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ABSTRACT A new strategy to minimize magnetic interactions between nanowires (NWs) 

dispersed in a fluid is proposed. Such strategy consists in preparing tri-segmented NWs 

containing two antiparallel ferromagnetic segments with dissimilar coercivity separated by a 

non-magnetic spacer. The tri-segmented NWs exhibit a staircase-like hysteresis loop with 

tunable shape that depends on the relative length of the soft- and hard-magnetic segments and the 

respective values of saturation magnetization. Such NWs are prepared by electrodepositing 

CoPt/Cu/Ni in a polycarbonate (PC) membrane. The antiparallel alignment is set by applying 

suitable magnetic fields while the NWs are still embedded in the PC membrane. Analytic 

calculations are used to demonstrate that the interaction magnetic energy from fully-

compensated tri-segmented NWs with antiparallel alignment is reduced compared to a single-

component NW with the same length or the tri-segmented NWs with the two ferromagnetic 

counterparts parallel to each other. The proposed approach is appealing for the use of magnetic 

NWs in certain biological or catalytic applications where the aggregation of NWs is detrimental 

for optimized performance. 
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1. Introduction 

 

Owing to their unique physicochemical properties, materials structured in the form of one-

dimensional nanoarchitectures, such as nanorods and nanowires (NWs), have found widespread 

applications in several technological areas, e.g. optoelectronics,
1
 magnetism,

2,3 
catalysis,

4
 piezo- 

and thermo-electricity,
5,6

 biosensing,
7,8

 and micro-/nanoelectromechanical systems 

(MEMS/NEMS),
9
 among others. Specifically, ferromagnetic NWs are being employed as 

components in information storage and logic devices,
3,10,11

 spintronics,
12

 magnetic sensors,
13

 and 

also as platforms in the biomedical field (e.g., hyperthermia or drug delivery).
14 

 

To further expand their range of applications, the implementation of other materials with 

dissimilar nature within the NW architecture can provide additional and complementary 

functionalities. The resulting hybrid structures (i.e., core-shell NWs or segmented NWs) offer 

enhanced performance either due to the established synergy between the properties of each 

building block, or due to interfacial interaction effects between them. Segmented NWs can be 

all-electrodeposited in a cost-effective manner,
15-18

 while core-shell NW structures usually 

require the combination of different synthetic approaches (e.g., electrodeposition together with 

chemical vapor deposition).
19

 In the field of magnetism, segmented NWs served as a model 

system for heterostructured junctions that exhibit various fascinating perpendicular spin transport 

phenomena, such as current-perpendicular-to-plane giant magnetoresistance (GMR)
20,21

 or 

tunneling magnetoresistance (MR)
22

, to name a few. Likewise, core/shell NWs
23

 combining 

several phases of distinct magnetic properties could generate additional effects—spintronic, 

multiferroic, magnetoplasmonic, etc.  These outstanding properties have furnished hybrid NWs a 

host of applications in giant magnetoresistance sensors,
24

 spring-magnets,
25

 exchange bias 

systems,
26

 nanomagnet microwave resonators
27

 or magneto-plasmonics devices.
28 
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Once released from the template or detached from the substrate, self-standing magnetic NWs 

can be dispersed in fluids and subsequently manipulated using external magnetic fields and field 

gradients. Wireless magnetic actuation is crucial for the utilization of these NWs in certain 

biological or catalytic applications.
18,19,29-31

 However, one of the most challenging issues in areas 

like drug delivery or biological labeling is to avoid the aggregation of NWs once the external 

magnetic field is removed. Agglomeration of NWs inside bodily fluids can cause obstruction of 

the vessels, eventually leading to thrombosis or even more serious health diseases.   

