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Quantum black holes: Nonperturbative corrections and no-veil scenario
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A common belief is that further quantum corrections near the singularity of a large black hole should
not substantially modify the semiclassical picture of black hole evaporation; in particular, the outgoing
spectrum of radiation should be very close to the thermal spectrum predicted by Hawking. In this paper
we explore a possible counterexample: in the context of dilaton gravity, we find that nonperturbative
quantum corrections which are important in strong-coupling regions may completely alter the semiclas-
sical picture, to the extent that the presumptive spacelike boundary becomes timelike, changing in this
way the causal structure of the semiclassical geometry. As a result, only a small fraction of the total en-
ergy is radiated outside the fake event horizon; most of the energy comes in fact at later retarded times
and there is no problem of information loss. This may constitute a general characteristic of quantum
black holes, that is, quantum gravity might be such as to prevent the formation of global event horizons.

PACS number(s): 04.70.Dy, 04.60.K z

I. INTRODUCTION

The proposal by Hawking that black holes evaporate
by emitting thermal radiation [1] led to a puzzling and
confusing status about the fate of quantum information in
gravitational collapse. In particular, this proposal entails
allowing pure states to evolve into mixed states, requiring
a modified version of quantum mechanics in order to ac-
commodate loss of quantum coherence [1]. This proposal
was received with some criticism by different authors [see
e.g., Ref. [2]), but so far an understanding of the
phenomenon has not been achieved. Apart from the ex-
istence of a mathematical framework which may recon-
cile Hawking’s observation with quantum mechanics, in-
formation loss raises a serious question of principle for
observers who do not fall into black holes, their future
being uncorrelated to their past. Several attempts have
been made to provide alternative ways before accepting
that quantum-mechanical information is simply lost in
the process of black hole evaporation. Thus far the pro-
posals fall into either one of the two following categories:
(1) by the end of the evaporation process there is a
Planckian-size stable or long-lived remnant that still con-
tains the information; (2) the back reaction to the emis-
sion of radiation and quantum corrections introduce sub-
tle correlations between different modes, allowing the in-
formation to come out continuously encoded in the
Hawking radiation, the process being described by a uni-
tary S matrix. These two approaches are not exempt
from criticism. The first has problems with CPT and also
with thermodynamics. The second possibility seems to
imply acausal propagation of the information, since this
was carried far beyond the horizon before the curvature
is strong enough for quantum gravitational effects to be
important. To avoid the serious problem of acausality, a
rather temerarious proposal that has recently been re-
vived [3-5] consists in postulating that the information is
duplicated at the moment it crosses the horizon. This in-
terpretation requires Planckian physics occurring in the

0556-2821/94/49(10)/5266(12)/$06.00 49

vicinity of the horizon, and implies a dual description of
reality at macroscopic levels.

In this paper we explore a more conservative possibili-
ty which does not belong to the schemes (1) and (2) men-
tioned above. Figure 1(a) is a Penrose diagram represent-
ing the standard picture of semiclassical black hole eva-
poration, which is reliable in the region away from the
singularity. Figure 1(b) completely agrees with Fig. 1(a)
in all regions where the semiclassical equations of motion
are supposed to apply, but instead of a singularity there is
simply a strong curvature region, and the actual bound-
ary of the space time is timelike. This requires boundary
conditions. Let us assume that some sort of reflecting
boundary conditions can be imposed there and may lead
to a finite curvature on the boundary, just as it happens
in the low-energy sector of the two-dimensional model of
Refs. [6,7], which we shall review in Sec. II. The causal
structure of Fig. 1(b) is completely different from the
causal structure of Fig. 1(a), and therefore one would ex-
pect that the corresponding spectra of outgoing Hawking
radiation should be distinct, perhaps in a crucial way. In
fact, this turns out to be the case. Given a geometry like
Fig. 1(b), with reflecting-type boundary conditions on the
timelike boundary, most of the energy will appear in the
region in causal contact with the timelike boundary, i.e.,
far beyond the fake event horizon, and thus there is no
information loss problem. The resulting picture is in
some sense similar to the low-energy sector of Refs. [6,7],
and it does not differ much from an accelerating mirror.
The boundary of space time actually being timelike, there
is no longer any reason to believe that a unitary S matrix
for the model cannot be constructed. Another similar
scenario will be mentioned in Sec. VI.

II. SEMICLASSICAL DILATON GRAVITY

A simplified model for black hole formation and eva-
poration, known as the CGHS model, was introduced in
Ref. [8]. This model permits one to study the Hawking
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FIG. 1. (a) Penrose diagram corresponding to the standard
semiclassical picture of black hole evaporation. (b) Penrose dia-
gram of another geometry which differs from Fig. 2(a) only in
the strong curvature region. In the scenario there is no space-
like boundary.

phenomenon in detail, avoiding all the mathematical
complications of higher-dimensional theories. Different
discussions on two-dimensional dilaton gravity can be
found, e.g., in Refs. [6-25]. Let us consider the model in-
troduced in Ref. [6]. In the conformal gauge
g€++=8__=0, g, =—1e%, the effective action con-
taining the conformal anomaly can be written as

s=2 [d%x|~0,x0_x+9,03_Q+A%V X9
T
2.1
1 N
+E 2 a+fia—fi] s
i=1
where f; are N-conformal fields, k=(N —24)/12>0, and
Ve e~
=—25¢+ e‘/,—( , X—Q=Vk(p—¢) . 2.2)

