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We calculate the ��K� scattering length in fully-dynamical lattice QCD with domain-wall valence
quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b � 0:125 fm, lattice
spatial size of L � 2:5 fm and at pion masses of m� � 290, 350, 490 and 600 MeV. The lattice data,
analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full �K
scattering amplitude at threshold. Extrapolating to the physical point gives m�a3=2 � �0:0574�
0:0016�0:0024

�0:0058 and m�a1=2 � 0:1725� 0:0017�0:0023
�0:0156 for the I � 3=2 and I � 1=2 scattering lengths,

respectively, where the first error is statistical and the second error is an estimate of the systematic due to
truncation of the chiral expansion.
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I. INTRODUCTION

In hadronic atoms, nature has provided a relatively clean
environment in which to explore the low-energy interac-
tions of charged hadrons. The electromagnetic interaction
allows for oppositely-charged, long-lived hadrons to form
Coulomb bound states. The locations of the energy levels
of these systems are perturbed by the strong interactions,
while the lifetimes of the ground states are dictated by the
strong interactions that couple the charged hadrons to
lighter neutral ones.

Theoretically, the simplest hadronic atom to understand
is composed of two pions: ����. Precision experiments
have been performed—and are ongoing—to measure the
lifetimes and energy levels of such atoms [1]. In the isospin
limit, Bose statistics dictates that two pions interacting in
an s-wave can be in either an isospin-0 or isospin-2 state.
By measuring the decay width and energy levels of pio-
nium, the I � 0 and I � 2 strong-interaction scattering
lengths can be isolated. While the difference between
energy levels, and hence deviations from the Coulomb
spectrum, are relatively straightforward to measure, it is
somewhat more challenging to determine the lifetime of
these atoms. Recently, the DIRAC collaboration [1] at
CERN has measured the lifetime to be ����� �
2:91�0:49

�0:62 � 10�15 s, with the dominant decay mode being
���� ! 2�0. On the theoretical side, progress in lattice
QCD has been quite rapid, with a recent fully-dynamical

calculation of the I � 2 �� scattering length at pion
masses between m� � 290 MeV and 500 MeV [2].
When combined with two-flavor chiral perturbation
theory, a prediction of the scattering length at the physical
point is found to have an uncertainty that is somewhat
smaller than that from experiment. An up-to-date discus-
sion of the status of ��-interactions can be found in
Ref. [3].

Studying the low-energy interactions between kaons and
pions with ��K� bound-states allows for an explicit ex-
ploration of the three-flavor structure of low-energy had-
ronic interactions, an aspect that is not directly probed in
�� scattering. Experiments have been proposed by the
DIRAC collaboration [4] to study �K atoms at CERN, J-
PARC and GSI, the results of which would provide direct
measurements or constraints on combinations of the scat-
tering lengths. In the isospin limit, there are two isospin
channels available to the �K system, I � 1

2 and I � 3
2 . The

width of a ��K� atom depends upon the difference be-
tween scattering lengths in the two channels, �� �a1=2 �

a3=2�
2, (where a1=2 and a3=2 are the I � 1

2 and I � 3
2 scat-

tering lengths, respectively) while the shift of the ground
state depends upon a different combination, �E0 �

2a1=2 � a3=2. Recently, the Roy-Steiner equations (analy-
ticity, unitarity and crossing-symmetry) have been used to
extrapolate high-energy �K data down to threshold [5],
where it is found that
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m��a1=2 � a3=2� � 0:269� 0:015;

m��a1=2 � 2a3=2� � 0:134� 0:037;
(1)

which can be decomposed tom�a1=2 � 0:224� 0:022 and
m�a3=2 � �0:0448� 0:0077. (See also Ref. [6] for a
similar approach.) In addition, three-flavor chiral perturba-
tion theory (�PT) has been used to predict these scattering
lengths out to next-to-next-to-leading order (NNLO) in the
chiral expansion. At NLO [7–9],

 

m��a1=2 � a3=2� � 0:238� 0:002;

m��a1=2 � 2a3=2� � 0:097� 0:047;
(2)

while at NNLO [10] m�a1=2 � 0:220 and
m�a3=2 � �0:047.1 One must be cautious in assessing
the uncertainties in these theoretical calculations, as one
can only make estimates based on power-counting for the
contribution of higher-order terms in the chiral expansion.
There has been one determination of the ��K� scattering
length in quenched QCD [12], however, the chiral extrapo-
lation of the scattering length did not include the non-
analytic dependences on the light-quark masses that are
predicted by chiral perturbation theory.

