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Abstract 9	  

 10	  

Environmental pollution control is one of the most important goals in pollution risk 11	  

assessment today. The aim of this study is conducting a retrospective view of the 12	  

evolution of matter particulate (PM10) and the heavy metals (Cd, Ni and Pb) at different 13	  

localities (Alcora, Castellón and Onda) in the Spanish cluster ceramic in a period 14	  

between January 2007 and December 2011. The study area is in the province of 15	  

Castellón. This province is a strategic area in the framework of European Union 16	  

Pollution control. Approximately 80% of European ceramic tiles and ceramic frits 17	  

manufacturers are concentrated in two areas, forming the so-called “Ceramics Clusters”; 18	  

one is in Modena (Italy) and the other in Castellón (Spain). In these kind of areas, there 19	  

are a lot of pollutants from this industry that represent an important contribution to soil 20	  

contamination so it is necessary to control their air quality. In these areas atmospheric 21	  

particles are deposited in the ground through both dry and wet deposition. Soil is a 22	  

major sink for heavy metals released into the environment. For this purpose the levels of 23	  

PM10 in ambient air and the corresponding annual and seasonal trend were calculated. 24	  

The results of the study show that the PM10 and heavy metals concentrations are below 25	  

the limit values recommended by European Union Legislation for the protection of 26	  



human health and ecosystems in the study period. There is an important reduction of 27	  

them from 2009 in all control stations due to economic crisis and subsequent decrease 28	  

of industrial activity. The atmospheric seasonal tendency of pollutants concentrations is 29	  

marked by the rate of industrial activity and additionally by the temperature. 30	  

Complementary, a comparative study of heavy metals levels in soils was performed in 31	  

this area. Soils with low pollution by Ni and Pb were detected, while different pollution 32	  

by Cd was found depending on the sampling site. Although there is an evident reduction 33	  

of PM10 and heavy metals levels, the results show that these pollutants have been 34	  

accumulated in the soil close to emission sources. 35	  

 36	  

 37	  
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1. Introduction 41	  

 42	  

Environmental pollution control is nowadays one of the most important goals in 43	  

pollution risk assessment. Metal contamination of the environment raises concern for 44	  

the possible impact on human health, and the existence of heavy metals in soils, of both 45	  

natural -inherited from the origin material (Galán et al., 2008), lithogenic or pedogenic; 46	  

(Tume et al., 2011)- or anthropogenic origins -due to human activities as agricultural 47	  

projects, water waste discharges or atmospherics emissions (Gray et al., 2003; Bech et 48	  

al., 2008; Hovmand et al., 2008)-, is well-recognized as a potentially important source 49	  

of human exposure (Muller and Anke, 1994; Davis et al., 2009; Chen et al., 2005). 50	  

 51	  

PM10 particles and heavy metals are emitted into the atmosphere as aerosols, mainly as 52	  

a result of human activities, and are deposited on the ground (Borgna et al., 2009). So 53	  

the deposition of atmospheric particles is an important source of soil contamination in 54	  

areas exposed to significant pollution levels. Sakagami et al. (1982) reported that there 55	  

was a close relationship between heavy metal concentration in soils and those in the 56	  

airborne particles that fall. Other authors have found that atmospheric inputs of heavy 57	  

metals to agricultural systems can be a significant contribution to metal loading in soils. 58	  

For example, Alloway. (1999) found a mean atmospheric deposition rate for Cd of 59	  

around 1.9 g ha-1y-1, which Nicholson et al. (1999) calculated to be 50% of the total 60	  

annual input of Cd to agricultural land in the UK. Nicholson et al. (1999) also calculated 61	  

that atmospheric deposition of other metals such as Ni to be between 32-45% of the 62	  

total annual inputs of these metals to soils. Then, in comparison to the other forms of 63	  

metals inputs, potentially, atmospheric inputs have much more immediate impact on 64	  

agricultural systems (Gray et al., 2003). 65	  



 66	  

Once contaminated, soils typically remain in this condition for protracted periods of 67	  

time because of sorption of metals on to particles and limited mobility (Peris et al., 2008; 68	  