The constraints are

Kty (x¥)=—3,x9,x+0,08.0Q

N
+v7<a§tx+% S 3,fi0.f, - 2.3)

i=1
The functions ¢, (x¥) reflect the nonlocal nature of the
anomaly and are determined by boundary conditions.
The solution to the semiclassical equations of motion and
the constraints, for general distributions of incoming

matter, is given in Kruskal coordinates by

A 1 +
Q—)(——‘—ﬁx X +?P+(x )
. _
+M‘/(+'d)——¥ln( A% tx7), (2.4)

where M(x*) and P, (x ), respectively, represent total
energy and Kruskal momentum of the incoming matter
at advanced time x *:

X+
M(x“‘)=)»f0 dxtxTT,. . (xT),
x+
p+(x+)=fo dxtT,. . (x*). 2.5

In the case T, =0 one obtains the familiar linear dila-
ton vacuum, e ¥=e " ®=—22x Tx .

Generically, there will be a curvature singularity at
¢=¢,=—+In(k/4), which can be regarded as the
boundary of the space time.

Let us assume that originally the geometry is the linear
dilaton vacuum and at some time, which we arbitrarily
set at x T =1/A, the incoming flux is turned on. As ob-
served in Ref. [6], there are two different regimes, accord-
ing to whether the incoming matter energy-momentum
tensor is less or greater than a critical flux

Kk 1
4x+2’

o (xT)= (2.6)

In the supercritical regime the line ¢=4¢_, is spacelike
and one has a time-dependent geometry representing the
process of formation and evaporation of a black hole (see
Fig. 2). At the end-point line, x “=x_, x " >x.F, it is
possible to match the solution continuously with the
linear dilaton vacuum.

In the subcritical regime the boundary is timelike and
one needs boundary conditions in order to determine the
evolution in the region in causal contact with the timelike
boundary (see Fig. 3). It turns out that there are natural,
reflecting-type boundary conditions which uniquely
determine the evolution and implement the cosmic cen-
sorship hypothesis [7]; they are in fact the only possible
boundary conditions which lead to a finite curvature on
the boundary line.

The curvature scalar is R =8e ~%3_,d_p, where

4e ™2

a+a_p=§ 3,0 x— " =—0,90.6|. @1

At ¢=¢. one has Q'(¢)=0. In the Kruskal gauge,
9, 3_x=—A%/ Vk. Therefore, in order for the curvature
to be finite at ¢ =¢_,, it is necessary that
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FIG. 2. Standard semiclassical picture of black hole evapora-
tion in Kruskal coordinates, corresponding to gravitational col-
lapse of an incoming shock wave (A=1).

2
3.6 _¢=— % .
In particular, this implies [cf. Eq. (2.2)]
a+n|¢=¢cr=agn|¢=%=o . (2.8)
As a result, the solution in region (ii) is given by
QP(x* xT)=Qx",x )+F(x7), (2.9)
where Q' is given by Eq. (2.4),

. Vk i MEY Vi |k
= — — —————_—————1 —_—
F(x™) 2 In(—A°x "X ") Von bl
(2.10)
and £ T(x 7) is the boundary curve given by
K ~ _ 1 ~
Z=—-l2x+ x +FP+(x+) . (2.11)

(4)

FIG. 3. A subcritical incoming energy flux leads to a timelike
singularity.

In Ref. [7] it was shown that these boundary condi-
tions conserve energy. Let m =M (o) and p=P ().
The outgoing energy fluxes 7_ _(x ) regions (i) and (ii)
are, respectively,

i _ 1 1
TV (x 7 )=% - : (2.12)
4 | [x +(1/Ap)P? x7?
. _ 1 A4
T (x 7)== - .
4 [x +(/Ap)P  k/4RT-RT, . R7)
(2.13)
Note that T'9_ (x )~0for x ~ <<x; =—p /A%
The total radiated energies in regions (i) and (ii) are
; I I T
Efn:t=—kf*wdx x +Fp TY_
(2.14)
KA 4p
=p—"1n [1— ,
p 4 t KA
iN) — oL I ii
Egu:——xfxa dx” |x"+-5p T
(2.15)
KA L2
=m—p+ |1
m=pP 4 1 KA

A close examination of Egs. (2.12)-(2.15) shows that
for low-energy fluxes one has
By <<m, Ef=m,

<m , (2.16)

that is, most of the energy comes out by pure reflection
on the space-time boundary.