It is worth mentioning a novel motivation for accurate
determinations of meson-meson scattering from lattice
QCD calculations. Recent work has identified in a
model-independent way the lowest-lying resonance in
QCD which appears in �� scattering [13]. Crucial to
this development has been the accurate determination of
the low-energy �� scattering amplitude, including the
recent lattice QCD determination of the I � 2 scattering
length [2]. A similar analysis has very recently been car-
ried out for �K scattering in the I � 1

2 s-wave in order to
determine the lowest-lying strange resonance [14].
Improved accuracy in the low-energy �K scattering am-
plitude should be welcome to this endeavor.

In this work we present the results of a fully-dynamical
lattice QCD calculation of ��K� scattering. By calculat-
ing the m� and mK dependence of the ��K� (I � 3

2 )
scattering length, we are able to provide a determination
of both the I � 3

2 and I � 1
2 scattering lengths at the physi-

cal point. We have performed a hybrid mixed-action cal-
culation with domain-wall valence quarks tuned to the
staggered sea-quark masses of the MILC configurations.
As the computer resources do not presently exist to per-
form such calculations at or very near the physical value of
the light-quark masses, these are performed at pion masses
between m� � 290 MeV and �600 MeV. These results
are combined with calculations in continuum three-flavor
�PT to extrapolate to the physical point.

II. FINITE-VOLUME CALCULATION OF
SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below
inelastic thresholds can be determined using Lüscher’s
method [15], which entails a measurement of one or
more energy levels of the two-particle system in a finite
volume. For two particles with masses m1 and m2 in an
s-wave, with zero total three momentum, and in a finite
volume, the difference between the energy levels and those
of two noninteracting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [15]

 p cot��p� �
1

�L
S
�
pL
2�

�
; (3)

where ��p� is the elastic-scattering phase shift, and the
regulated three-dimensional sum is

 S ��� 	
Xjjj<�

j

1

jjj2 � �2 � 4��: (4)

The sum in Eq. (4) is over all triplets of integers j such that
jjj<� and the limit �! 1 is implicit [16]. This defini-
tion is equivalent to the analytic continuation of zeta-
functions presented by Lüscher [15]. In Eq. (3), L is the
length of the spatial dimension in a cubically-symmetric
lattice. The energy eigenvalue En and its deviation from the
sum of the rest masses of the particle, �En, are related to
the center-of-mass momentum pn, a solution of Eq. (3), by

 �En 	 En �m1 �m2

�
������������������
p2
n �m2

1

q
�

������������������
p2
n �m2

2

q
�m1 �m2

�
p2
n

2�12
� . . . ; (5)

where �12 is the reduced mass of the system. In the
absence of interactions between the particles, jp cot�j �
1, and the energy levels occur at momenta p � 2�j=L,
corresponding to single-particle modes in a cubic cavity.
Expanding Eq. (3) about zero momenta, p� 0, one obtains
the familiar relation2

 �E0 � �
2�a

�12L
3

�
1� c1

a
L
� c2

�
a
L

�
2
�
�O

�
1

L6

�
; (6)

with

 c1 �
1

�

Xjjj<�

j�0

1

jjj2
� 4� � �2:837297;

c2 � c2
1 �

1

�2

X
j�0

1

jjj4
� 6:375183;

(7)

1At tree level, Weinberg [11] determined that m�a1=2 � 0:137
and m�a3=2 � �0:0687.

2We have chosen to use the ‘‘particle physics’’ definition of the
scattering length, as opposed to the ‘‘nuclear physics’’ definition,
which is opposite in sign.
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and a is the scattering length, defined by

 a � lim
p!0

tan��p�
p

: (8)

For the I � 3
2 �K scattering length, a3=2, that we compute

in this work, the difference between the exact solution to
Eq. (3) and the approximate solution in Eq. (6) is much less
than 1%.