The formation of NWs bundles is also a serious concern in applications that require the use of 

a single NW, for example when a single NW is intended to be bound to cells or proteins
32

 or in 

NWs that need to be precisely attached to small components to build sophisticated miniaturized 

devices.
33

 Also, aggregation of NWs has to be prevented in order to obtain high-quality 

homogeneous ferrofluids or to preserve the mechanical properties of composites containing 

magnetic NWs.
13

 

Magnetic dipolar interactions between magnetic particles dispersed in liquids are directly 

responsible for their agglomeration. In the absence of a magnetic field, such interactions are 

proportional to the overall remanent magnetization of each particle. For this reason, 

superparamagnetic nanoparticles, with zero net remanent magnetization, are usually preferred in 

comparison to NWs for certain biological applications.
31

 Nevertheless, their exceedingly small 

surface area limits their efficiency as drug carriers. An alternative approach is to use magnetic 

vortices,
34

 also with virtually zero magnetic remanence, but disks of a few micrometers in 

diameter are needed to form such magnetic configurations. Hence, magnetic vortices can be 

rather impractical for most biological purposes.  
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Ferromagnetic NWs offer some advantages with respect to superparamagnetic nanoparticles or 

microstructured disks exhibiting magnetic vortices. However, a smart strategy to tailor (and, in 

particular, to reduce) the overall remanent magnetization of magnetic NWs is needed in order to 

control (and decrease) the strength of interwire dipolar interactions to minimize aggregation. It is 

well-known that some of the properties of magnetic NWs (e.g., the effective magnetic anisotropy 

direction or the coercivity) are strongly dependent on the diameter and aspect ratio as well as on 

the dipolar coupling between the ferromagnetic segments.
35

 For example, Liu and coworkers
36

 

have electrodeposited Co/Cu multilayered NWs, in which the magnetic configurations can be 

tuned by adjusting the Co segment aspect ratio. In turn, the saturation magnetization depends 

mainly on the composition of the NWs.  

In this work, the possibility to tune the remanent magnetization of NWs is demonstrated by 

synthesizing tri-segmented NWs in which the orientation of the different segments comprising 

the NWs is individually controlled, similarly to what has been successfully demonstrated in 

synthetic ferrimagnets,
37

 patterned multilayers for multi-bit data storage
38

 or recently proposed in 

core/shell nanoparticles.
39,40

 To this end, arrays of tri-segmented CoPt/Cu/Ni NWs (i.e., hard- 

and soft-ferromagnetic segments separated by a non-magnetic Cu spacer) embedded in 

polycarbonate (PC) membranes have been prepared by electrodeposition. Magnetic 

measurements of the hybrid NWs, while still embedded in the PC templates, reveal the 

occurrence of staircase-like hysteresis loops, resulting from the two different coercivities of the 

soft and hard ferromagnetic segments. The overall shape of the hysteresis loops (i.e., the 

magnetization step sizes) can be tuned by varying the aspect ratio of the different segments. 

Antiparallel alignment between the CoPt and Ni segments can be established after saturation by 

applying a negative magnetic field larger than the coercivity exhibited by Ni but lower than the 
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coercivity corresponding to CoPt. In such antiparallel alignment, proper adjustment of the Ni and 

CoPt segment length leads to either positive or negative remanent magnetization, eventually 

even resulting in zero remanent net magnetization (fully compensated NWs). The tri-segmented 

NWs can be easily released from the PC membrane and satisfactorily dispersed in fluids. 

Analytical calculations are used to corroborate that the interaction magnetic energy between two 

fully-compensated tri-segmented NWs (with two antiparallel magnetic segments) is generally 

reduced with respect to a tri-segmented NW having the two segments parallel to each other. 

 

2. Experimental section 

 

2.1. Synthesis of the tri-segmented NWs 

 

Template-assisted electrodeposition was carried out in a typical single-compartment double-

jacketed glass electrochemical cell. Track-etched PC membranes with 30 nm nominal pore size 

(Nuclepore, Whatman) were used as working electrodes (WE). PC membranes with well-

separated pores were selected for two reasons: (i) these membranes can afford the basic pH 

values needed to grow CoPt, (ii) the distance between neighboring NWs is sufficiently high to 

ensure that interwire dipolar magnetic interactions between NWs are negligible, so that their 

behavior when still embedded in the PC membrane is essentially the same as that of an isolated 

non-interacting NW. The fabrication process of tri-segmented NWs is illustrated in Scheme 1.  
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Scheme 1. Schematic picture of tri-segmented NWs fabrication process using PC template-based 

electrodeposition. “ED” stands for electrodeposition. 

