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Abstract: Plasmon resonances in nanospheres, nanoshells and nanorods are discussed through
the study of the optical extinction spectra. The formation of dipolar electric fields and charge density
distributions for small nanoparticles is observed, thus confirming the validity of the quasistatic
approximation of Mie theory, which is found to hold up to particle sizes of about 150 nm. Finally,
plasmon coupling effects are studied in nanorod dimers where huge electric field enhancement is
observed.

I. INTRODUCTION

Plasmonics is the field that studies the interaction be-
tween electromagnetic radiation and the conduction elec-
trons, i.e. the plasmons, in small metal particles, usually
of sizes in the nanometric scale. The field is divided in
two main manifestations of the plasmonic effects: sur-
face plasmon polaritons and localized surface plasmons,
the latter being the object of this study.
Localized surface plasmons are non-propagating excita-
tions of the electron cloud in the metal caused by an
external electromagnetic field. This field exerts a force
on the electron cloud, polarizing it. The polarization is
maximum at a certain position in the spectrum, the lo-
calized surface plasmon resonance (LSPR) [1]. Plasmon
resonances modify the optical properties of the material
and a number of applications have been found for very
different fields like biomedicine or nanophotonics [2], [3],
[4].
In this work we study plasmonic effects using simula-
tion methods on several gold nanoparticles: nanospheres,
nanoshells and nanorods. The election of gold as the
nanostructure material was motivated by the fact that
resonances fall in the visible spectrum [1], and because
it is widely used in applied research due to its plasmonic
response and biocompatibility [5].

II. THEORETICAL BACKGROUND

The condition for plasmonic resonance can be obtained
analytically for various simple structures, such as the
ones treated in this work. This is done by solving the
problem of an electromagnetic wave being scattered by a
small metal particle. This problem was studied in 1908
by the German physicist Gustav Mie [6], where he anal-
ized from an electrodynamic point of view, using multi-
pole expansions, the scattering of radiation by small gold
spheres. When the particle size is significantly smaller
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than the light wavelength, the quasistatic approximation
can be applied. All multipole orders higher than the
dipole are neglected, which simplifies enormously the an-
alytic treatment of the problem. Spatial variations of the
incoming electric field are also neglected, so the problem
is reduced to electrostatics: solving the Laplace equation
for the electric potential ∇2Φ = 0, and then finding the
electric field E = −∇Φ. Considering a gold nanosphere
of radius R, dielectric function ε(ω); surrounded by a
medium with dielectric constant εm, and an incident elec-
tric field E = E0ẑ, and solving the Laplace equation in
spherical coordinates with the proper boundary condi-
tions leads to [7]:

Φin = − 3εm
ε(ω) + 2εm

E0r cos θ (1a)

Φout = −E0r cos θ +
ε(ω)− εm
ε(ω) + 2εm

E0R
3 cos θ

r2
(1b)

which are the potentials inside (Φin) and outside (Φout)
the sphere. Equation (1b) can be rewritten in terms of a
dipole moment p:

Φout = −E0r cos θ +
p · r

4πε0εmr3
(2a)

p = 4πε0εmR
3 ε(ω)− εm
ε(ω) + 2εm

E0 (2b)

Φout is composed of a superposition of the applied field
and a dipole p in the centre of the sphere, showing that
the external field induces the electric dipole.
Having obtained this induced dipole moment, the polar-
izability α is introduced:

α = 4πR3 ε(ω)− εm
ε(ω) + 2εm

(3)

defined by p = ε0εmαE0, and is in principle a complex
quantity. The polarizability is an important quantity for
plasmonic effects, because it describes the tendency of a
charge distribution to have its charges displaced by an
external field. Minimizing the denominator in equation
(3) provides a condition for the resonant enhancement of
α, the Frölich condition:

min|ε(ω) + 2εm| (4)
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The dielectric function ε(ω) can be separated in its real
and imaginary parts:

ε(ω) = ε1(ω) + iε2(ω) = n2 − κ2 + i(2nκ) (5)

where n is the refractive index of the material and κ is
the extinction coefficient. The latter is related to the ab-
sorption coefficient of the material, which quantifies the
absorption of light by the medium [8]. With the dielec-
tric function expressed as eq. (5), the Frölich condition
simplifies to ε1 = −2εm, since ε2 varies slowly over the
visible spectrum in gold [9]. Another important quan-
tity derived from α is the extinction cross section σext,
which is the sum of the scattering and absorption cross
sections, and is defined as the absorbed and scattered
power divided by the incoming flux power [7]:

σext = σabs + σsca = kIm[α] +
k4

6π
|α|2 (6)

If instead of a nanosphere, the object is a nanoshell,
which is a dielectric sphere of radius ai and dielectric
function εi(ω) coated with a gold thin layer of radius ae
and dielectric function ε(ω), the quasistatic polarizability
is [1]:

α = 4πa3e
(ε− εm)(εi + 2ε) + f(εi − ε)(εm + 2ε)

(ε+ 2εm)(εi + 2εm) + f(2ε− 2εm)(εi − ε)
(7)

where f = a3i /a
3
e is the volume fraction ocuppied by the

inner sphere.
The geometry of a nanorod, a cylindrical shaped solid
gold structure, is difficult to treat analytically, but
the quasistatic plasmon resonance condition is well re-
produced by approximating the nanorod by a prolate
spheroid, an ellipsoid of principal axes a > b = c. Under
this approximation, the polarizability along a given axis
(i = x, y, z) is [1]:

αi =
4πabc(ε(ω)− εm)

3εm + 3Li(ε(ω)− εm)
(8)

where Li is the depolarization factor of the i axis, which
is, considering that a is the length in the x direction:

Lx =
1− e2

e2

(
−1 +

1

2e
ln

1 + e

1− e

)
(9a)

for the longest axis,

Ly = Lz =
1− Lx

2
(9b)

for the other two, where e2 = 1 −
(
b
a

)2
is the ellipticity

of the ellipsoid.
Finally, when two nanostructures that show plasmonic
effects are placed closely, plasmon coupling through the
near-field arises: plasmon resonances of the nanoparticles
interact with each other giving rise to coupled plasmon
modes. These modes depend on the relative alignment of

the nanoparticles and the polarization of the light source.
A hybridization model, as an electrodynamic analogy to
the molecular orbital hybridization, has been proposed to
explain the behaviour observed in different nanoparticle
plasmon coupling [10], for example in dimers, i.e. pairs
of similar nanostructures, or nanoshells.

III. SIMULATION METHOD

All of the results presented in this work were ob-
tained with Lumerical FDTD solutions [11]. The pro-
gram solves Maxwell’s equations with boundary condi-
tions using the finite difference time domain (FDTD)
method, a computational method proposed by Kane Yee
in 1966 [12], where partial differential equations are dis-
cretized to finite difference equations and boundary prob-
lems that were untreatable from the analytical point of
view of partial differential equations become solvable. It
works in time domain, contrary to methods working in
frequency or Fourier domain. All simulations were car-
ried out in vacuum (εm = 1), using the gold dielectric
function data of Johnson and Christy [13], and a plane
wave excitation source inciding normally on the nanos-
tructure.

IV. RESULTS AND DISCUSSION

A. Nanosphere

FIG. 1: Normalized σext of nanospheres with different
sizes.