III. DETAILS OF THE LATTICE CALCULATION

Our computation uses the mixed-action lattice QCD
scheme developed by LHPC [17,18] which places
domain-wall valence quarks from a smeared-source on
Nf � 2� 1 asqtad-improved [19,20] MILC configura-
tions generated with rooted3 staggered sea quarks [29]
that are hypercubic-smeared (HYP-smeared) [30–33]. In
the generation of the MILC configurations, the strange-
quark mass was fixed near its physical value, bms � 0:050,
(where b � 0:125 fm is the lattice spacing) determined by
the mass of hadrons containing strange quarks. The two
light quarks in the configurations are degenerate (isospin-
symmetric). As was shown by LHPC [17,18], HYP-
smearing allows for a significant reduction in the residual
chiral symmetry breaking at a moderate extent Ls � 16 of
the extra dimension and domain-wall height M5 � 1:7.
Using Dirichlet boundary conditions we reduced the origi-
nal time extent of 64 down to 32. This allowed us to recycle
propagators computed for the nucleon structure function
calculations performed by LHPC. For bare domain-wall
fermion masses we used the tuned values that match the
staggered Goldstone pion to few-percent precision. For
details of the matching see Refs. [17,18]. The parameters
used in the propagator calculation are summarized in
Table I. All propagator calculations were performed using
the Chroma software suite [34,35].

As it is the difference in the energy between interacting
mesons and noninteracting mesons that provides the scat-
tering amplitude, we computed the one-pion correlation

function C���t�, the one-kaon correlation function CK��t�,
and the kaon-pion correlation function C��K��p; t�, where
t denotes the number of time slices between the hadronic-
sink and the hadronic-source, and p denotes the magnitude
of the (equal and opposite) momentum of each meson. The
single-pion correlation function is

 C���t� �
X

x
h���t;x����0; 0�i; (9)

where the summation over x corresponds to summing over
all the spatial lattice sites, thereby projecting onto the
momentum p � 0 state. The single-kaon correlation func-
tion has a similar form. The ��K� correlation function
that projects onto the s-wave state in the continuum limit is
 

C��K��p; t� �
X
jpj�p

X
x;y
eip
�x�y�h���t;x�K��t; y�

� K��0; 0����0; 0�i; (10)

where, in Eqs. (9) and (10), ���t;x� � �u�t;x��5d�t;x� is
an interpolating field for the ��, and K��t;x� �
�u�t;x��5s�t;x� is an interpolating field for the K�. In the
relatively large lattice volumes that we are using, the
energy difference between the interacting and noninteract-
ing two-meson states is a small fraction of the total energy,
which is dominated by the masses of the mesons. In order
to extract this energy difference we formed the ratio of
correlation functions, G��K��p; t�, where

 G��K��p; t� 	
C��K��p; t�
C���t�CK��t�

!
X1
n�0

Ane
��Ent; (11)

and the arrow becomes an equality in the limit of an infinite
number of gauge configurations. In G��K��p; t�, some of
the fluctuations that contribute to both the one- and two-
meson correlation functions cancel, thereby improving the
quality of the extraction of the energy difference beyond
what we are able to achieve from an analysis of the
individual correlation functions.

IV. ANALYSIS AND CHIRAL EXTRAPOLATION

A convenient way to present the data is with ‘‘effective
scattering length’’ plots, simple variants of effective mass

TABLE I. The parameters of the MILC gauge configurations and domain-wall propagators used in this work. The subscript l denotes
light quark (up/down) where s denotes the strange quark. The superscript dwf denotes the bare quark mass for the domain-wall
fermion propagator calculation. The last column is number of configurations times number of sources per configuration.