Ferri et al., 2012). This fact produces a potential human cumulative exposure. The 69	  

accumulation of heavy metals in agricultural soils, including home vegetables gardens 70	  

may be of particular concern since consumption of vegetable grown in metal 71	  

contaminated soils may pose health risks for the population residing in these areas (Cui 72	  

et al., 2005; Intawongse and Dean, 2006). Elevated concentrations of trace elements in 73	  

the soil–water–plant ecological system are of great concern because of possible 74	  

influences on the food chain. (Tume et al., 2008). While essential trace metals, such as 75	  

Ni, are necessary for plant growth and/or human nutrition at low levels, they may also 76	  

be toxic to both animals and humans at high exposure. Other trace elements, for 77	  

example Cd and Pb, may also inadvertently enter the food chain and pose health risks to 78	  

human and animals (Laughlin et al., 1999, Micó et al., 2006). Prolonged metal exposure 79	  

spanning neurodevelopmental periods may also increase the risk of neurodegenerative 80	  

conditions for elderly people (Aelion et al., 2008). Moreover, heavy metals in soils can 81	  

generate airborne particles which may affect the air environmental quality (Gray et al., 82	  

2003). 83	  

 84	  

The aim of this study is conducting a retrospective view of the evolution of particulate 85	  

matter (PM10) and selected heavy metals (Cd, Ni and Pb) at different localities 86	  

(Castellón, Alcora and Onda, fig.1) in the Spanish cluster ceramic from January 2007 to 87	  

December 2011. Complementary, a comparative study of heavy metals levels in soils 88	  

was performed in this area. The data were extracted from the papers of Roca-Pérez et al., 89	  

(2010) and Jordán et al., (2009). 90	  



 91	  

2. Description of the study area 92	  

 93	  

The study area is located in the East of Spain, in the province of Castellón. This 94	  

province is a strategic area in the frame work of the European Union (EU) pollution 95	  

control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers 96	  

are concentrated only in two areas, forming the so-called “ceramics clusters”; one is in 97	  

Modena (Italy) and the other in Castellón. 98	  

 99	  

The type of climate in the study area is Mediterranean characterized by wet and mild 100	  

winters, dry and warm summers, and an average temperature variation of 13.5ºC. 101	  

Rainfall is abundant in spring and autumn, coinciding with the dominance of western 102	  

winds while summer is drier, dominated by the Azores anticyclone (Vicente et al., 103	  

2011). Yearly rainfall generally does not exceed 400 mm. 104	  

 105	  

This area has a complex Mediterranean atmospheric environment, with low rainfall, soil 106	  

with poor vegetation coverage and frequent high particulate air-mass intrusions from the 107	  

Sahara (Rodríguez et al., 2002). A system of local sea breezes is also present in the 108	  

study area due to geographical characteristics and the proximity to the sea. These 109	  

periodic land-sea winds, which have been extensively studied by several authors 110	  

(Martín et al., 1991; Boix et al., 1995; Millán et al., 2001; Sanfeliu et al., 2002), govern 111	  

the microclimate in this area, resulting in an overall effect of smoothing the 112	  

temperatures (Pogosyan, 1965). Due to this system of breezes, the concentration of 113	  

pollutants may be affected by emission sources located outside the study area on a daily 114	  

basis (Fig. 1). 115	  



 116	  

The origin of air PM10 in this area is both natural and anthropogenic. The former is due 117	  

to the resuspension of mineral materials from the surrounding mountains with poor 118	  

vegetation coverage and the long-range transport of materials from North Africa 119	  

(Rodríguez et al. 2001, Pérez et al. 2006; Esteve et al. 2012). These dust intrusions 120	  

from North Africa influence ambient PM10 levels in the study area at around 2 µ/m3 on 121	  

an annual basis (Minguillón et al, 2009).  122	  

 123	  

Anthropogenic pollution sources originate from automobile traffic (mobile sources) and 124	  

industrial activity (fixed sources). The main industrial activity in the study area is based 125	  

on producing ceramic tile (Vicente et al. 2007). This industrial sector has two types of 126	  

factories, one for the manufacture of tiles and the other to supply raw materials. The raw 127	  

materials of the tile body consist mainly of clay from sources such as opencast quarries 128	  

within the ceramic cluster area (Jordán et al., 2009; Sanfeliu et al., 2009). The raw 129	  

materials for decoration involve manufacture frits, enamels, and colour (Jordán et al., 130	  