FIG. 1 shows σExt spectrum for nanospheres with dif-
ferent sizes. A common trend is found in all sizes stud-
ied: at λ = 400 nm, σext is relatively high, then decreases
slightly below 450 nm, increases again reaching a maxi-
mum and finally decreases more or less sharply.
The first region of the spectrum is characterized by elec-
tronic interband transitions, where absorption increases
because photons of λ < 450 nm cause electronic inter-
band transitions. A huge enhancement of σext is seen
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in the second region, for wavelengths 450 < λ < 650
nm depending on the nanosphere size. The peak in this
region is the LSPR peak, where α is greatly enhanced.
For longer wavelengths after the resonance condition has
been met, the decrease of both α and the wavevector
k = 2π/λ cause the decrease of σext (eq. (6)).
The R = 25 nm curve is the perfect example of the va-
lidity of the quasistatic approximation: a narrow reso-
nance peak described by the Frölich condition (eq. (4)),
which induces an electric dipole inside the sphere, caus-
ing a dipolar electric field and charge density distribution.
FIG. 2 shows electric field and charge density distribu-
tion of two different nanospheres. The dipolar nature of
a plasmonic resonance in the quasistatic regime can be
observed in the E field and charge distribution (FIG. 2
(a), (c)) obtained for the λ at the maximum of the green
dashed line in FIG. 1, corresponding to the R = 25 nm
nanosphere.
Increasing the nanosphere radius causes a redshift and
a broadening of the peak, as seen in the R = 70 nm
and R = 100 nm curves of FIG. 1. This is explained by
retardation effects. The quasistatic approximation con-
siders a static electric field, but when the quasistatic
condition, i.e. R << λ, is not completely satisfied,
spatial variations of the incoming electric field appear
over the nanosphere volume. These effects become very
large for R = 125 nm where the σext spectrum is sig-
nificantly different from the rest of the cases. A peak is
found at shorter wavelengths than the R = 100 nm peak,
and a very slow decrease of σext is observed. This in-
dicates that the quasistatic approximation does not hold
for nanospheres of radiiR > 100 nm, and therefore higher
order multipole modes have to be considered. Thus, the
extinction spectrum of the R = 125 nm nanosphere can
be explained taking into account contributions of a dipole
mode, which follows the redshifting and broadening trend
of the other nanospheres, and a quadrupole mode that
causes a resonance peak at shorter wavelengths than the
dipole one. FIG. 2 (b) and (d) show the quadrupole
mode in a R = 125 nm nanosphere. These electro-
dynamic effects that arise because electric fields are no
longer static are called extrinsic size effects [14],[15]. Fi-
nally, the R = 10 nm curve also deviates from the qua-
sistatic regime behaviour of R = 25 nm: the peak is
found at shorter wavelengths and also broadened. These
effects arise because the nanosphere size is inferior to the
electron mean free path in Au (l ∼ 30 nm) [15], and sur-
face scattering of electrons is no longer negligible. This is
accounted for by introducing a size dependent dielectric
function ε(ω)→ ε(ω,R) [14]. These latter effects caused
by the sphere size but that do not depend on external
fields, are called intrinsic size effects.

B. Nanoshell

The polarizability of nanoshells (eq. (7)), shows that
the ratio f plays an important role determining the posi-

FIG. 2: Electric field (log scale) [(a),(b)] and charge
density distribution [(c),(d)] of (a), (c) R = 25 nm
nanosphere for λ = 520 nm; (b), (d) R = 125 nm

nanosphere for λ = 543 nm

FIG. 3: Normalized σext of nanoshells with different ai
and ae. Red and blue solid lines correspond to

nanoshells with equal f = (6/7)3.

tion of the resonance peak. Therefore, nanoshells present
a huge tunability of the position of the LSPR peak over
the spectrum given the fast variation of f with different
radii because of the cubic exponent. FIG. 3 shows the
extinction cross section of nanoshells with different in-
ternal and external radii. The great tunability is clearly
seen: dipole peak positions shift from λ = 557 nm to
λ ≈ 700 nm increasing the ratio f . Nanoshells present
more intense peaks than nanospheres, and therefore a
superior polarizability and electric field enhancement, as
shown in FIG. 4 (a) where the electric field intensity,
calculated for the maximum in FIG. 3, is higher than the
nanosphere case (FIG. 2 (a)). We observe a dipolar dis-
tribution for both electric field and charge distributions
in a ae = 21 nm nanoshell (FIG. 4 (a), (c)), which con-
firms the validity of the quasistatic approximation. E
also decreases faster with distance, so the field is more
localized. Charge accumulates at both surfaces of the
shell, external and internal, as expected for a conductor
like gold.