Ensemble bml bms bmdwf
l bmdwf

s 103 � bmres
a # of propagators

2064f21b676m007m050 0.007 0.050 0.0081 0.081 1:604� 0:038 468� 4
2064f21b676m010m050 0.010 0.050 0.0138 0.081 1:552� 0:027 658� 4
2064f21b679m020m050 0.020 0.050 0.0313 0.081 1:239� 0:028 486� 3
2064f21b681m030m050 0.030 0.050 0.0478 0.081 0:982� 0:030 564� 6

aComputed by the LHP collaboration.

3For recent discussions of the ‘‘legality’’ of the mixed-action
and rooting procedures, see Ref. [21–28].
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plots. The effective energy splitting is formed from the
ratio of correlation functions

 �E��K��t� � log
�

G��K��0; t�
G��K��0; t� 1�

�
; (12)

which in the limit of an infinite number of gauge configu-

rations would become a constant at large times that is equal
to the lowest energy of the interacting kaon and pion in the
volume. At each time slice, �E��K��t� is inserted into
Eqs. (3) and (5), or into Eq. (6), to give a scattering length
at each time slice, a��K��t�. It turns out to be more useful
to consider the dimensionless quantity of the reduced mass
times the scattering length, ��Ka��K� , in our analysis,
where��K�t�, the ‘‘effective reduced mass’’ is constructed
from the effective mass of the single-particle correlators.
For each of the MILC ensembles that we analyze, the
effective scattering lengths are shown in Fig. 1. We gen-
erated correlators with a point sink and with a smeared sink
whose smearing is identical to that of the source. We found
that the plateaus in ��Ka��K� are better defined for
smeared sinks than those from point sinks.

The energy shifts of the ��K� ground state can be
extracted directly from the effective scattering length func-
tion, or from correlation functions, giving the same results.
A single exponential function was fit by �2-minimization
to the correlation functions, from which either the ��K�

energy or single-particle masses were determined. The
central value and uncertainty of each parameter was de-
termined by the jackknife procedure over the ensemble of
configurations. The results of our lattice calculation of the
decay constants, meson masses, ��K� energy shifts and
scattering lengths are tabulated in Table II. The scattering
lengths as a function of reduced mass are shown in Fig. 2.

As can be seen from Fig. 1, there is a large systematic
error associated with the m010 ensemble. There would
appear to be two distinct plateaus. Rather than fitting to
one of the plateaus, we chose to fit over a large range (7)–
(15) which includes both plateaus and then assigned a
systematic error which encompasses minima and maxima
over the fit range as indicated by the effective scattering
length plot. More statistics will have to be acquired on this
ensemble before any conclusions can be drawn about this
correlator.

In SU(3) chiral perturbation theory [36–38] at NLO, the
expansion of the crossing even (a�) and crossing odd (a�)
scattering length times the reduced mass is known to be
[7–9]

 

��Ka� �
�2
�K

4�f2
�

�
1� 2

m2
�

f2
�

�
8L5��� �

1

16�2

�
8m2

K � 5m2
�

2�m2
K �m

2
��

log
m�

�
�

23m2
K

9�m2
K �m

2
��

log
mK

�
�

28m2
K � 9m2

�

18�m2
K �m

2
��

log
m�

�

�
4mK

9m�

��������������������������������������������������
�mK �m���2mK �m��

p
mK �m�

arctan
�
2�mK �m��

mK � 2m�

�����������������������
mK �m�

2mK �m�

s �

�
4mK

9m�

��������������������������������������������������
�mK �m���2mK �m��

p
mK �m�

arctan
�
2�mK �m��

mK � 2m�

�����������������������
mK �m�

2mK �m�

s ����
;

	
�2
�K

4�f2
�

�
1� 16

m2
�

f2
�
L5 � ��NLO;��

�
; (13)
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FIG. 1 (color online). The effective ��K� scattering length
times the reduced mass, ��Ka��K��t� as a function of time slice
arising from smeared sinks. The solid black lines and shaded
regions are fits with 1-	 tabulated in Table II. The dashed lines
on the m010 ensemble plot are an estimate of a systematic error
due to fitting.
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��Ka
� �

�2
�KmKm�

2�f4
�

�
16L�K��� �

1

16�2

�
11m2

�

2�m2
K �m

2
��

log
m�

�
�

67m2
K � 8m2

�

9�m2
K �m

2
��

log
mK

�
�

24m2
K � 5m2

�

18�m2
K �m

2
��

log
m�

�

�
4

9

��������������������������������������������������
�mK �m���2mK �m��

p
mK �m�

arctan
�

2�mK �m��

mK � 2m�

�����������������������
mK �m�

2mK �m�

s �

�
4

9

��������������������������������������������������
�mK �m���2mK �m��

p
mK �m�

arctan
�

2�mK �m��

mK � 2m�

�����������������������
mK �m�

2mK �m�

s �
�

43

9

��
;

	
�2
�KmKm�

2�f4
�
�16L�K � ��NLO;��� (14)

where the counterterm L�K��� is a renormalization scale,
�, dependent linear combination of the Gasser-Leutwyler
counterterms

 L�K 	 2L1 � 2L2 � L3 � 2L4 �
L5

2
� 2L6 � L8: (15)

It is important to note that the expressions in Eqs. (13) and
(14) are written in terms of the full f�, and not the chiral
limit value. The functions ��NLO;���m�=�;mK=�;m�=��
and ��NLO;���m�=�;mK=�;m�=�� clearly depend upon the

renormalization scale �. In the analysis that follows, it was
found to be convenient to normalize the meson masses to
f�, and therefore we can choose the renormalization scale
to be � � fphys

� � 132 MeV, and use the values of m�=f�
and mK=f� in Table II directly. Deviations between the
� � f� calculated on each lattice and � � fphys

� are higher
order in the chiral expansion.

The I � 1
2 and I � 3

2 scattering lengths are related to
those in Eqs. (13) and (14) by

 a1=2 � a� � 2a� a3=2 � a� � a� � a��K� : (16)

It is convenient to define the function � via a subtraction of
the tree-level and one-loop contributions in order to isolate
the counterterms,

 �
�
m�

f�
;
mK

f�

�
	 �

f2
�

16m2
�

�
4�f2

�

�2
�K

���Ka��K�� � 1

� ��NLO;�� � 2
mKm�

f2
�

��NLO;��
�
; (17)

where we use the Gell-Mann-Okubo mass-relation among
the mesons to determine the �-mass, which we do not
measure in this lattice calculation. At NLO this becomes

 � � L5�f
phys
� � � 2

mK

m�
L�K�f

phys
� �: (18)

It is clear that the dependence of � on m� and mK deter-
mines L5 and L�K and, in turn, allows an extraction of a3=2

and a1=2. The numerical values of � and their jackknife
errors calculated on each ensemble of lattices are given in
Table II, and are plotted in Fig. 3. By fitting a straight line
to the values of � as a function of mk=m� the counterterms

TABLE II. Results from the lattice calculation. All errors are computed from jackknife. The uncertainty associated with the m010
ensemble �K energy shift and related quantities is dominated by the systematic error. The fitting ranges are shown in the square
brackets.

Ensemble m�=f� mK=f� ��K=f� �E�K (MeV) ��Ka��K� �� 103

m007 2.000(17) 3.980(25) 1.332(10) 11.89(81) [8–15] �0:1263�75� �10:1�9�
m010 2.337(11) 3.958(16) 1.469(07) 11.40(50) [7–15] �0:155�40� �8�3�
m020 3.059(12) 3.988(15) 1.731(07) 10.15(69) [10–15] �0:213�12� �5:59�34�
m030 3.484(10) 4.004(12) 1.869(05) 10.06(54) [11–16] �0:267�12� �4:29�15�

 

0.5 1 1.5 2

µπK 
/ fπ

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

µ πK
  a π+

K
+

χPT  p2

This work
physical line

FIG. 2 (color online). ��Ka��K� vs ��K=f�. The data points
are the results of this lattice calculation, while the curve is the
theoretical prediction at tree level in chiral perturbation theory
[11]. The dark error bar is statistical, while the lighter error bar
corresponds to the systematic error. The vertical dashed line
denotes the physical pion and kaon masses.
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L5 and L�K (renormalized at fphys
� ) can be determined.