Instead, for energy fluxes near the critical value, one
may have E{) >m and E{i) <0. This implies that the
semiclassical approximation is breaking down some
Planck units before entering into region (ii). Perhaps

nonperturbative contributions are already important.
III. NONPERTURBATIVE QUANTUM CORRECTIONS

The form of the quantum effective action which in-
cludes the quantum anomaly term of exact semiclassical
dilaton gravity [9,14,15,16] follows by a DDK-type argu-
ment [26]. Instead of using an invariant regularization
(which is complicated in the conformal gauge) one adopts
a noninvariant cutoff adding at the same time some coun-
terterms which are necessary in order to satisfy the
reparametrization invariant Ward identities. The result-
ing “‘effective action” should generate a theory which is
invariant under the background Weyl symmetry,
g§—e?™¥g, p(x)—p(x)—7(x), where § is a background
metric. Since the metric g =e % is left unchanged, this
transformation should be an exact symmetry of the
theory, i.e., the B functions of the couplings in the
“effective action” should vanish. The basic assumption is
that the conformal factor dependence of the covariant
quantum measure and regularization can be represented
by a local effective action containing only the simplest,
lowest derivative terms. The kinetic term of the resulting
quantum effective action is modified by the Weyl anoma-
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ly term and also by possible counterterms, and one au-

tomatically attains a partial resummation of the standard

loop expansion. In particular, this procedure also gen-

erates counterterms which are of nonperturbative nature,
—1/g2 -

e.g., of the form e 18" =exp(—e ~2¢).

Thus one considers the two-dimensional o model with
fields p and ¢ and fixes the couplings by demanding con-
formal invariance. Since the target metric is flat, it is
possible to go to the diagonal parametrization y and
which simplifies the equations of motion, as found in Ref.
[14]. To leading order, the 8 function corresponding to
the “tachyonic” coupling is given by

2 2 _
_E)___a_+i\/K_a__1
?r an? 2 oy

Azeu/\/}xx—m

BY= Vix,Q) . (3.1)

The potential employed in Sec. II [see Eq.
(2.1)] is, in fact, a particular solution to this equation.
The most general solution is

Vix,0)= [dalv*(@)e®* 00 +p~(a)e X4, (3.2)
with
b=—Va®+Vk/2a—1. (3.3)

However, we are interested in solutions which in the
weak coupling region e®—0 lead to the classical CGHS
action. From Eq. (2.2) we deduce that this requires the
condition

a+b=<0.

Thus the general potential which leads to the CGHS ac-
tion in the weak-coupling regime is

V(X,Q)=}\.2€(2/‘/;)(X_ﬂ)+ fzj‘/‘da v(a)ea)(+b0 . 3.4)

The second term will contain nonperturbative contribu-
tions of the form exp([(a +b)/V'k]e "?%). At full quan-
tum level one expects that all physical quantities should
be plagued by nonperturbative corrections, originating
from strong curvature regions.

The semiclassical equations of motion become compli-
cated when the general potential (3.4) is adopted. In or-
der to elucidate the basic idea, let us consider a simple
model with the action given by

s=1 [d% | —3,x3_x+3,00_Q-+1% VR0

N
+“eax+bﬂ+% 2 a+fia__f’. , (3.5)

i=1

where () and y are given in terms of ¢ and p as in Eq.
(2.2), p is for the moment arbitrary, a >2/V'k, and b is
given by Eq. (3.3). The RST model is a particular case
with u=0.

In principle, nonperturbative corrections may be
different for distinct geometries. In particular, it may be
that the linear dilaton vacuum does not receive any
correction at all, the curvature being zero everywhere.
Unfortunately, a systematic derivation of the DDK an-

satz, i.e., calculating loops with covariant regularization,
etc., is lacking, so it is unclear what should be the value
of u in the “phenomenological” action (3.5). The only in-
dependent constants of the theory are A and «. Therefore
u should be given in terms of A, k, and maybe other pa-
rameters characterizing the geometry, the ADM mass,
verbigratia, or the moments

P1=f0°°dx+(x+)—"+lr++(x+), nEN. (3.6

In the particular case of a shock-wave geometry, which
will be investigated in detail below, u would only depend
on A, k, and the total ADM energy carried by the collaps-
ing matter. The essential point, i.e., that nonperturbative
corrections can change the space-time topology by turn-
ing the boundary curve from spacelike to timelike, is a
quite generic result, holding true for a wide range of
choices for p.

Models with different potentials which represent an
Einstein-Maxwell system have been extensively studied in
Refs. [17-19]. In those models there is also a regime
where the singularity is timelike, as is the case for the
Reissner-Nordstrom black hole. These models typically
have a global horizon. In the present example u will not
be regarded as an arbitrary parameter of the potential,
but depending on the ADM mass [see, e.g., Egs. (5.1),
(5.2)). In particular, there will be, at most, a small
Planck-order correction for the linear dilaton vacuum, as
one would expect. The scope of this section is to prove
that the natural nonperturbative terms appearing in Eq.
(3.4), which are only important in strong curvature re-
gions, can modify the causal structure of the geometry.
In Sec. V we will illustrate the scenario by a numerical
study of a particular model.

The equations of motion are

9,9_X=4deY, 3.7
3,3_Y=BeX+Ce?, (3.8)
where
X=-2(y-Q), Y=ay+bQ, (3.9)
Vk
and
)\’2

L =_
A ‘/'_((a+b) , B ‘/K(a+b) ’

c=Lb?=a?. (3.10)

A particular solution X =Y +const. is easily found, for
which the system reduces to the Liouville equation. Un-
fortunately, this solution does not satisfy the asymptotic
conditions corresponding to black hole configurations,
and thus it is uninteresting for our purposes.

