functions

Clrr--'ky; ...y, whereC is a symmetric traceless tensor  From the rotating D3 brane metrfisee Eq(3.16 in [9]],
[26]. This way, the simplest non-trivial spherical harmonic isone can find the following formulas for the thermodynamic
just the coordinate; itself. In the case of our QC{xheory, variables:

we actually have to use the “spheroidal coordinateg”

given in[9] on p. 9. Thus one looks for solutions of the

dilaton equation of the formi(u)e'* *y;, i=1,2,3,4,5,6. For r

a=0 the isometry group of° is SQ6), and thel=1 KK
mode is in the representatiah of SO(6). Introducing the 1.7}
angular momentuna breaks S@) to SO4)xU(1)xU(1),
and the6 decomposes intd+ 1+ 1. These states satisfy dif-

ferent eigenvalue equations. For 1,2 (the two singlets are 161
degeneratethe equation one gets is
151
dLu(ut—au?—1)f'(u)]
1.4

5u+4a2u®-5u’

1+a%u?-u?

—f(u)| K?u+ =0. (3.19

a

2 4 6 8 10
Note that fora=0 this indeed reduces to the equation given 5 7 The dependence of the ratie- My /Mg + of the KK

in [6] for I=1. We have numerically solved this equation, mqges corresponding to the two singletl states compared to the
and find that the mass of these KK modes is growingowest 0** glueball state on the parametarin units whereug
Sllghtly, until it becomes degenerate with the first excited= 1. This KK mode does not decouple from the spectrum in the
state of the 0 * glueball. Thus it does not decouple from the supergravity approximation even in the- limit, even though it
spectrum in the supergravity limit. The results are summaincreases slightly and becomes exactly degenerate with the first
rized in Table VII and Fig. 7. excited glueball state 0"*.
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TABLE VIII. Masses of the KK modes corresponding to the

quartet piece of thé=1 sextet of the original S@) in QCDs;,

using the same normalization as in Table V. The first column gives

the masses fa=0 while the second the masses in thie « limit.
Note that these states actually get lighter fram0 to a= in the
supergravity approximation.

State Value foma=0 Value fora—o
KK 5.27 4.98
KK* 8.29 8.14
KK** 11.23 11.15
KK *** 14.14 14.10
V3V(Qs5) 5 4 3
ADM—TGszm 1+ gSIﬂl"Fa , V(Qs)=m77>,
(3.17
V3V(Qs)
S= WZmrH cosha, (3.18
V3V(Qs)
H—TGNm|COSha’, (3.19)
ru(2ri+12) Ir2,
H= T Qu=5—"—, (3.20
47rm cosha 2mcosha
K%o
Gn=g_=8g:sm(a’)", (3.2
where
2mcosha sina=4mwgNa'?. (3.22

One can check that they satisfy the first law of black hole

thermodynamics Eq(2.31). In the limit o’ —0 [rescaling
variables as in Eq3.1)], we get

r
13,

128 {
1.26 |

124 |

122 |

a

2 4 6 8 10

FIG. 8. The dependence of the ratie Mk /Mg++ of the KK
states compared to the lowest D glueball state on the parameter
in units whereuy=1. This KK mode does not decouple from the
spectrum in the supergravity approximation even inghec limit,
they instead get even slightly lighter than o 0.
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3
E=M apm— Mex=—— VaN2ug, (3.23
8w
Ug 1 )
Th=—, S=—V;3N2uyuj, (3.249
7B 21
“auj 1 Y
QHZI_gl JH:|4_772V3N auo, (325)
. ug 2ud
ug—a‘=—, B=———7F5—. (3.26
H up, uy(2u?—a?)

The free energy is then given by

N2ug
FZE_THS_QHJHZ_VS 8 2 (327}

v

This gives for the gluon condensate the following expres-
sion:

1 5 F 1 oo 3
TrFs (0) ) =— =— N“Buy. (3.2
4 $M ,uV( ) V3TH 87T 0 ( &

In terms of the Yang-Mills string tension, this is

1 ) 1 N? ,
TrFs (0) ) = — —o0“. 3.2
a0 ) =g (3.29
We find again that supergravity predicts that the gluon con-
densate is proportional thN?/\ times the string tension
squared. The result expressed in terms of the string tension is
thus independent dd.

IV. CONCLUSIONS

In this paper we investigated quantitative aspects of large
N SU(N) Yang-Mills theory in three and four dimensions
using a one-parameter family of supergravity models related
to non-extremal rotating D-branes. The new feature of this
class of models is the decoupling of the KK modes associ-
ated with the compact D-brane coordinate as the angular mo-
mentum parameter is increased. The mass ratios for ordinary
glueballs were found to be very stable against this variation.
While the mass ratios of the 0 glueballs change only
slightly compared to the case with zero angular momentum,
there is a substantial change in the mass ratios of,0
0~ ** given in Egs.(2.20,(2.21), which for largea are in
better agreement with the lattice values thander0.