2006). In the manufacture of ceramic tile, channelled and diffuse emissions from the 131	  

production processes and the storage, handling and transport of raw materials all 132	  

increase the concentration of particles in the air (Sanfeliu et al., 2002). However, 133	  

particle emissions from the manufacture of pigments, frits and enamels probably have a 134	  

greater impact on the levels of heavy metals than on particle mass. (Minguillón et al., 135	  

2007). An additional important factor is that a power station, a refinery and several 136	  

chemical industries are located at east of the study area (Boix et al., 2001) (Fig. 1). 137	  

These industries together contribute to environmental pollution in the area. Finally, 138	  

relevant sources of secondary PM in the area include precursor emissions of the volatile 139	  

organic compounds (VOC’s), NOx and SO2 from high temperature ceramic processes, 140	  



power generation, petrochemical processes and biomass combustion (Minguillón et al., 141	  

2007). 142	  

 143	  

In the case of chemical pollutants in air PM10, nickel is found as a trace element in 144	  

petrol, and therefore its release into the atmosphere is related mainly to the combustion 145	  

of fossil fuels (coal and fuel oil) in electricity and heat production and also in traffic 146	  

exhausts (Pacyna et al. 1984; Ghio and Samet 1999). Nickel oxides are also widely used 147	  

as components of pigments used in the ceramics industry. Concentration levels of 148	  

cadmium in ambient air are associated with industrial processes in the manufacturing of 149	  

frits and enamel. Emissions of cadmium are also produced in the processes of a nearby 150	  

power station (Boix et al. 2001). The most important emission of lead are traffic 151	  

exhausts. Petrol additives contain lead (Parekh et al. 2002), which after combustion is 152	  

released into the atmosphere as organic lead (lead bromide and lead chlorinebromide) 153	  

(Pacyna 1998). With the introduction of new international laws, the use of lead in petrol 154	  

has been banned, and this contribution is now minimal, its use reduced to obsolete 155	  

means of transportation. In the ceramics industry, lead oxides are also used extensively 156	  

as a component of pigments. Relationships between the emissions from this sector to air 157	  

ambient levels of lead in close urban areas have been identified (Sanfeliu et al. 2002; 158	  

Gómez et al. 2005). 159	  

 160	  

The study is focused on 154 km2 that is the surface between the three cities studied. 161	  

Alcora is situated at 279 m above sea level, Onda at 194 m and Castellón at 30 m. There 162	  

is a high altitude difference between these cities in a small area. The distance between 163	  

Castellón, Alcora and Onda is 17 km. 164	  

 165	  



The study area is based on Quaternary materials generated by torrents from inland 166	  

massifs (Maestrazgo Range and tributaries from the Sierra de Espadán range), which 167	  

have formed lagoons closer to the sea. This process is reported to have started at the end 168	  

of the Tertiary period, as the Pliocene became the Pleistocene era, favoring a climate 169	  

suitable for torrential erosion and subsequent transport and deposition. The main source 170	  

of sediments has decreased in the last few years because of regulations of the course of 171	  

the river (Vicente et al., 2007) 172	  

 173	  

Alcora is in the Miocene surrounded by Cretaceous and Quaternary. Its materials are 174	  

conglomerates, limestone, marl, clay and lignite. The materials around this city are 175	  

limestone, marl, sand, clay and gravel. Onda is located in the Quaternary enclave, 176	  

surrounding a Jurassic area. This town is surrounded by Quaternary and Triassic. The 177	  

main materials of this city are conglomerates, limestones and dolomites, around marl, 178	  

clay and limestone in the Triassic and red clays in the Quaternary. Castellón is located 179	  

in the Quaternary and the main materials are clays, silts and sands. All deposits are 180	  

Quaternary sedimentary. 181	  

 182	  

3. Materials and Methods 183	  

 184	  

3.1. Atmospheric particles 185	  

Sampling collection 186	  

A PM10 medium volume sampler model IND-LVS3 manufactured by Kleinfiltergerät 187	  

was used. This device is considered as a reference according to European regulations 188	  