Although the general solution to the above system of
nonlinear, partial differential equations has not been writ-
ten in closed form, to our knowledge, it is nevertheless
possible to obtain some exact, interesting results, as we
shall see below.

To leading order in an expansion in powers of
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£=exp la+ )e_zd’

— ’
K

the general solution can be explicitly found by direct in-
tegration. Let us consider the case of a shock-wave
geometry representing an infalling shell of matter by
patching together a vacuum configuration on the inside
and, on the outside, a solution which asymptotically cor-
responds to a black hole. Let us write

X=X,+0(e), Y=Y, +0(¢). (3.11)
where, in Kruskal coordinates,
X,.=0, (3.12)
m A? _
Y. = A mn
«=la+b) R (x +}\2)
—(@+b)=En(—=2%"x7), xt>1/A.  (3.13)

Now let us pick some convenient value for a which will
simplify the calculation. For «>16 we can choose
a+b=—4Vk,ie,

_ 2 k+16
a= Ve =16 (3.14)
]
Xz—w% e T4M/ME|(—p)—e "4M/ME] 4k _+p_12_
4x A
Y=—r~4—m+]n(—K2x+x*)+y(x+,x*)-—y[—L,x
KA lk
where
Pt x T)=ppe ¢t (x4 2| g —p)—gi | 2
2 —_
+.___K_L__e—'4m/)uc El(___r)_ X e—r
(k—16)A2 x " +m/\?
— 4A-2 + — m . _ r e !
rE———x7x +P , El(—r)——fwdu »

For this value of a we have

Ysc_ 2.+, — 4)\2 + - _ni 4m
e *=—Ax"x"exp — ¥ Y
(3.15)
and
2
A:i/:‘_, B:i}i., C=-—1—§L. (3.16)
K K k—16
The equations of motion take the form
3,3 _X=Ae “+0(e?), (3.17)
3,0 _Y=B(1+X)+Ce =+0(e?) . (3.18)

These equations can now be solved by direct integration.
The solution is so uniquely determined by the boundary
conditions that at x ~ <<0 it must approach the semiclas-
sical solution, Egs. (3.12), (3.13), and, on the infalling line
X +=1/k, it must reduce to the linear dilaton vacuum.
We find

. x e—4m/kke—r_e(4}»/x)x_] , (3.19)
x " +m/A?
’ (3.20)
2 —_
x_—}—ﬁz— _-_K.%e"‘im/}u( 2El(-—r)+}\'x _+2me_,
A 4r Al T +m
KW+ (4r/K0x
2}\)( € ’ (3.21)
(3.22)

Let us first consider k ~ 16. In this case some terms can be ignored, which renders the analysis simpler. We obtain

AZ _ . m m _ 128
=0=—2xt x4+ 2+ D —n(— A x5
X X T T x Ak—16)
X _.*L(e‘—m/“»e*r_e()\/hx*)_e7m/4kEi(_r)+e——m/47tEi %lx—+’_};nz_ (3.23)
— m
x +—
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The points where 9, Q=0 indicate the position of the ap-
parent horizon (for a review of apparent horizon in 1+1
dimensions, see Appendix). The apparent horizon of the
border where the curves of constant ¢ change from time-
like to spacelike and conversely. From Eq. (3.23) one ob-
tains

2

—_A

1

-, m
x +— "
X

A’Z

+ 32E e-m/4he——r x
k—16

W (3.24)

The line §=4¢,, intersects x " =1/A at x; = —«k/4A. An
inspection of Eq. (3.24) reveals that the equation 3, Q=0
may admit more than one solution in the physical region
x~ <xg of the line x " =1/A. In particular, if u obeys

p<phkm) , (3.25)
with
ﬁ(x,x~16,m)z—i’l‘6_2-19mx, (3.26)

then, for black holes with m >>(x/4)A, there will be two
apparent horizons in the region x~ <x,; one at
x; =—m/A*—k/4\ and the other at some x, near
—k/4L.! The lines of constant ¢ will be timelike for
x~ <x,,spacelike for x| <x~ <x,, and again timelike
for x ~ >x, . In particular, this means that the boundary
curve ¢=¢. will start being timelike and therefore
boundary conditions will be necessary in order to deter-
mine the evolution in the region in causal contact with
the timelike boundary.

In the above discussions we have ignored terms O(g?),
and one may be concerned about their relevance. For-
tunately, the solution can be exactly found near the infal-
ling line. Following Ref. [11], we consider the equations
of motion along a lightlike line infinitesimally above the
matter trajectory, x T =1/A. On this line they are ordi-
nary differential equations, in the variable x —, for the
quantities 0, X and 9, Y. If X, and Y, denote the linear
dilaton vacuum solution, we have

3_(3,X)=4Ae", (3.27)
3_(3,Y)=Be°+cCe™ . (3.28)
By integrating over x ~ one finds
— oA/ | K —
9, X=pe o x| (3.29)

10ther studies of models with multiple apparent horizons
describing Reissner-Nordstrom-type geometries can be found in
Refs. [17,19].