Extrinsic size effects are also observed in nanoshells.
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FIG. 4: Electric field (log scale) [(a),(b)] and charge
density distribution [(c),(d)] of nanoshells with the

same ratio f = (6/7)3. (a), (c) ai = 18 nm, ae = 21 nm
for λ = 636 nm; (b), (d) ai = 96 nm, ae = 112 nm for

λ = 582 nm.

σext of two nanoshells with the same ratio f show differ-
ent peak positions. Increasing both internal and external
radius, while keeping the same ratio f , causes the LSPR
peak to redshift and broaden, the same effects observed
in FIG. 1 for nanospheres. We also note the appearance
of a quadrupole peak in the ae = 112 nm curve around
λ ≈ 575 nm, which is still less intense than the dipole
peak at λ ≈ 750 nm. Quadrupolar field and charge den-
sity distributions are seen for the ae = 112 nm case in
FIG. 4 (b), (d) respectively, where quasistatic conditions
do not apply because of the nanoshell size. Since the
height of the quadrupole peak in σext is lower than the
dipole peak, a reduced electric field intensity and charge
density are expected. Comparing FIG. 4 (b) with (a)
and (d) with (c) we observe that this is the case.

C. Nanorod

FIG. 5: Normalized σext of nanorods with different
sizes.

The σext of nanorods with different sizes for an incom-

ing field polarized in the direction of the long axis a is
shown in FIG. 5. We observe that the resonance peak
can be tuned by varying the different nanorod lengths a,
b and c. This result is expected from the polarizability
expression of a nanorod in the quasistatic approximation
(eq. (8)), where the depolarization factor Li that de-
pends on the ellipticity e and thus, on the nanorod size,
controls the resonance peak position. The peak position
is displaced from λ ≈ 550 nm to λ > 900 nm by varying
the lengths a, b, c, and redshifting is stronger for e closer
to unity, i.e. when the ratio b/a is smaller.
Electric field and charge density distribution of a a = 50,
b = c = 10 nm are shown in FIG. 6 (a) and (b) re-
spectively. We observe that the electric field intensity
is larger than in the ae = 21 nm nanoshell, due to the
sharper enhancement of α. Another interesting feature of
nanorods is that the quasistatic regime holds for bigger
sizes if only one of the lengths is enlarged. For a nanorod
with dimensions a, b, c = 120, 20, 20 nm respectively, the
peak is strongly redshifted, but the peak width is still
comparable to those of smaller sizes. However, the peak
is slightly more redshifted than the a, b, c = 70, 10, 10 nm
curve, even though e is closer to 1 in the latter. When
the b and c lengths are enlarged, the peak shows a large
broadening and a blueshift due to e being smaller. There
is no sign of a quadrupole peak in the a, b, c = 120, 20, 20
nm spectrum, but the slightly higher extinction outside
the peak region indicates a deviation from the quasistatic
regime which can be explained by a small contribution
to the extinction by a quadrupolar mode.

FIG. 6: Electric field (log scale) [(a)] and charge
density distribution [(b)] of a nanorod with sizes a = 50

nm, b = c = 10 nm, for λ = 744 nm.

D. Nanorod dimers

FIG. 7 shows σext of nanorod dimers in longitudinal
and transverse alignment, relative to the incoming elec-
tric field polarization. When nanorods are separated
100 nm in longitudinal alignment, the LSPR peak wave-
length coincides with the single nanorod case, at λ = 750
nm (green dashed line in FIG. 7 and black solid line
in FIG. 5). As separation is reduced, a redshifting of
the peak from λ = 750 nm to λ = 782 nm is ob-
served. This behaviour is explained by the hybridiza-
tion model, since two nanorods aligned longitudinally
can form a hybridized bond reducing the energy [10],
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FIG. 7: Normalized σext of nanorod dimers of sizes
a = 50 nm, b = c = 10 nm 10 nm and 100 nm

separation; for longitudinal modes (dashed curves) and
transverse modes. The transverse mode σext has been

multiplied by a factor 100 in order to compare with the
longitudinal mode.