(European Council Directive 2008/50/EC; UNE-EN 12341:1999), for the sampling of 189	  

PM10 particles. The technology used in the equipment consists of blowing air through 190	  



an inlet with a vacuum pump. The particulate matter was blown in through the opening 191	  

circumference between the frame and the round cover mounted on top. Within the 192	  

sampler inlet the airflow was accelerated by eight impactor nozzles and then directed 193	  

toward the impacting surface. Particles were trapped on a permeable support consisting 194	  

of a 47 mm diameter filter. The device contains a temperature sensor with a radiation 195	  

protector that eliminates deviations in the reading caused by solar radiation in addition 196	  

to a pressure sensor. The sampling flow volume was 2,3 m3/h during 24 h periods. A 197	  

total of 4.100 PM10 samples (1.496 Castellón, 1.253 Alcora and 1.351 Onda) were 198	  

collected in filters from 2007 to 2010. The filters used were quartz fiber filters were 199	  

used, according to UNE-EN 12341:1999. They were made from SiO2 pure base, totally 200	  

free of additives. These filters allow an efficiency of separation greater than 99.5%.  201	  

 202	  

The samplers of the PM10 were positioned between 1,5 and 4m about the ground 203	  

according to the Directive 2008/50/EC (Annex III, Microscale sitting of sampling 204	  

points). 205	  

 206	  

Gravimetric analysis 207	  

Particle concentrations levels were determined gravimetrically. This method consists of 208	  

weighting the filters twice: firstly empty and then with sample. The filters must be kept 209	  

for at least 48h in a special chamber. The conditions inside the chamber are 50% 210	  

relative humidity and a temperature of 20ºC, according to normative UNE–EN 211	  

12341:1999. Filters were weighted on an analytical balance with a precision of 0.1 mg. 212	  

The PM concentration levels were determined based on the sample quantities obtained 213	  

and the volume of air pumped.  214	  

 215	  



Chemical analysis 216	  

The levels of Cd, Ni and Pb in the PM10 samples were determined by inductively 217	  

coupled plasma mass spectrometry (ICP-MS). The equipment used was an Agilent 218	  

model 7500CX that included a quadrupole, a collision cell and an integrated 219	  

autosampler. The equipment was installed in a chamber with a clean air filter unit and 220	  

an independent air conditioning system. This instrumental technique allows the Cd, Ni 221	  

and Pb levels to be rapidly identified after dissolution of the sample. Dissolution was 222	  

achieved by acid digestion in hermetic Teflon recipients. This methodology has been 223	  

used by many authors (Kubilay and Saydam, 1995; Querol et al., 2000).  224	  

 225	  

In order to detect any possible traces of contamination-causing As, Cd, Ni or Pb 226	  

contained in the reagents and quartz filter fibres, digestions with only reagents (blank 227	  

reagents) and filters without a sample (blank filters) were performed. The SRM 1648 228	  

“urban particulate matter” pattern was used to validate the results. This pattern consists 229	  

of particulate matter of anthropogenic origin collected in an industrialised urban 230	  

atmosphere and was an adequate standard of reference for this study. 231	  

 232	  

3.2. Soil 233	  

Sampling collection 234	  

The sampled soils were selected between the different samples from the papers of Roca-235	  

Pérez et al., (2010) and Jordán et al., (2009). The soils were chosen for their proximity 236	  

of the industrial atmospheric emission sources and their physicochemical property 237	  

diversities, especially pH (between 6.5 and 8) and carbonate content, the soil of Alcora 238	  

is noncalcareous while Castellon and Onda are calcareous. In Alcora, almond trees are 239	  

the main crop, followed by olive trees, vineyards, some carob trees, and a few fig trees. 240	  



In Castellón and Onda, the crop of orange trees is the main. These soils have a low 241	  

capacity use and a erosion risk. In addition in Onda, there are other terraced fields 242	  

destined for the cultivation of carob, olive, hazel and almond trees. All studied soils are 243	  

anthrosols, according to the FAO World Reference Base for Soil Resources. These soils 244	  

are a type formed or heavily modified due to long-term human activity, such as from 245	  

irrigation, addition of organic waste or wet-field cultivation used to create paddy fields. 246	  

