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The Newton-Hooke algebras in d dimensions are constructed as contractions of dS(AdS) algebras.
Nonrelativistic brane actions are WZ terms of these Newton-Hooke algebras. The NH algebras appear also
as subalgebras of multitemporal relativistic conformal algebras, SO�d� 1; p� 2�. We construct general-
izations of pp-wave metrics from these algebras.
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I. INTRODUCTION

In order to understand the AdS/CFT correspondence at
string level one must consider sectors of string theory in
which certain degrees of freedom decouple from the rest of
degrees of freedom in suitable limits. Such decoupling
sectors have different asymptotic symmetries compared
to the full theory. The best known example is the BMN
[1] sector of the string theory in AdS5 � S5. The relevant
symmetry of the BMN sector is a super pp-wave algebra,
which is a particular contraction of the su�2; 2j4�, see for
example [2].

Nonrelativistic string theory in flat space [3], see also
[4–6] is another example of a consistent decoupled sector
of the bosonic string theory. The basic idea of the decou-
pling limit is to take a particular nonrelativistic limit such
that only states satisfying a Galilean invariant dispersion
relation have finite energy, while the rest decouple. This
limit has been extended to other relativistic supersymmet-
ric string theories [7,8]. In particular for the case of
AdS5 � S5 we have found the nonrelativistic string theory
in a suitable gauge reduces to a supersymmetric free field
theory in AdS2.

Here we will construct nonrelativistic bosonic algebras
by contracting AdS(dS) algebras. They are generalization
of the Newton-Hooke (NH) algebras [9,10] to the brane
systems. We will apply the nonlinear realization to these
algebras and we will see how it is possible to construct the
nonrelativistic brane actions as WZ terms. This property is
due to the fact that one can construct a closed and invariant
p� 2 form but the associated p� 1 form cannot be writ-
ten in terms of left invariant forms. The p� 2 Eilenberg-
Chevalley cohomology is nontrivial.

We will also see how the NH algebra can be extended
with noncentral charges. It is due to an existence of non-
trivial vector valued 2 form on a representation of the
stability group.
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We will also construct generalization of pp-wave metrics
from these extended algebras. For the case of the ordinary
NH algebra we construct the pp-wave metric [11] and its
generalization with angular momentum, the gyraton [12].
For the NH brane algebras we will see these metrics live in
a space with more than one timelike direction. Related to
this point we will also show that the brane NH algebras in d
dimensions are subalgebras of multitemporal conformal
algebras, SO�d� 1; p� 3�.

The organization of the paper is as follows. In Sec. II we
study the brane NH algebras. In Sec. III we construct the
actions as WZ terms. In Sec. IV we construct the non-
central extended NH algebras. In Sec. V we construct the
generalized pp-wave metrics from these algebras and fi-
nally in Sec. VI we see the algebras are subalgebras of
multitemporal conformal algebras.

II. NEWTON-HOOKE ALGEBRAS

The particle Newton-Hooke algebra NH���� in d dimen-
sions is obtained by contraction of dS(AdS) algebra in a
similar manner as the Galilei algebra is obtained by con-
traction of Poincare algebra [9]. The dS(AdS) algebra is

�Mmn;Mrs� � i��mrMns � �nsMmr � �msMnr � �nrMms�

�Mmn; Pr� � i��mrPn � �nrPm�

�Pm;Pn� � 	
i

R2 Mmn; (1)

where m � 0; 1; . . . ; d� 1, �mn � ��;� . . .��, 	 in the
last commutator corresponds to dS(AdS) and R is the
radius of the dS(AdS) space. It is the isometry group of
the homogeneous space with a constant curvature	R�2. It
is embedded in a d� 1 dimensional space of coordinates
uM, (M � 0; 1; . . . ; d� 1; d) with a constraint

�mnumun � �dd�ud�2 � �ddR2; (2)
-1 © 2006 The American Physical Society
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where �MN � ��;� . . .�; �dd� and �dd � �1 for the dS
and �dd � �1 for AdS space.

In this paper we study the Newton-Hooke algebras
associated with a class of nonrelativistic p� 1 dimen-
sional objects (p-branes) living in the d dimensional
space-time, that we call NH brane algebras and are also
denoted by NH	. These algebras are obtained by a suitable
contraction of the d dimensional dS(AdS) algebra. The
contraction is done by performing the following scaling
on the generators

P� �
1

!
~P�; � � 0; 1; . . . ; p; Pa � ~Pa;

a � p� 1; . . . ; d� 1; M�� � ~M��

M�b � ! ~M�b Mab � ~Mab R � ! ~R;

(3)

where ! is a dimensionless parameter, and we take !!
1. The Greek indices denote the longitudinal coordinates
(� � f0; . . . ; pg) to the brane whereas Latin indices are the
transverse coordinates (a � fp� 1; . . . ; d� 1g) to the
brane. This scaling is suggested by the nonrelativistic limit
of relativistic branes [3–8]. We get for the nonzero com-
mutators [13]

�P�;P�� � 	
i

R2 M��;

�M��; P�� � i����P� � ���P��;