 

First, a thin Au-Pd layer was sputtered onto one side of PCs to make them conductive. The Au-

Pd surface was put in contact with a copper plate, held inside a plastic stationary holder, and a 

circular area of 3.14 cm
2
 was exposed to the electrolyte for deposition. Before electrodeposition, 

the PC membrane was placed in an ultrasonicator for 3 min in order to remove the air inside the 

PC channels. In this way, the electroactive species can penetrate inside the channels and access 

the Au-Pd layer, thereby enabling the electrodeposition. A platinum wire was utilized as counter 

electrode, which was positioned vertically facing the WE. A double junction Ag|AgCl 3M KCl 

electrode (E = + 0.210 V versus standard hydrogen electrode) was used as reference electrode to 

record the potential at the WE. The three electrodes were connected to a PGSTAT302N Autolab 

potentiostat/galvanostat (Ecochemie). 

The tri-segmented NWs were prepared via sequential direct current electrodeposition of CoPt, 

Cu and Ni segments by changing the corresponding electrolytes. The deposition of the CoPt 

segments was performed galvanostatically at j = -10 mA cm
-2

, pH = 8.5, T = 65°C. The 

electrolyte consisted of 30 mM Co(SO3NH2)2·xH2O, 2 mM Pt(NH3)2(NO2)2, 0.1 M glycine, 0.1 

M sulfamic acid, 5 mM saccharine, and 0.1 M sodium citrate. The electrodeposition of Cu 

segments was carried out potentiostatically at E = -1.0 V in an electrolyte containing 0.2 M 

CuSO4·5H2O and 0.1 M boric acid. The third segment (Ni) was grown galvanostatically at j = -

10 mA cm
-2

 from an electrolyte consisting of 2 M NH4Cl and 0.1 M NiCl2. The deposition 

processes for Cu and Ni segments were carried out at 25°C and the pH was left unadjusted (i.e., 

preparation pH). All the electrolytes were de-aerated before and during the experiments in order 
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to get rid of dissolved oxygen and to ensure the homogeneity of the solution. For electron 

microscopy observations, the tri-segmented NWs were released by dissolving the PC template in 

chloroform and washed several times afterwards. For the sake of comparison, single-component 

Ni, Cu and CoPt NWs were also electrodeposited using the same conditions as for the hybrid 

NWs. 

 

 

2.2. Structural characterization 

 

Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy 

(EDX) compositional analyses were acquired using a Merlin Zeiss microscope operated at 3 kV 

and 15 kV, respectively. Specimens for SEM and EDX measurements were prepared via drop-

casting a droplet of NWs suspended in chloroform onto an aluminum foil and subsequent drying 

in air. Similar preparation method onto Cu grids was used for TEM observations. The structure 

and morphology of the NWs (length of the different segments, aspect ratio, etc.) were also 

investigated by high-resolution transmission electron microscopy (HRTEM) using a Jeol-JEM 

2011 system with a field emission gun operating at 200 kV. Electron energy loss spectra (EELS) 

were acquired along the NWs. Spectra were taken in the 650-1150 eV energy loss range, where 

the Co L2,3, the Cu L2,3 and the Ni L2,3 edges were found, at 779 eV, 931 eV and 855 eV, 

respectively. The quantitative analysis of the EELS spectra was performed using the homemade 

software package Oxide Wizard.
41

X-ray diffraction (XRD) patterns of the NWs were recorded 

on a Philips X’Pert diffractometer in the 30-100° 2 range (step size = 0.026°, step time = 2000 
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s) using Cu K radiation (= 0.154178 nm). In this case, the PC membrane was not dissolved –

the XRD patterns were acquired while the NWs were still embedded inside the membrane. 

 

2.3. Magnetic characterization  

 

Hysteresis loops were collected on the single-component (CoPt and Ni) and tri-segmented 

(CoPt/Cu/Ni) NWs at room temperature using a vibrating sample magnetometer (VSM) from 

Oxford Instruments, with a maximum applied magnetic field of 0.5 Tesla. An antiparallel 

alignment between the CoPt and Ni segments was settled by first saturating the NWs in the 

positive direction and then applying a negative magnetic field sufficient to reverse Ni but lower 

than the coercivity of the CoPt segment. 