It is worth emphasizing that the rat&du, should be large
enough to haveM x> M guepan, DUt Not infinite, since there
are also string states winding around the compact D-brane
coordinate with masses of ordelR, that should decouple,
.., Mying™>M guebar- This requireshug/a®>1, which is
consistent with the condition that curvature invariants are
small compared to the string scdl@]. In general, for any
given ratioa/ug which is large enough to decouple KK states
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from the low-energy physics, it is possible to choassuf-  a. Another feature that seems to be common to all super-
ficiently large so that string winding states also decouple. gravity models is a topological susceptibility of the form
We have found that thesQ(3) or SO4)] non-singlet KK A2, with a coefficient which is independent df but de-
modes with vanishing (1) charge in the compact D-brane pends ona/uy. This result suggests that in the regirne
coordinate do not decouple in this class of models. One cam-1 the ' particle of QCD with N=3 is much heavier than
hope that those KK modes may decouple in a model wittother mesongwhose masses are proportional to the string
more angular momentésince there is room to take other tension.
limits). In this case the isometry group of the internal space
is smaller. For example, in QGDfor a=0 it is given by
SQ6)xU(1), whereas fora#0 it is SQ4)XU(1)xU(1).
The isometry group of the model with the maximum number We thank M. Dine, A. Hashimoto, K. Hori, K. Jansen, C.
of angular momenta only containg1) factors. This is con- Morningstar, H. Ooguri, M. Peardon, and A. Zaffaroni for
sistent with the fact that in pure QCD there can only beuseful discussions. C.C. thanks the Miller Institute for Basic
singlets of the original R-symmetry. Research in Science for financial support. C.C. and J.T. are
We have also found some features which seem to be unsupported in part the U.S. Department of Energy under Con-
versal, i.e., which do not depend on the extra supergravityract No. DE-AC03-76SF00098, and in part by the National
parameter. In particular, both in QGEnd QCD supergrav-  Science Foundation under Grant No. PHY-95-14797. The
ity gives a gluon condensate of the forlid3\)o?, with a  work of J.R. is supported by the European Commission TMR
coefficient which is the same for all models parametrized byprogram Grant No. ERBFMBI-CT96-0982.

ACKNOWLEDGMENTS

[1] J. M. Maldacena, Adv. Theor. Math. Phy%.231(1998. Morningstar and M. Peardon, hep-lat/9901004.

[2] E. Witten, Adv. Theor. Math. Phy£, 505 (1998. [14] C. Michael, “Hadronic spectroscopy from the lattice: Glue-

[3] D. J. Gross and H. Ooguri, Phys. Rev.58, 106002(1998. balls and Hybrid Mesons,” hep-ph/9810415.

[4] C. Cs&i, H. Ooguri, Y. Oz, and J. Terning, “Glueball mass [15] S. Dalley and B. van de Sande, “Glueball calculations in large
spectrum from supergravity,” hep-th/9806021. N, gauge theory,” hep-ph/9810236.

[5] R. de Mello Koch, A. Jevicki, M. Mihailescu, and J. Nunes, [16] G. Horowitz and A. Sen, Phys. Rev. &8, 808 (1996.
Phys. Rev. D58, 105009(1998; M. Zyskin, Phys. Lett. B [17] M. Cvetic and D. Youm, Nucl. Phys3499, 253 (1997.

439 373(1998. [18] I. Klebanov and A. A Tseytlin, Nucl. Phy8475 164(1996.
[6] H. Ooguri, H. Robins, and J. Tannenhauser, Phys. Le#3B [19] E. Witten, Nucl. PhysB156, 269 (1979.
77 (1998. [20] G. Veneziano, Nucl. Phy8159, 213(1979.
[7] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.[21] E. Witten, Phys. Rev. LetB1, 2862(1998.
B 428 105(1998. [22] J. M. Maldacena, Phys. Rev. Le80, 4859(1998.
[8] E. Witten, Adv. Theor. Math. Phy2, 253(1998. [23] A. Brandhuber, N. ltzhaki, J. Sonnenschein, and S. Yank-
[9] J. G. Russo, “New compactifications of supergravities and ielowicz, J. High Energy Phys%, 001(1998.
largeN QCD,” hep-th/9808117. [24] S. Rey and J. Yee, “Macroscopic Strings as Heavy Quarks in
[10] M. J. Teper, “Physics from the lattice: Glueballs in QCD: Large N Gauge Theory and Anti-de Sitter Supergravity,”
Topology: SUN) for all N,” hep-lat/9711011. hep-th/9803001; S. Rey, S. Theisen, and J. Yee, Nucl. Phys.
[11] C. Morningstar and M. Peardon, Phys. Rev. 38, 4043 B527, 171(1998.
(1999. [25] M. J. Teper, Phys. Rev. B9, 014512(1998.
[12] A. Hashimoto and Y. Oz, “Aspects of QCD dynamics from [26] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, “Three
string theory,” hep-th/9809106. point functions of chiral operators iD=4, N=4 SYM at
[13] M. Peardon, Nucl. Phys. BProc. Supp). 63, 22 (1998; C. largeN,” hep-th/9806074.

065012-12