�M��;M��� � i����M�� � ���M�� � ���M��

� ���M���;

(4)

�Mab; Pc� � i��acPb � �bcPa�;

�Mab;Mcd� � i��acMbd � �bdMac � �adMbc � �bcMad�;

(5)

�P�;Pa� � 	
i

R2 M�a;

�M�a; P�� � i���Pa;

�M��;M�c� � i����M�c � ���M�c�;

�M�a;Mbc� � �i��abM�c � �acM�b�:

(6)

The generators P� and M�� form a p� 1 dimensional
dS(AdS) subalgebra (4) while the Pa and Mab form a d�
p� 1 dimensional Euclidean subalgebra (5). If we further
take the limit R! 1we obtain the nonrelativistic Galilean
brane algebras [6].
III. NH BRANE ACTIONS FROM NON-LINEAR
REALIZATIONS

Let us consider the coset NH	=H with the stability
group H � fM��;Mabg. We parametrize the coset element
as
085011
g � g0eiy
aPaeiv

�aM�a : (7)

g0 is an element of dSp�1�AdSp�1� and the corresponding
Maurer-Cartan one form is

�0 � �ig
�1
0 dg0 � e�P� �

1

2
w��M��; (8)

where e� and w�� are dSp�1�AdSp�1� vielbein and spin
connection, the explicit forms depend on the parametriza-
tion of g0. The Maurer-Cartan one form �0 verifies the
Maurer-Cartan equation d�0 � i�0 ^�0 � 0. In compo-
nents it is

de� � w��e
� � 0; dw�� � w��w

�� � 	
1

R2 e
�e�:

(9)

The second equation shows that the longitudinal space has
constant curvature 	R�2.

The total Maurer-Cartan one form, � is

� � �ig�1dg � L�P� � L
aPa � L

�aM�a �
1

2
L��M��

�
1

2
LabMab (10)

where [14]

L� � e�; La � dya � e�v�
a; L�� � w��;

L�a � dv�a � w��v�
a 
 e�

ya

R2 ; Lab � 0:

(11)

These left invariant forms verify the Maurer-Cartan equa-
tion d�� i� ^� � 0, more explicitly,

dL� � L�L�
� � 0;

dLa � L�L�
a � LcLc

a � 0;

dL�� � L��L�� 

1

R2 L
�L� � 0;

dL�a � L��L�a � L�cLca 

1

R2 L
�La � 0;

dLab � LacLc
b � 0:

(12)

We can construct the nonrelativistic Newton-Hooke
brane action as a WZ term of the NH algebra. There is a
closed p� 2 form invariant under H using the MC one
form L’s in (11) [15]

�p�2 �
��1�p�1

p!
��0�1;...;�p

L�0 . . .L�p�1L�paLa: (13)

The H invariance is manifest and the closure is shown by
using the Maurer-Cartan Eqs. (12). There exists a p� 1
form �p�1 such that �p�2 � d�p�1,
-2
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�p�1 � �
��0�1;...;�p

p!
e�0 . . . e�p�1

�
v�p

ady
a

� e�p

�
v�av

�a

2�p� 1�
	
yay

a

2R2

��
: (14)

The p� 1 form (14) is not expressible in terms of the left
invariant one form L’s in (11). Therefore we have a non-
trivial p� 2 cohomology group in the sense of Eilenberg-
Chevalley.

By taking the pullback of the p� 1 form (14) on the
world sheet;

SWZ � T
Z

��p�1 � T
Z
dp�1�L; (15)

where T is the nonrelativistic p-brane tension and �j�j �
0; 1; . . . ; p� are the parameters of the worldvolume. ��p�1 is
given by

��p�1 � e
�
v�ae�j@jya�

�
v�av

�a

2
	
�p� 1�

2R2 yaya
��
dp�1�

�Ldp�1�; (16)

where e�j is the inverse of the p� 1-bein ej
� and e �

det�ej
��. Since v�a are nondynamical Goldstone fields we

can express them using their equations of motion as

v�a � e�
j@jya � 0; (17)

which are equivalent to impose H invariant constraints

La � 0; (18)

in other words the inverse Higgs mechanism [16].
In terms of the dynamical variables ya and x� the

Lagrangian becomes

L �

�������
�g
p

2

�
�gij@iya@jya 	

�p� 1�

R2 yaya
�
; (19)

where gij is the induced metric of the longitudinal space
dSp�1�AdSp�1�

gij � ���ei
�ej

� � ~g���x�@ix�@jx�;

gijgjk � �ik; g � detgij � �e2: (20)

In the static gauge xj � �j the Lagrangian describes a set
of free scalar fields ya of mass 2 � 
 p�1

R2 in the
dSp�1�AdSp�1� space with the metric ~g���x�.

In the limit R! 1 we recover the Galilean result [6]
since in that case the dS(AdS) algebra (1) goes to the
Poincare algebra and the Newton-Hooke algebra (4)–(6)
becomes the Galilean algebra.