 

3. Results and discussion  

 

3.1. Structure and magnetic behavior of single-component CoPt and Ni  

 

All the investigated NWs were deposited inside the channels (i.e., pores) of PC membranes 

that are visible as black spots by SEM imaging (see Figure S1 in the Electronic Supplementary 

Information). These pores traverse the membranes completely, hence allowing the growth of the 

NWs by electrodeposition. The thickness of the PC membranes is approximately 5 μm, the 

average pore diameter (at the surface of the PC template) ranges from 40 to 60 nm and there is 

an areal density of less than 10 pores μm
-2

. Single-component NWs consisting of CoPt alloy, Cu 

and Ni were first deposited individually, in order to estimate and optimize the growth rates.  
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Figure 1. a) SEM, b) EDX spectrum and c) HRTEM image of CoPt NWs released from the PC 

membrane, d) room-temperature magnetic hysteresis loop of single-component CoPt NWs arrays 

(measured before PC removal, along the NWs axis), e) SEM image of single-component Ni NWs 

released from the PC membrane, and f) room temperature hysteresis loop of single-component 

Ni NWs arrays (embedded in the PC membrane). Insert in a) shows a magnified view of a few 

CoPt NWs, whereas insert in c) shows a SAED pattern of CoPt NWs.  
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As shown in Figure 1a, CoPt NWs can be obtained in high-yields, with a length of around 5 

μm and a diameter about 100 nm (see also the corresponding TEM image, as inset of Figure 1a). 

The larger diameter of the NWs, as compared to the average pore diameter at the surface of the 

PC membranes, indicates that the channels inside the PC are probably not completely 

homogeneous in width. This is actually supported by previous works from the literature in which 

it has been suggested that the pores inside PC templates are not completely cylindrical (with a 

constant cross-section) but, instead, appear to be “cigar-like shaped”
42

. The NWs have all similar 

lengths, suggesting that their growth proceeds at the same rate over the whole PC area. This is an 

important feature for the subsequent fabrication of the tri-segmented NWs. The EDX spectrum 

(Figure 1b) confirms that the NWs are composed of Pt and Co, with a mean atomic composition 

Co70Pt30. The aluminum signal in Figure 1b comes from the aluminum foil onto which the NWs 

were drop-casted. The HRTEM and the associated SAED pattern (Figure 1c and inset) reveal 

that the CoPt NWs are polycrystalline (hexagonal closed-packed, hcp, phase) with clear lattice 

fringes. The obtained interplanar distances can be ascribed to the (100) and (002) planes of hcp 

structure. Representative SEM images of the Ni and Cu single-component NWs are shown in 

Figures 1e and S2 (see Electronic Supplementary Information), respectively. Similar to CoPt 

NWs, well-grown, continuous Cu and Ni NWs can be deposited with an approximate diameter of 

100 nm.  

Typical XRD patterns of the as-deposited CoPt, Cu and Ni NWs embedded in the PC 

membrane are shown in Figure 2. For both Cu and Ni single-component NWs, the (111), (200), 

(220) and (311) reflections of face-centered cubic (fcc) structure are detected. In addition, for Cu 

NWs, by comparing the tabulated and experimental relative peak intensities (I) of the (111) and 

(200) reflections, clear conclusions about crystallographic texture can be drawn.  
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Figure 2. XRD patterns of single-component Cu, Ni and CoPt NWs and tri-segmented 

CoPt/Cu/Ni NWs. Peaks denoted by  belong to the sputtered Au-Pd conductive layer. 
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Namely, the experimental I200 / I111 ratio is 1.02, which is larger than the theoretical value 

(0.46) for randomly oriented Cu grains. This indicates the formation of [100] textured Cu NWs. 

Textures in electrodeposited materials are highly influenced by electrolyte composition and 

working conditions. Thus, either non-textured or textured materials can be readily obtained by 

simply changing the plating parameters. 