Ideally, one would fit to lattice data at the lightest
accessible values of the quark masses in order to ensure
convergence of the chiral expansion. While we only have
four different quark masses in our data set, with pion
masses ranging from m� � 290 MeV to 600 MeV, fitting
all four data sets and then ‘‘pruning’’ the heaviest data set
and refitting provides a useful measure of the convergence
of the chiral expansion. Hence, in ‘‘fit A’’, we fit the data
from all four lattice ensembles (m007, m010, m020 and
m030), while in ‘‘fit B’’, we fit the data from the lightest
three lattice ensembles (m007, m010 and m020).

With the limited data set presently at our disposal, it is
not practical to fit to the NNLO expression [10] for the
scattering length. However, it is important to estimate the

uncertainty in the values of the scattering lengths extrapo-
lated to the physical point that is introduced by the trunca-
tion of the chiral expansion at NLO. In our work on fK=f�
[39] we extracted a value of L5 as it is the only NLO
counterterm that contributes. The numerical value obtained
is only perturbatively close to its true value, as it is con-
taminated by higher-order contributions. Therefore, by
fixing the L5 that appears in Eq. (18) to the value of L5

extracted from fK=f�, an estimate of the uncertainty in
both L�K and in the extrapolated values of the scattering
lengths due to the truncation of the chiral expansion can be
estimated. Specifically, we sampled L5 from a Gaussian
distribution for a range of fK=f� values [39] and then fit
L�K using �2-minimization. We then generated a value of
L�K from a normal distribution formed from its mean and
standard error. This fit is denoted ‘‘fit C’’, and the same fit
but with the m030 data pruned is denoted ‘‘fit D’’. The
results of the four fits are given in Table III and plotted in
Fig. 3. These fits lead to an extraction of

 L�K � 4:16� 0:18�0:26
�0:91; (19)

and a prediction of the scattering lengths extrapolated to
the physical point of

 m�a3=2 � �0:0574� 0:0016�0:0024
�0:0058

m�a1=2 � 0:1725� 0:0017�0:0023
�0:0156:

(20)

We have chosen to take the central values and statistical
errors from fit D and have set the systematic error due to
truncation of the chiral expansion by taking the range of
the various quantities allowed by the four fits, including
statistical and systematic errors. In Fig. 4 we plot the 68%
and 95% confidence-level error ellipses for the four fits
given in Table III in the L5-L�K plane. In Fig. 5 we plot the
95% confidence-level error ellipses associated with the
four fits in the m�a1=2-m�a3=2 plane.4 For purposes of
comparison we have included the current-algebra point
[11] on the plot as well as 1-	 error ellipses from analyses
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FIG. 3 (color online). � vs mK=m�. The dark error bar on the
data points is statistical, while the lighter error bar corresponds
to the systematic error. The lines correspond to the four linear
fits (A,B,C,D). The bars on the y axis represent the 1-	 errors in
the determinations of L5 � ��mK=m� � 0� as given in Table III.
(At 95% confidence level, these determinations are in agree-
ment.)

TABLE III. Results of the NLO fits. The values of m�a3=2 and m�a1=2 correspond to their extrapolated values at the physical point,
where the error ellipses in the L5-L�K plane have been explored at 68% confidence level (see Fig. 4).

FIT L5 � 103 L�K � 103 m�a3=2 m�a1=2 �2=dof

A 3:83� 0:49 3:55� 0:20 �0:0607� 0:0025 0:1631� 0:0062 0.17
B 2:94� 0:07 3:27� 0:02 �0:0620� 0:0004 0:1585� 0:0011 0.001
C 5:65� 0:02�0:18

�0:54
a 4:24� 0:17 �0:0567� 0:0017 0:1731� 0:0017 0.84

D 5:65� 0:02�0:18a
�0:54

a 4:16� 0:18 �0:0574� 0:0016 0:1725� 0:0017 0.90

aInput from fK=f� [39].