 247	  

According to the soil classification of FAO/UNESCO 1998, the soils chosen of the 248	  

papers of Roca-Pérez et al., (2010) and Jordán et al., (2009) are classified as: 249	  

 250	  

- Fluviosols: Alcora and Castellón. Typical soils found of valley bottoms and 251	  

floodplains, widely represented in the province of Castellón. These occupy the 252	  

coastal plains and the terraces of the river courses from the inland areas to the 253	  

coast. However, inland areas may develop on slopes fitted out by terraces. These 254	  

soils are partly immature and they are commonly well drained. Because of their 255	  

development from recent alluvial deposits, these soils have a significant 256	  

thickness and a variable texture (Antolín Tomás, 1998). 257	  

- Calcisol: Onda. These types of soils are characterized by horizons with 258	  

secondary enrichment of calcium carbonate, favored by semi-arid conditions. 259	  

They are present either in the coastal plain or in the mountainous interior. In 260	  

these soils predominate washing and carbonate accumulation is associated with 261	  

geomorphic processes of glacis formation, alluvial fan, etc. (Antolín Tomás, 262	  

1998). 263	  

 264	  



These authors collected two kilograms of topsoil samples (0-20 cm) from each sampling 265	  

site, air-dried, crushed, 2 mm sieved, mixed and stored at air-dried conditions for further 266	  

analysis. 267	  

 268	  

Chemical analysis 269	  

The methodology used in soil chemical analysis was described by Roca-Pérez et al. 270	  

(2010) and Jordán et al. (2009) in their studies. Total contents of metals were 271	  

determined by ICP-MS after microwave digestion of 0.5g of representative soil sample 272	  

using 9 ml nitric acid (68% w/v), 1 ml hydrogen peroxide (30% w/v), 3 ml hydrofluoric 273	  

acid (48% w/v), 2 ml hydrochloric acid (37% w/v) and 5 ml deionised water in the first 274	  

steps (20 min at 200ºC) and 30ml boric acid (4%) in the second (5min at 170ºC) (EPA, 275	  

1996). 276	  

 277	  

4. Results and discussion 278	  

 279	  

4.1. Atmospheric concentrations of pollutants. 280	  

Table 1 shows the assessment of PM10, Cd, Ni and Pb according the limit values 281	  

established by European Legislation (European Council Directive, 2008/50/EC). The 282	  

concentrations of the pollutants are below the limit values recommended by European 283	  

Union Legislation for the protection of human health and ecosystems in the study period, 284	  

with the exception of daily exceedances of PM10 in 2007 in the station of Castellón.  285	  

 286	  

There is an important reduction of the pollutants from 2009 in all control station due to 287	  

the economic crisis and subsequent decrease of industrial activity. Additionally, due to 288	  

the new European Directive (2010/75/EU) on industrial emissions, the best available 289	  



techniques (BAT) were implemented in the industry in order to prevent or reduce 290	  

harmful impacts. 291	  

 292	  

In Modena ceramic cluster this reduction has been also observed despite the Italian 293	  

ceramic industry was the first in Europe to develop and adopt techniques for the 294	  

reduction of the environment impacts in the seventies (Minguillón et al., 2013). So the 295	  

economic crisis has been very important in the two industrial sites. 296	  

 297	  

4.1.1 PM10 298	  

In general, PM10 levels increase during the months with high temperatures due to a 299	  

decrease in precipitation (Fig. 2) with the exception of 2007 and 2008 in Castellón and 300	  