The diffractogram of single-component CoPt NWs reveals that the strongest peak appears at 

2 = 43.13°. This position matches both hcp and fcc phases. However, the absence of any 

reflection at ca. 51.5° suggests that CoPt has crystallized in the hcp structure, as it corresponds to 

Co-rich NWs electrodeposited in basic pH conditions.
43

 The intensity of the (101) reflection is 

dramatically reduced as compared to the standard powder pattern, which suggests that the 

hexagonal c axis lies preferentially along the long axis of the NWs.  

The magnetic hysteresis loop of the single-component CoPt NW arrays measured with the 

applied field parallel (H∥) to the long axis of the NWs is shown in Figure 1d. The coercivity, HC, 

is about 1950 Oe. Therefore, CoPt NWs show hard-ferromagnetic behavior. The magnetic 

properties of single-component Ni NWs were measured under the same conditions as for CoPt 

NWs. As shown in Figure 1f, HC is around 410 Oe in this case. According to these data, it is 

clear that hard magnetic/spacer/soft magnetic tri-segmented CoPt/Cu/Ni NWs could be, in 

principle, successfully deposited into PC membranes by simply changing the electrolyte. 

 

3.2. Structural characterization of tri-segmented NWs 

 

The XRD pattern of the as-deposited tri-segmented CoPt/Cu/Ni NW arrays embedded in the 

PC membrane is shown at the bottom of Figure 2. By comparing the XRD patterns of single-
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component and tri-segmented CoPt/Cu/Ni NWs all the peaks corresponding to CoPt, Cu and Ni 

phases can be straightforwardly indexed. Hence, the sequential fabrication process did not 

brought any extra phases or impurities. Therefore, CoPt/Cu/Ni tri-segmented NWs can be 

successfully synthesized through a template-based electrodeposition method. 

 

 

Figure 3. EDX spectra acquired in each of the segments of the tri-segmented NW shown in the 

upper TEM image. Note that no clear interface between Cu and Ni can be seen using standard 

TEM conditions. 

 

The compositional variations along the NW axis were assessed by EDX (see Figure 3). A TEM 

image of a whole tri-segmented NW can be observed in the upper panel of Figure 3. NWs show 

a sharp needle-like end due to the narrowing of the PC pores near the surface, in agreement with 

the literature.
42

 The darker and brighter contrast reveals the difference in atomic weight between 

the constituent phases, being the electron dispersing capability of CoPt stronger than for both Cu 
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and Ni. Since Cu and Ni have similar atomic weight, it is difficult to clearly distinguish them by 

TEM. Therefore, the brightest region stands for CoPt while the darker regions represent the Cu + 

Ni segments. 

 

 

Figure 4. a-c) EELS point spectra for CoPt/Cu/Ni tri-segmented NWs [marked as a, b and c in 

(d)]. d) STEM image of CoPt/Cu/Ni tri-segmented NW for which an EELS line-scan was 

performed. The corresponding element distribution as a function of NW length is shown in e).  

 

To gain further insight into the heterostructured architecture of the NWs, STEM-EELS 

analyses were performed (Figure 4). EELS analyses were actually necessary to distinguish 

between the Cu and Ni segments and, in turn, to determine their lengths. When the electron beam 
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was spotting in “a”, Co was detected (Figure 4a). When the electron beam was directed to the 

middle part of the NW (point “b”), only Cu was visible (Figure 4b). Similarly, the EELS analysis 

on point “c” (Figure 4c) clearly confirms that the ending segment of the NW is made of pure Ni. 

EELS line-scan was used to determine the length of the different segments, as shown in Figures 

4d and 4e. In this particular case (referred to as “sample D” in Section 3.3), the length of the 

CoPt segment, which now corresponds to the darker region, is 0.97 μm, whereas the Ni segment 

has a length of 1.74 μm. Finally, the Cu segment, with a length of 2.72 μm, is sandwiched 

between CoPt and Ni. In turn, EELS analysis performed in the NWs with shorter Ni segments 

(sample A in section 3.3) reveals that the CoPt, Cu and Ni segment lengths are 1.10, 2.63 and 

0.61 μm, respectively. 