A2l _ . m
9, Y=— +— |+
+ p x 2 A
+ L;Ae(“‘/“)" T K —x- (3.30)
k—16 4A )
Hence
A -, m vk
a.Q byl x +k2 2 A
_‘/'—‘ 3k—16 /x| K -
yam—pa an x . (3.3D

For k~ 16 Eq. (3.31) reduces to Eq. (3.24) cum x T =1/A.
From Eq. (3.31) we can now see that in the exact solution
there are two apparent horizons if and only if u satisfies
Eq. (3.25), where the generalization to arbitrary « of Eq.
(3.26) is given by

_ Belk—16)

A’ b =
A m) == 3 16)

(3.32)

IV. HAWKING RADIATION

Thus we see that nonperturbative corrections can easi-
ly modify the causal character of the boundary line and
hence the space-time topology. It is reasonable to expect
that, with suitable boundary conditions, the boundary
curve will stay timelike, asymptotically approaching
more null line x =-—v, with O<v<—x,. The
geometry is depicted in Fig. 4, which resembles the sub-
critical case discussed in Sec. II (see Fig. 3). Let us as-
sume that the system finally decays into the vacuum. At
x T >>1/A the solution will take the form

¥=0=—A%FT(x"+v)—In[—Axx T (x " +v)], 4.1)
or

ds’=—dr+do?, ¢=—Aro, 4.2)

(3)

&

FIG. 4. Qualitative picture of black hole formation and eva-
poration in the model of Sec. III.
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where

e =pxt, e M =—Ax"4v), ot=rt0. 4.3)

The Hawking radiation can be computed in the stan-
dard way [1] (for a derivation in the context of dilaton
gravity, see Ref. [16]). It is useful to introduce Min-
kowski coordinates for the region x ¥ <1/A:

M =axt, e =—dx" . (4.4)
The mode expansions for the right moving field are
fo=[Tdola,u,+alut] (in).
0
© N (4.5)
= fo dolb,v,+bip*] (out),
where
1 —ioy™
u = - iwy ( ,
o= e in)
) (4.6)
v,=—=¢e " (out).
Y V2w
The in and out vacuum are defined by
a,l0),=0, b,0),,=0. (4.7)

The calculation of the Bogoliubov coefficients is analo-
gous to Ref. [16], so we will not repeat it here. For the
number operator for out modes, N =bZ,ba,, one has

in<ozNg“'|0>in=fo“’dw'mw,v, 4.8)
with
: , 172
a) .
ﬂww:m P (M) °*B(uy,u,) ,
; ‘o 4.9)
u1=—x(a)’+w)+e, u2=1+7.

At late times this leads to a thermal distribution with
temperature Ty =A /27 [16], as is characteristic of two-
dimensional models [27].

The expectation value of the energy momentum tensor,
in{0IT%,[0);, asymptotically in the out region &, is
computed in the standard way by normal ordering with
respect to b,, b!, ie., one requires ,,{0|T%,[0),,=0.
The result is

1 1

(x " +v)? x7?

A£0ITY_10),, (4.10)

L
4

In region (ii) the precise form will depend on the bound-
ary conditions.
Note that T'Y_ vanishes for x ~ << —v,

TY ~—-%;li—3 , X <<—v.

In particular, if m >>«A, T__ will be negligible at the
fake event horizon at x ~=—m /A% In fact, it is clear
that most of the energy will be radiated far beyond
x~=-—m/A% in contrast with the usual picture of
Hawking radiation. At x ~=—m /A% the Bondi mass
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will be of the same order of the total ADM energy car-
ried by the shock wave. Indeed, the total energy radiated
out in region (i) is

EW = —xf_idx'(x—+u)r‘:t ,

=\ — —Kz}iln

1— 4Av

) (4.11)

which is a Planck-order energy. The Hawking tempera-
ture is the same but the radiation comes out at later
times. The boundary conditions will dictate how much of
the total energy will originate from pure reflection off the
boundary, and how much of it will be carried out as
Hawking radiation.

In the usual semiclassical picture one assumes that the
final state has the form
x +£

x=0=—-A%" 32 —In|—A%x"* x_-i--}iL2

(4.12)

with p =m. Quantum fluctuations of the end-point posi-
tion can only correct p by a Planck-order energy, and
therefore Eq. (4.12) and the consequent outgoing Hawk-
ing radiation should not receive important corrections for
macroscopic black holes. However, we have just seen
that if the actual boundary of the space time is timelike,
there is no way the final state can have the form (4.12). It
will be given by Eq. (4.1), which is different from (4.12) in
an important way, as far as the problem of information
loss is concerned.

Given the geometry of Fig. 4, an observer who never
crosses the null line x ~ = —m /A? will undergo accelera-
tion all the time, approaching the speed of light as t — .
As a result, he will be immersed in a bath of thermal radi-
ation, detecting the same outgoing radiation that one
would calculate if the vacuum were given by Eq. (4.12).
For x ~ << —m /A? a distant observer will detect the usu-
al Hawking radiation with respect to the false vacuum
(4.12). The vacuum (4.1) has a well-understood physical
meaning, i.e., the absence of particles according to all
inertial observers in the asymptotic region.