Alcora. This causes a reduction in the cleansing effect on the atmosphere (Bergametti et 301	  

al. 1989) and consequently a greater contaminant concentration in the ambient air. The 302	  

high temperatures during these months lead to increased dryness of the terrain, which 303	  

favours the resuspension of clay-loam substrate in the area (Gómez et al., 2005). At the 304	  

same time, the mixing layer, or lower part of the troposphere where the pollutants are 305	  

free to move through the turbulence generated in the lower layers of the atmosphere, 306	  

increases its thickness and facilitates the mixing of air masses from the North of Africa 307	  

in the low layers (Kubilay and Saydam, 1995). Intrusion episodes of long-distance 308	  

material occur, leading to an increase in the concentration of PM10. During winter 309	  

months, temperature inversions are generated. This phenomenon occurs on clear nights, 310	  

with weak or no wind, when the soil losses the heat acquired by radiation and low-lying 311	  

air layers are cooled faster than the upper layers of air (Wallace et al., 2010). When 312	  

pollutants are emitted under temperature inversion conditions, they accumulate in the 313	  

layers of the troposphere close to the ground. This phenomenon causes transport 314	  



through these layers to occur too slowly, producing an increased concentration of 315	  

pollutants (Monn et al., 1995). This accumulation of pollutants is also found in Milan 316	  

due to persistent thermal inversions (Marcazzan et al, 2001). During the autumn season, 317	  

the lowest values of the study were detected (Fig. 2). This was due to atmospheric 318	  

instability, the tendency of the atmosphere to resist or enhance vertical motion or, 319	  

alternatively, to suppress or augment existing turbulence (Zoras et al., 2006). According 320	  

to some studies, as global weather conditions change, the input frequency of air masses 321	  

from North Africa is reduced (the mixed layer decreases), rainfall increases, and there is 322	  

a greater cleansing effect in the atmosphere (Querol et al., 2002, 2004). 323	  

 324	  

The seasonal evolution of the pollutants concentrations could supply valuable 325	  

information about the potential origin of them. These seasonal variations are dominated 326	  

by changes in meteorological conditions (Chang and Lee, 2008) and by human activities 327	  

(Guangjian et al., 2009). 328	  

 329	  

4.1.2. Heavy Metals 330	  

The constant tendency of de cadmium concentration during the year (Fig. 3) indicates 331	  

that the contribution of this pollutant into the atmosphere is continuous from all sources, 332	  

both natural and anthropogenic. The small variation is due to one of the principal 333	  

origins of cadmium in the study area, the use of this element in the form of oxide in the 334	  

formulation of enamels and pigments in the ceramic industry (Matthes 1985). This 335	  

sector cuts its production levels in the summer months and so cadmium levels were 336	  

accordingly lower. In addition, the power plant located within the study area also emits 337	  

cadmium (Boix et al. 2001), which is higher in the months of higher energy demand 338	  

(cold months), wherein a light cadmium concentration increase was observed. 339	  



 340	  

The light seasonal tendency for nickel (Fig. 4) of high concentrations during hot months 341	  

and low ones during the coldest months leads to nickel concentration levels being 342	  

governed by two factors: anthropogenic activities within the study area and the ambient 343	  

temperature. High-temperature anthropogenic activities at the power and petrochemical 344	  

plants, etc., release nickel into the atmosphere mainly as fly ash and not in a gaseous 345	  

state (Boix et al. 2001). Due to their characteristics, these fine particles behave in the 346	  

atmosphere like a gaseous pollutant (Wark and Warner, 2000), and so their dispersion is 347	  

influenced by external factors like the temperature (Vicente et al., 2011). Higher 348	  

temperatures result in greater atmospheric turbulence (Wark and Warner, 2000), 349	  

bringing greater dispersion away from the emitting sources located to the east of the 350	  

study area. The power and petrochemical plants are located there, thus favoring the 351	  

enrichment of nickel in the particle concentration levels in farther-away zones during 352	  

the hottest months. 353	  

 354	  

The general behavior of lead concentration (Fig. 5) is to reach high levels in colder 355	  

seasons and low levels during warmer seasons. In the study area, the origin is linked to 356	  

the use of lead in the formulation of raw materials in the ceramic sector (Matthes 1985). 357	  