 

3.3. Magnetic characterization of the tri-segmented NWs 

 

Hysteresis loops from various arrays of CoPt/Cu/Ni tri- segmented NWs embedded in the PC 

membrane, measured along the NWs axis, are shown in Figure 5. The loops exhibit a staircase-

like shape with two well-differentiated coercivities, corresponding to the magnetization reversal 

of Ni (soft segment) and CoPt (hard segment), respectively. These two switching events can be 

clearly seen since (i) the magnetic dipolar interactions between neighboring NWs in the PC 

membranes are small (due to the large interpore distance), and (ii) the segments in each nanowire 

are separated by the  non-magnetic Cu spacer to avoid magnetic exchange interactions between 

CoPt and Ni. Otherwise, if the NWs were deposited close to each other (as in conventional 

anodized aluminum oxide templates), the loops would become tilted and the staircase shape 

would be lost.
44

 Similarly, in the absence of the Cu segments, the interfacial coupling between Ni 
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and CoPt would promote a simultaneous switching of the magnetization in both magnetic 

segments. Hence, this configuration of the tri-segmented NWs provides access to various 

magnetization states depending on the relative orientation of the magnetization in each segment, 

as indicated in Figure 5b. 

 

 

Figure 5. a) Staircase-shaped hysteresis loops corresponding to tri-segmented CoPt/Cu/Ni NWs 

with variable relative length ratios of the soft (Ni) and hard (CoPt) segments (samples A, B and 
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C; see Table 1). b) Hysteresis loop corresponding to an array of tri-segmented CoPt/Cu/Ni NWs 

(sample D) where the magnetization amplitudes of the Ni (ΔMNi) and CoPt (ΔMCoPt) segments 

are virtually equal to each other. Indications in b) are the magnetic orientations of the two 

segments at different positions of the hysteresis loop. 

 

Figure 5a reveals that while the contribution of Ni to the overall magnetization is larger than that 

of CoPt in sample C (in which the Ni segment is much longer than CoPt), the opposite is 

observed in samples A and B. Remarkably, the hysteresis loop shown in Figure 5b (sample D) 

exhibits virtually equal magnetization amplitudes from Ni and CoPt.  Such precise tailoring of 

the hysteresis loop shape can be accomplished by varying the relative lengths of the Ni and CoPt 

segments (see Table 1). Since the saturation magnetization of Ni (μ0MS,Ni = 0.6 T)
45

 is 

approximately half that of CoPt (μ0MS,CoPt  1 – 1.3 T)
46,47

, the compensated situation (Figure 5b) 

occurs when the length of the Ni segment is approximately twice the length of CoPt (Table 1). In 

other words, in sample D (which is the one that corresponds to the EELS results shown in Figure 

4) one has: μ0MS,Ni * lNi * A  μ0MS,CoPt * lCoPt * A (where, l designates “length” and A the cross-

section area of the segments). 
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Sample <lCoPt>/<lNi> ΔMCoPt / ΔMNi Mr,minor/MS 

A ~ 1.8 ~ 3.2 0.31 

B ~ 1.1  2.2 0.23 

C ~ 0.3  0.6 -0.20 

D ~ 0.5  1.0 0 

 

Table 1. Dependence of the relative magnetization amplitudes of the CoPt (ΔMCoPt) and Ni 

(ΔMNi) segments, as well as the resulting remanent magnetization once the two segments are 

oriented antiparallel to each other (as depicted in Figure 5b, as a function of the average relative 

lengths of the CoPt (lCoPt) and Ni (lNi) segments. Note that Mr,minor is not the overall remanence 

magnetization of the whole hysteresis loops (which is close to 1 in all cases) but, instead, it 

denotes the remanent magnetization obtained when performing the minor loop sequence to set 

the antiparallel alignment between Ni and CoPt segments (i.e., when sweeping the field from 

positions 1 2 3 as indicated in Figure 5b. Samples A, B, C and D correspond to the ones 

whose hysteresis loops are shown in Figure 5. 