V. NUMERICAL ANALYSIS FOR SPECIFIC MODELS
OF BLACK HOLE EVAPORATION

Let us consider a scenario in which the linear dilaton
vacuum receives a Planck-order nonperturbative correc-
tion, p,;, =0 (A?). For definiteness let us take [see Egs.
(3.25) and (3.32)]

8e(k—16)
=0+ =——""mA+ y (5.1)
K= T Mgy K2( 3k—16) Hidy
N K
By =01 )\,K,m=z}\ . (5.2)

The qualitative time evolution of the geometry is in-
dependent of m, as long as m is much greater than the
Planck mass. For m ~(k/4)A some anomalous behavior
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occurs (in virtue of a collapsing of the apparent horizons),
but the present semiclassical approximation is not sup-
posed to apply for black holes of Planckian masses. So
let us restrain our attention on macroscopic black holes.
A typical Kruskal diagram is exhibited in Figs. 5 and 6.
These plots have been made with A=1, k=16, and
m =20. Many other cases of k> 16 and m have also been
investigated, in essence obtaining the same picture.

The geometry agrees with the standard semiclassical
configuration (see Fig. 2) in weak-coupling regions which
are not in causal contact with strong-coupling regions.
The inner apparent horizon starts on x " =1I/A at some
x~ near x, (Fig. 6), and it joins the outer apparent hor-
izon at the end point of the trapped region, x " =x, (see
Appendix). In addition there is another apparent horizon
with d_Q =0, but it entirely resides in a region where the
perturbative method to solve the differential equations is
not very reliable. It is unclear whether this apparent hor-
izon will subsist in the exact solution. In the case of Fig.

'S

w

LN
w

N

-25 -20 -15 -10 -5
x-

——

-10 8 6 4 2 x-

FIG. 5. Geometry corresponding to the model of Sec. V, il-
lustrated by numerical plots of contours of constant ¢. The
dashed line indicates the region where the present approxima-
tion begins to break down. (a) and (b) show different regions
and scales of the same configuration. The thick line in (b) corre-
sponds to ¢ =¢,,.

FIG. 6. Plot of —9,00_Q as a function of x*, x ~ in the
geometry of Fig. 5. Negative values represent the trapped re-
gion, whose boundary is the apparent horizon. Positive values
have been truncated.

5, it approaches asymptotically the null line
x ~=—m/A? but the approximation breaks down much
earlier, as indicated in Fig. 6. The contours of constant
Q have

dxt _

dx~

3_0
3,0’

so they cross the apparent horizons with d_Q=0 and
9,0 =0 with derivatives equal to zero and infinity, re-
spectively.

There is a naked singularity at the timelike curve
Q=Q., so boundary conditions are needed for the con-
tinuation to region (ii). This time the simplest choice Eq.
(2.8) cannot be implemented, as can be easily verified.
Conceivably the boundary conditions are also corrected
by nonperturbative terms. However, from Eq. (2.7) it
seems clear that boundary conditions which do not obey
Eq. (2.8) will necessarily lead to naked singularities,
presumably leading to instabilities. A black hole could
evolve into an object carrying an arbitrary amount of
negative energy and then continue to radiate in secula
seculorum. This feature could be an artifact of the partic-
ular model we have contemplated, or simply an artifact
of the semiclassical approximation.

Other possible extensions of the solution are suggested
in Figs. 7(a) and 7(b). In order to avoid a remnant
scenario, the solution must approach the linear dilaton
vacuum for late times x *. The necessary condition is
that, for x ~ <x; and x * >>1/A, Q takes the form (4.1).
Unfortunately, the present approximation for solving the
differential equations (3.7), (3.8) breaks down as e=0(1)
(Fig. 6). Atx =x this corresponds to

o m
AMm—(k/4)A) ~
So the exact solution is necessary to decide whether the

matching with the linear dilaton vacuum on x ~ =x, and
x T >>1/A is feasible for this specific model.

X
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Without a cognition of the asymptotic behavior of the
solution in &, and in region (ii) it is not possible to deter-
mine the outgoing spectrum of Hawking radiation. For
physical reasons, it is likely that the boundary curve will
stay timelike, and it is conceivable that the system will
finally decay into the vacuum. Then the discussion of
Sec. IV will apply and, in particular, the outgoing
energy-momentum tensor will be given by Eq. (4.10).
Meanwhile, it is interesting to look at local quantities
which in certain limits are related to the Bondi mass of
the black hole, for example, the value of e =24 at the outer
apparent horizon. In the case of Fig. 5, m =20, A=1,
k~ 16, one finds by numerical computation that

e | ._ +=16.6=0 (5.3)

m
A

This is unlike the £ =0 RST case, where e ~2¢ at the end
point is of Planck order. The apparent horizon deviates
from the =0 apparent horizon at earlier times than ex-

(41)

(i) | (ii)