These oxides are volatized in high-temperature industrial processes and they condense 358	  

upon contact with the atmosphere. An aerosol–vapor equilibrium exists for lead 359	  

dependent upon the air temperature. Low temperatures favor the aerosol phase, while 360	  

high temperatures favor the vapor phase release, explaining that the dispersion is greater 361	  

at high temperatures, and therefore lead levels are less in areas near the emitting 362	  

sources. Dispersion is less at low temperatures and so greater concentrations of this 363	  

contaminant abound near the emitting sources (Vicente et al., 2011). Another factor 364	  



needing consideration is that, in summer, this sector reduces production during vacation 365	  

periods, resulting in less emissions and lower lead concentration levels in the ambient 366	  

air. 367	  

 368	  

4.2 Soil pollution. 369	  

 370	  

Heavy metal concentrations in some different environments show high variability 371	  

depending on the type of environment (industrial, urban or natural). Some authors have 372	  

conducted studies of soils in different environments (Galán et al., 2002; Moral et al., 373	  

2005; Tong-Bing et al., 2005; Yay et al., 2008; Maas et al., 2010) and concluded that 374	  

the soils most polluted by heavy metals occur in areas affected by mining and cement 375	  

factories (Soriano et al., 2012). 376	  

 377	  

Soils affected by heavy metal emissions and PM10 in the ceramic cluster are carbonate 378	  

reliefs, detrital or gypsiferous materials subsequently colluvial-alluvial deposits and 379	  

marsh. The presence of carbonate indicates high soil pH, which tends to precipitate the 380	  

heavy metals. The Cd, and other metals have a strong tendency to be adsorbed by 381	  

carbonates. The Cd mobility is medium in basic and neutral soils, low in Pb and very 382	  

low in Ni (García et al., 2009).  383	  

 384	  

Table 2 shows classification of soil contamination types based on their heavy metals 385	  

concentrations, with four categories identified. 386	  

 387	  

Table 3 shows heavy metals concentration in soil in the study area. According to the 388	  

polluted soil classification (table 2), in Onda and Alcora, the soils show no pollution by 389	  



nickel but in Castellón shows light pollution. In the case of cadmium, Onda has light 390	  

pollution, Alcora medium and in Castellón very extreme pollution was detected. The 391	  

soils from Alcora and Castellón are unpolluted by lead and Onda shows medium 392	  

pollution. 393	  

 394	  

According to studies by D’Elia et al., (1999) the soils of the Bologna area have standard 395	  

values of lead as in Castellón and Alcora, low pollution of cadmium as in Onda, while 396	  

medium pollution of nickel were detected. 397	  

 398	  

5. Conclusions 399	  

 400	  

In this study a retrospective view of evolution of PM10 and the heavy metals (Cd, Ni 401	  

and Pb) was conducted at three cities in the Spanish ceramic cluster, from 2007 to 2011.  402	  

The results show that the concentrations of studied pollutants are below the limit values 403	  

of European laws for the protections of human health and ecosystems, with the 404	  

exception of daily exceedances of PM10 in 2007 in the station of Castellón. An 405	  

important reduction of the pollutants from 2009 in all control station are detected due to 406	  

the economic crisis and subsequent decrease of industrial activity 407	  

 408	  

The atmospheric seasonal tendency of the pollutant concentrations in the study area is 409	  

marked by the rate of industrial activity and, additionally, by the ambient temperature. 410	  

 411	  

Additionally, a comparative study of heavy metals in soils was performed in this area 412	  

because although the particle deposition process cleans the atmosphere, its ultimate 413	  

result is the transfer of toxic atmospheric pollutants into the soil. The study of metals 414	  



contents in soil is currently necessary to obtain reference values and assess their 415	  

contamination, because the pollution from atmospheric particulate metals in the soil 416	  

increases their toxicity 417	  

 418	  

Soils with low pollution by nickel and lead were detected in the study area, while 419	  

different pollution by cadmium was found depending on the sampling site, Castellón 420	  

shows extreme pollution, Alcora medium and Onda low. 421	  

 422	  

Even if there is an evident reduction of PM10 and heavy metals atmospheric levels in 423	  

the study area, these pollutants have been accumulated in the soil close to emission 424	  

sources for years. The persistence of these pollutants in soil is much longer than in other 425	  

compartments of the biosphere, especially heavy metals which can be considered 426	  

virtually permanent. So, it is very important to know and reduce the emissions in order 427	  

to minimize harmful effects on human health, with particular attention to sensitive 428	  

populations, and diminish damage to the environment as a whole. In this paper, the 429	  

importance of soil composition has been identified to develop environmental control 430	  

strategies 431	  
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