 

3.4. Strategy to minimize interwire interactions 

 

As mentioned in the Introduction, magnetic NWs are appealing for various technological 

applications (biomedical, catalytic, MEMS/NEMS, etc.) but the strength of interwire magnetic 

interactions, once the NWs are dispersed in a fluid, needs to be controlled and minimized in 

order to attain optimized performance. By taking advantage of the staircase shape of the 

hysteresis loops, it is possible to engineer a protocol to set an antiparallel alignment between the 
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soft and hard segments, and therefore reduce the overall remanent magnetization the NWs, when 

they are still embedded in the PC template. This can be done by first saturating the array of NWs 

using a strong positive magnetic field (position 1 in Figure 5b) and then applying a negative field 

sufficient to switch Ni to the negative orientation without reversing the magnetization of CoPt 

(position 2). Once the magnetic field is brought back to zero (position 3), the two segments 

remain antiparallel to each other and the resulting remanent magnetization (Mr,minor) will depend 

on the relative magnetization amplitudes of the Ni and CoPt  segments (ΔMNi and ΔMCoPt), i.e., 

on their length. The procedure is indicated in Figure 5b. Then, Mr,minor/MS can have either a 

positive value (samples A and B), negative value (sample C) or be virtually zero (sample D) (see 

Table 1). A comparative analytic calculation to show how the magnetic interaction energy 

outside the tri-segmented NW in sample D is reduced when the two segments are antiparallel to 

each other, with respect to the case of parallel alignment, is given in section 3.5. It is worth 

mentioning that such antiparallel alignment between the soft and hard segments will remain in 

the NWs dispersed in the fluid, provided that the applied external magnetic fields used to 

manipulate them do not exceed the coercivity of the soft segment. Fortunately, wireless 

manipulation of magnetic NWs in low Reynolds number aqueous environments is actually 

possible under the action of external fields of only a few tens of Oe, if combined with suitable 

magnetic field gradients.
46
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Figure 6. a) (Left) Schematic portrayal of a tri-segmented NW in antiferromagnetic 

(compensated) arrangement, where the hard segment (bottom) has length c and saturation 

magnetization 2 MS and the soft segment (top) has length c and saturation magnetization MS. The 

non-magnetic segment is represented by the empty space of length d between the magnetic 

segments. The NW has diameter a. (Right) Simplified representation of the NW as a set of point 

magnetic charges. b-d) Different arrangements of NWs with attractive interactions (possibly 

leading to agglomeration) depending on the magnetization alignment between the magnetic 

segments. w is the distance between wires. The symbols + and - indicate the sign of the 

equivalent charges and the red arrows represent an attractive interaction between NWs. 
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3.5. Modeling the magnetic interaction energy between two tri-segmented NWs 

 

For the sake of simplicity, we assume that each fully compensated tri-segmented NW has a 

circular cross-section of diameter a and it is composed of a hard segment of length c and uniform 

magnetization 2MS, a soft segment of length 2c and uniform magnetization MS, and a non-

magnetic segment represented by an empty space of length d between the two magnetic 

segments (left of Figure 6a). To some extent, this theoretical NW can be approximated as a set of 

pairs of point magnetic charges. That is, the hard segment is assumed equivalent to two charges 

of values -2q and 2q, where q would correspond to MSa
2
/4, located at the center of the lower 

and upper surfaces of the segment, respectively. In the same way, the soft segment can be 

simplified as two charges of values q and -q located at the center of the lower and upper surfaces, 

respectively (right of Figure 6a). The sign of each pair of charges changes depending on the 

orientation of the segment magnetization. To simulate the NWs of sample D the dimensions of 

the NWs are a = c/10 and d = 2.5c.  

Once the NWs are properly magnetized (with the two segments aligned parallel or antiparallel) 

and dispersed in the fluid, they can be oriented in any direction. The relative orientation between 

two NWs can cause some attractive or repulsive movements between them because of the 

magnetic interaction that can result in the agglomeration of NWs. Figure 6 shows the possible 

ways of attractive interaction between NWs with antiparallel magnetic segments (Figure 6c) or 

parallel magnetic segments (Figures 6b and d). The symbols +, ++, - and --represent the 

equivalent charges +q, +2q, -q, and -2q, respectively, in the point charge approximation. In the 

case of antiparallel segments the NWs would be mainly attracted by forming a T-shape (Figure 

6c) and in the parallel case the NWs attracted by following an antiferromagnetic coupling 
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(Figure 6b) or by aligning one along the other (Figure 6d). Other configurations of NWs 

interactions have weaker attractive interaction.  