4In Mathematica format, the 95% confidence-level error ellipses in the m�a1=2-m�a3=2 plane are:
fit A: Ellipsoid [{0.1631, -0.0607}, {0.0197, 0.0007}, {{0.9283, 0.3719}, {-0.3719, 0.9283}}]
fit B: Ellipsoid [{0.1585, -0.0620}, {0.0076, 0.0004}, {{0.9461, 0.3239}, {-0.3239, 0.9461}}]
fit C: Ellipsoid [{0.1731, -0.0567}, {0.0042, 0.0016}, {{0.7534, 0.6576}, {-0.6576, 0.7534}}]
fit D: Ellipsoid [{0.1725, -0.0574}, {0.0046, 0.0027}, {{0.7881, 0.6156}, {-0.6156, 0.7881}}].
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based on fitting experimental data using �PT at NLO [7]
and using Roy-Steiner equations [5]. As 1-	 error ellipses
correspond to 39% confidence level, one should be careful
in finding discrepancy between the various determinations
of the scattering lengths. It would be interesting to see the

NLO �PT and Roy-Steiner error ellipses at higher con-
fidence levels.

For the sake of completeness, we also quote numbers for
the crossing odd (a�) and crossing even (a�) scattering
lengths extrapolated to the physical point:

 m�a� � 0:0766� 0:0005�0:0000
�0:0032

m�a
� � 0:0193� 0:0016�0:0021

�0:0080;
(21)

where the procedure for choosing the central value and
determining the systematic error is the same as above.
Error ellipses at 68% and 95% confidence levels are shown
in Fig. 6.5 The crossing-odd scattering length is of special
interest as its corrections are protected by SU(2) chiral
symmetry and are therefore of order m4

� and expected to
be small [40,41].6

Given how well our lattice data fit the NLO continuum
�PT formulas, it would seem that the O�b2� discretization
errors are comparable or smaller than the systematic error
due to omitted O�m3

q� effects in the chiral expansion.
However, one should keep in mind that our determinations
of, for instance, the low-energy constants L5 and L�K are
subject to O�b2� shifts. In contrast with the ���� and
K�K� scattering lengths, the mixed-action quantity �Mix

makes an explicit contribution to the K��� scattering
length [42,43]. While this adds an additional unknown
contribution to this process, a mixed-action �PT analysis

5In Mathematica format, the 95% confidence-level error ellipses in the m�a�-m�a� plane are:
fit A: Ellipsoid �f0:0746; 0:0139g; f0:0116; 0:0004g; ff0:3150; 0:9491g; f0:9491;�0:3150gg�
fit B: Ellipsoid �f0:0735; 0:0115g; f0:0043; 0:0002g; ff0:3620; 0:9322g; f0:9322;�0:3620gg�
fit C: Ellipsoid �f0:0766; 0:0200g; f0:0029; 0:0009g; ff0:0014; 1:0000g; f1:0000;�0:0014gg�
fit D: Ellipsoid �f0:0766; 0:0193g; f0:0033; 0:0011g; ff�0:0017; 1:0000g; f1:0000; 0:0017gg�.
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corresponds to the current-algebra predictions (�PT p2) from
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Steiner equations [5].
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6We thank Heiri Leutwyler for emphasizing this point to us.
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of�K scattering, including lattice data from the fine MILC
lattices (b� 0:09 fm), will be able to address this source of
systematic error quantitatively. We continue to search for
the computational resources to accomplish this task.

V. CONCLUSIONS

In this paper we have computed the ��K� scattering
length in fully-dynamical lattice QCD at pion masses
ranging between m� � 290 MeV and 600 MeV. We have
used the continuum expressions for the scattering lengths
in SU(3) chiral perturbation theory, together with lattice
data for fK=f�, to predict the physical I � 3=2 and I �
1=2 �K scattering lengths with unprecedented accuracy.
Naively one would expect that ��K� scattering would
give information about I � 3=2 scattering only. However,
the lattice data, when combined with chiral perturbation
theory, implies a constraint on I � 1=2 scattering as well.
We anticipate that with improved statistics, together with
calculations on lattices with smaller lattice spacings, the
theoretically-predicted regions for m�a3=2 and m�a1=2 can
be further reduced beyond those shown in Fig. 5. These
regions can then be compared with the expected measure-
ments from K��� atoms, to provide an exciting test of
hadronic theory.
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