FIG. 8: Electric field (log scale) [(a),(b)] and charge
density distribution [(c),(d)] of nanorod dimers with
sizes a = 50 nm, b = c = 10 nm. (a),(c) Longitudinal

alignment at λ = 782 nm; (b),(d) Transverse alignment
at λ = 512 nm.

thus redshifting the peak position. The transverse mode
(black solid line in FIG. 7) shows a plasmon resonance
peak at λ = 512 nm for a 10 nm separation. The peak
is slightly blueshifted for 100 nm separation (green solid
line), and located at λ = 507 nm. This behaviour is also
explained by the hybridization model [10].
For longitudinal modes, the plasmon coupling produces
a huge enhancement of the electric field in the region
between the nanorods (FIG. 8 (a)), whereas the field
enhancement in the transverse case is inferior by two
orders of magnitude (FIG. 8 (b)), which is expected
from the peak intensity differences in the extinction spec-
trum. Charge density distributions (FIG. 8 (c), (d)))
are both dipolar, consistent with the limit of the qua-
sistatic regime for nanorods and the charge distribution
of a single nanorod shown in FIG. 6 (b).

V. CONCLUSIONS

FDTD simulations have been performed for
nanospheres, nanoshells and nanorods, finding plas-
mon resonance effects in the optical extinction spectrum
peaks. Plasmon resonances cause dipolar field and charge
density distributions in the quasistatic regime, valid for
sizes below 150 nm, and quadrupolar distributions in
bigger structures; as well as electric field enhancement.
The great tunability in plasmonic response of nanoshells
and nanorods, due to the effect of the aspect ratio in
the polarizability, has also been confirmed. Finally,
plasmonic coupling effects in nanorod dimers have been
found to produce very strong electric field enhancement
in the near field.

Acknowledgments

This work was supported by Spanish MINECO
(MAT2015-68772-P,) and the European Union FEDER
funds. I want to thank my advisor Prof. Xavier Batlle
and Dr. Ana Conde for their continuous help and guid-
ance throughout the process of this work. I also want to
thank my parents for their invaluable support.

[1] S.A. Maier, Plasmonics: fundamentals and applications,
(Springer US, 2007, 1st. ed.)

[2] G. Baffou and R. Quidant, Laser & Photonics Reviews,
7: 171-187 (2013).

[3] H. Heidarzadeh et al., Appl. Opt. 55, 1779-1785 (2016)
[4] J. Anker et al. Nature Materials vol. 7, 442-453 (2008).
[5] T. A. Erickson and J. W.Tunnell, in Nanotechnologies

for the Life Sciences, C. S. Kumar (Ed.) (2010).
[6] G. Mie, Ann. Phys., 330: 377-445, (1908).
[7] J.D Jackson, Classical Electrodynamics, (John-Wiley &

Sons, New York 1975, 2nd. ed.)
[8] M. Fox, Optical Properties of Solids (Oxford University

press, Oxford 2010, 2nd. ed.)

[9] Robert L. Olmon et al. Phys. Rev. B 86, 235147, (2012).
[10] P. K. Jain et al., J. Phys. Chem. B, (2006), 110, 18243.
[11] https://www.lumerical.com/tcad-products/fdtd/
[12] K. Yee, IEEE Transactions on Antennas and Propaga-

tion, vol. 14, no. 3, pp. 302-307, (1966).
[13] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370,

(1972).
[14] U. Kreibig & M. Vollmer, Optical properties of metal clus-

ters, (Springer Verlag, Berlin Heidelberg 1995, 1st. ed.)
[15] V. Amendola et al. J. Phys.: Condens. Matter 29 203002,

(2017).

Treball de Fi de Grau 5 Barcelona, June 2018