To analyze which NW configurations have lower magnetic attraction and, thus, weaker 

possibility of agglomeration, we plot in Figure 7 a comparison of the energies of the three 

different arrangements sketched in Figure 7. The magnetic interaction energy (normalized to 

µ0q
2
/c) of two NWs is plotted as a function of their distance w (normalized to c) when d = 2.5c. 

The results reveal that for interwire distances w < c the interaction between T-shape NWs with 

antiparallel segments (solid black line) is lower than the one obtained in the case of 

antiferromagnetic coupled NWs with parallel segments (dashed red line). In these results the size 

of the non-magnetic segment is a relevant parameter because if d < c the “T-shape” NWs 

configuration becomes the one with the largest interaction (not shown).  Note that for interwire 

distances w < 0.1c (that is w < a) the model of point charges is no longer valid. The inset of 

Figure 7 shows the case of large interwire distances, with the same interaction energies plotted in 

logarithmic scale (in absolute value). For comparison, the dependences 1/w
3
 (thin solid green 

line), that corresponds to a dipole-dipole magnetic interaction, and 1/w
5
 (thin dashed orange 

line), that corresponds to a quadrupole-quadrupole magnetic interaction are also plotted. These 

calculations reveal that for large interwire distances (w > 50c) the interaction between T-shape 

NWs is the lowest one and decays as 1/w
5 

(black line is parallel to the orange one), whereas for 

the configurations with parallel segment NWs, it decays as 1/w
3
 (red and blue lines are parallel to 

the green one).  

The results of this section theoretically demonstrate that the agglomeration power between 

NWs with parallel magnetic segments is always larger than for NWs with antiparallel segments. 

Results do not qualitatively change when considering charged surfaces instead of point charges. 
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Figure 7. Interaction energy as a function of separation w between the NWs when d = 2.5c for 

the different NW configurations of Figure 6: parallel magnetization alignment of Figure 6b 

(dashed red line), antiparallel alignment of Figure 6c (solid black line) and parallel alignment of 

Figure 6d (dotted blue line). The inset shows the absolute value of the energy of the main plot in 

a logarithmic scale. For comparison the dependences 1/w
3
 (thin solid green line) and 1/w

5
 (thin 

dashed orange line) are also plotted in the inset. 

 

4. Conclusions 

 

In summary, arrays of tri-segmented CoPt/Cu/Ni NWs with tunable segment lengths have been 

satisfactorily electrodeposited inside the pores of PC membranes and subsequently further 

structurally and magnetically characterized. These NWs exhibit staircase-like hysteresis loops, 

resulting from the two different coercivities of the soft (Ni) and hard ferromagnetic (CoPt) 
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segments. The magnetization amplitudes of the two ferromagnetic contributions depend on the 

relative lengths of CoPt and Ni. Antiparallel alignment between both ferromagnetic segments 

can be settled after positive saturation by applying a negative magnetic field sufficient to switch 

the Ni magnetization but smaller than the CoPt coercivity. In such antiparallel alignment, proper 

adjustment of the Ni and CoPt segment lengths eventually leads to virtually zero remanent 

magnetization (fully compensated NWs). The tri-segmented NWs can be then released from the 

PC membrane and satisfactorily dispersed in fluids. Analytical calculations are employed to 

corroborate that the magnetic interaction energy between two fully-compensated tri-segmented 

NWs (with two antiparallel magnetic segments with the same overall magnetic moment) is 

reduced with respect to a single NW with the same length or the tri-segmented NW with the two 

segments parallel to each other. Hence, this strategy is suitable to decrease the strength of 

magnetic interactions between NWs dispersed in liquids and is thus very appealing in all 

applications requiring the utilization of well-isolated magnetic single NWs, as well as to 

minimize NWs agglomeration during/after usage. 
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