FIG. 7. Possible extensions of the geometry of Fig. 5 into the
region where the solution to the differential equations (3.7) and
(3.8) is unknown. (a) The apparent horizon with 3_Q =0 is ab-
sent; (b) the apparent horizon with 3_Q =0 is present, but it is
closed, confined to a finite region in space-time.
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pected. We have verified that this feature is independent
of any particular choice of the parameters, i.e., for mac-
roscopic black holes e 2% at x," seems to be, roughly, of
the same order as m /A, which suggests that most of the
energy will be radiated far beyond x ~ = —m /A% For ex-
ample, for m =40 and m =80 one finds, respectively,
e | ,_ +=21.5 and e ?| ,_ .=24.8. Unfor-

XE

tunately, there are numerical problems to study the case
of larger masses. While the nonperturbative term we
added to the action is insignificant at the end point, the
fields Q and y, being integrals of this, receive nonnegligi-
ble corrections near the end point. Indeed, to the leading
order in perturbation theory we are making, ) and Y
contain terms of the form ue/(x ~ +m). For a very mas-
sive black hole, £ is exponentially small at the end point
of the trapped region, but x ~ is exponentially close to
—m, giving rise to a contribution of order unity. This ex-
plains why there seem to be some changes in local quanti-
ties at the end point of the trapped region. However, one
must be careful in extracting conclusions from this, since
the present leading-order approximation could be simply
breaking down before getting to the end point. Certainly,
it would be interesting to have the exact solution to the
differential equations (3.7) and (3.8), but the application
of the present model to illustrate a no-veil scenario is
only limited to early times. The full theory of quantum
dilaton gravity is presently unknown. This would permit
a systematic derivation of nonperturbative corrections,
and thereby a better control of the approximations in a
phenomenological model containing nonperturbative
effects.

VI. NO COSMOLOGICAL VEIL CONJECTURE

In Secs. III and V we have seen simple models where
additional quantum corrections turn the spacelike bound-
ary into a timelike boundary, altering the topology of the
standard semiclassical picture of black hole evaporation.
In these models there is no longer a clear problem of in-
formation loss, since all information might return by sim-
ply reflecting back on the boundary curve.

It has long been speculated that quantum effects might
prevent singularities from occurring or might smooth
them out in some way. If this is the case, it is plausible
that the spacelike boundary will be absent and thus no
global horizon will appear in a full quantum treatment,
since otherwise the space time would be geodesically in-
complete. A similar phenomenon should occur in other
cases of topology change.

As far as the resolution of the information problem is
concerned, the topology does not need to be trivial. For
example, there could be a conical singularity at the end
point, as indicated in Fig. 8. A large wormhole would
carry all the information back in region (ii).?

2Geometries of this type, in connection with the problem of in-
formation loss, were investigated in Ref. [5]. However, the in-
terpretation given in Ref. [5] is quite different from the more
straightforward interpretation considered in this paper.
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FIG. 8. An alternative topology instead of Fig. 1(b) which
would lead to similar results.

The no cosmic veil conjecture may be formulated in a
simple way:

Quantum effects preclude the formation of global event
horizons.

That a global event horizon cannot be a strict “point of
no return” in a quantum theory is obvious, since in quan-
tum mechanics it is not possible to localize, e.g., the end
point or any branching point with an infinite accuracy.
However, for large black holes, the fluctuations in the po-
sition of the event horizon can be neglected compared to
the Schwarzchild radius. The above conjecture affirms
that there are no global event horizons, not even in an ap-
proximative sense.

Let us consider a black hole-type configuration with
mass much larger than the Planck mass. What will an
outside observer see? Freely falling matter will pass
through the outer apparent horizon, then enter into a
strong coupling region, experiencing Planckian curva-
tures, and eventually will reflect back at zero radial coor-
dinate. An outside, timelike observer, far away from the
black hole, will probably measure some shock wave com-
ing out at time x ~=—m /A% originating from the end
point of the trapped region (see Ref. [28]). Finally, he
will be in causal contact with the timelike boundary, re-
covering all the energy and the quantum mechanical in-
formation, including global quantum numbers (unless
boundary interactions violate the corresponding global
symmetry).

VII. CRITIQUE

Without pretense of a deep inquiry at this primitive
stage, it may be worth mentioning a number of points
which evoke skepticism. To begin with, the examples in-
vestigated in this paper, though introduced only for illus-
trative purposes, are rather ad hoc and represent an
oversimplified sample of nonperturbative corrections.
The mere inclusion of other terms in the potential (3.4)
could modify the picture, maybe in a favorable way, but
maybe unfavorably. What is more significant is the issue
of the boundary conditions. This is important in order to
define a setting for the construction of an S matrix. For
stability reasons, one would like to demand Eq. (2.8) on

the boundary so as to ensure finite curvature everywhere.
It is necessary to have a timelike line starting at ¢=¢,
with 3, Q2=0. In the numerical study there was no way
to achieve this, irrespective of the choice of parameters,
which jeopardizes the implementation of the boundary
conditions. It would be interesting to show that, e.g., by
adjusting different parameters of the potential (3.4), one
can have the structure of Fig. 4 and a timelike line start-
ing at ¢ =¢_. with 3, Q=0 (which shall be the boundary
curve after implementation of boundary conditions). A
last recourse is invoking new degrees of freedom for the
space-time boundary. A related point is that, even in the
specific examples provided in Sec. V, there is not enough
evidence to believe that the geometry will eventually de-
cay into the vacuum. It might approach some static solu-
tion, producing a remnant scenario.

Leaving aside the two-dimensional example and its
problems, the proposal for the resolution of the informa-
tion problem maintains a conservative viewpoint in the
sense that it does not lead to violation of the standard
laws of quantum mechanics and thermodynamics, and in
weak-coupling regions, which are not in the causal future
of strong-coupling regions, it locally agrees with the usual
semiclassical picture. It is somewhat radical in the sense
that it resolves the information problem by removing
from the stage the very origin of the paradox—the black
holes. Nevertheless, it is not at all clear why there should
always be an inner apparent horizon (or an odd number
of inner apparent horizons), insensitive to distinct cases
of Cauchy data, which would permit the space-time
boundary to align to a timelike direction.

Regrettably, the alternatives, called (1) and (2) in the
Introduction, seem to be excluded for insurmountable
reasons. Lacking enough justification to support the no-
veil conjecture, this remains a theoretical caprice. Clear-
ly, there is much work to be done.

Note added: In a recent study severe constraints to the
no-veil scenario have been found [28]. In particular,
there must be a shock wave carrying Planckian curvature
at the end point of the trapped region and regions with
negative energy density.
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APPENDIX: APPARENT HORIZONS
IN TWO DIMENSIONS

The apparent horizon plays an important role in the
mechanisms described in the main text, and it is also a
very useful and physically meaningful object in the stan-
dard picture of black hole formation and evaporation.
Thus it is worthwhile to refresh the connection with the
standard four-dimensional definition (see, e.g., Ref. [29]).

Let C be a three-dimensional manifold with boundary
S. Let §P, u=0,1,2,3, be the vector field of tangents to a
congruence of outgoing null geodesics orthogonal to S. C
is a trapped region if the expansion 6=V " is everywhere
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nonpositive on S, 8§ <0. The apparent horizon A is the
boundary of the total trapped region, the latter defined as
the closure of the union of all trapped regions. A corol-
lary of this definition is that =0 on .A.

Now let us contemplate metrics of the form

ds*=g,;(x",x)dx'dx/+exp[ —26(x°x")]dQ*, (A1)

where i,j =0, 1. In this spherically symmetric space time

we have §,={§0,£,,0,0}, and the geodesic equation
reduces to
£V, E/=0 (A2)

i.e., the two-dimensional geodesic equation. Since in this
dimensionally reduced configuration there is only one
family of outgoing null geodesics, a trapped region is the
total trapped region, and the condition determining the
apparent horizon simply becomes

6=0 . (A3)
From Eq. (A1) one easily obtains
=602—2£0,¢4 . (A4)
where
”za,.§'+r' & (AS5)

Let us denote By =V,£;. By using the geodesic equa-

tion £'B,, =0, and the fact that £ is null, £'€,=0, one
derives the following relations:
§'B;=—EBy , §'By=—&By, By=By, (A6
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thereby we obtain

6 (2) — th =B ig 12 §_ 22
11 é,z §2 g
=0, (A7)
where we have used £&,= —£%,. Thus we see that the

two-dimensional expansion parameter is identically zero.
This means that an intrinsically two-dimensional ap-
parent horizon cannot be defined. Now, by using Egs.
(A3), (Ad), and (A7) we find that the condition defining
the apparent horizon becomes

£13,6=0 . (A8)

Since § is null, Eq. (A8) implies §; = f (x)3;¢, where f (x
is a function. Therefore the condition (A3) gives

g"f'a,.¢aj¢=o . (A9)
In the conformal gauge Eq. (A9) reduces to
d,43_¢=0.

Therefore the apparent horizon A is the locus of
0,¢0_ d) In terms of (M(¢), Eq. (A10) reads

(A10)

—9,04_0=0, (A11)
QIZ
that is, provided Q'50, the points satisfying 9, Q=0 or
9_Q=0 define the position of the apparent horizon. In
the critical line one may have 9,Q=3_Q=0, but
0,43 _¢F0, as occurs in the subcritical case of Sec. II
when the boundary conditions (2.8) are applied.
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FIG. 1. (a) Penrose diagram corresponding to the standard
semiclassical picture of black hole evaporation. (b) Penrose dia-
gram of another geometry which differs from Fig. 2(a) only in

the strong curvature region. In the scenario there is no space-
like boundary.



(i)

FIG. 4. Qualitative picture of black hole formation and eva-
poration in the model of Sec. III.
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FIG. 5. Geometry corresponding to the model of Sec. V, il-
lustrated by numerical plots of contours of constant ¢. The
dashed line indicates the region where the present approxima-
tion begins to break down. (a) and (b) show different regions
and scales of the same configuration. The thick line in (b) corre-
sponds to ¢=¢.,.



FIG. 6. Plot of —3,03_Q as a function of x 7, x ~ in the
geometry of Fig. 5. Negative values represent the trapped re-
gion, whose boundary is the apparent horizon. Positive values
have been truncated.



FIG. 8. An alternative topology instead of Fig. 1(b) which
would lead to similar results.