The Lagrangian (19) obtained here as a WZ term can
also be obtained from the relativistic brane action in the
dS(AdS) [17] by a nonrelativistic limit. In this limit the
coordinates are rescaled as
085011
X� � !x�; Xa � xa; R � ! ~R; T � !1�p ~T:

(21)

In the limit !! 1 of the Lagrangian there appears a
divergent surface term but can be compensated by the
presence of the B-field [3]. The resulting finite
Lagrangian becomes one in (19).
IV. NON-CENTRAL EXTENSIONS OF
NEWTON-HOOKE ALGEBRAS

Here we want to study the extensions of the NH algebra
(4)–(6). We look for closed 2-forms constructed from the
left invariant one-forms (11) that transforms nontrivially
under the stability group H, in particular, under M�� [19].
As we will see shortly these forms will be responsible for
the existence of noncentral extensions of the NH algebra.

Let us consider a vector valued 2-form LcLc
� [21]. This

form is not closed but we have

d�LcLc
��  �L�L�

cLc
�: (22)

where  means up to terms depending on L��, Lab, in
other words L��  Lab  0. If we introduce a new tensor
valued one form L��z verifying

dL��z � L�cLc�  0 (23)

we can see that the 2-form LcLc� � L�Lz�� is closed.
This condition indicates locally the existence of a 1-form
L�z such that

dL�z � LcLc� � L�Lz��  0: (24)

Now we take into account the tensor properties of Lz�� and
L�z under M��. The Eqs. (23) and (24) become

dL�z � L�Lz�� � LcLc� � L��Lz� � 0; (25)

dL��z � L�cLc� � L��Lz�� � Lz��L��



1

R2 �L
�Lz

� � L�Lz
�� � 0 (26)

that together with (12) define a free differential algebra.
If we introduce the generators Z� and Z�� dual to the

forms L�z and L��z we have the following commutation
relations

�Pa;M�b� � i�abZ�; �M�a;M�b� � i�abZ�� (27)

and

�P�; Z�� � 	i
1

R2 Z��; Z�� � �Z��

�P�; Z��� � �i����Z��;
(28)

�Z�;M��� � �i����Z��;

�Z��;M��� � �i����Z��� � i����Z���:
(29)
-3
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Notice we have a noncentral extension of the original
Newton-Hooke algebra, in particular Z’s do not commute
with P�, see Eq. (28). L�z and L��z are left invariant
Maurer-Cartan one forms of the above algebra if we in-
troduce the group parameters c� and c�� with the gener-
ators Z� and Z��. They are

L�z � dc� � w��c� � e�c�� � v�adya �
1

2
e�v�av�a



1

2
e�
yaya
R2 ;

L��z � dc�� � w���c�
�� 


e��c��

2R2 	
1

2
e��v��a

ya
R2

�
1

2
v��adv

��a: (30)

At the level of the coset this implies to consider

g � g0e
iyaPaeiv

�aM�aeic
�Z�e�i=2�c��Z�� : (31)

The noncentral algebra acts in a natural way in a bosonic
‘‘super’’ space fx�; ya; v�a; c�; c��g.

In Sec. III we have considered the unextended NH
algebra and we have constructed an invariant closed p�
2 form �p�2, (13) from L’s. The potential �p�1 in (14)
was not expressed in terms of L’s and was cohomologi-
cally nontrivial. The resulting Lagrangian was WZ
Lagrangian pseudo invariant under the NH.

In the extended algebra instead we can construct an
invariant p� 1 form as

�0p�1 �
��0�1;...;�p

p!
L�0 . . .L�p�1L

�p
z : (32)

�0p�1 is an invariant p� 1 form and satisfies

�p�2 � d�0p�1 (33)

where �p�2 is given in (13). The �p�2 is cohomologically
trivial in the extended algebra. �0p�1 differs from �p�1 in
(14) by a locally exact form

�0p�1 � �p�1 � d
�
��1�p

p!
��0;...;�p

L�0 . . .L�p�1c�p

�
:

(34)

The Lagrangian is the pullback of �0p�1 which is the one
associated with �p�1 plus a surface term proportional to
c� and it is invariant under the extended NH algebra due to
appropriate transformations of c�.

V. GENERALIZED PP-WAVE METRIC AND
EXTENDED NH ALGEBRA

Here we construct a nondegenerate relativistic metric
from the generators of extended NH algebra by considering
the dual forms (11) [22]

Let us first consider the case of the NH	 particle case
(p � 0). We consider the quadratic H invariant combina-
085011
tions of the generators

C � �2Z0P0 � P2
a �

1

R2 M
2
0a: (35)

The associated invariant metric is given by

ds2 �

�
�2dx0dc0 	 �dx0�2

�ya�2

R2 � �dya�
2

�

�

�
d�Rv0a� 
 dx0 y

a

R

�
2
: (36)

It is the metric of a pp-wave with angular momenta, the
gyraton [12,23,24], note that x0, c0 are lightlike coordi-
nates and @c is a covariantly constant null Killing vector.

The ordinary pp-wave metric is obtained by considering
the first term of (36). The relation among the pp-wave
metric and the particle NH algebra was studied in
[11,25]. This result agrees with the fact that the pp-wave
algebra in d� 1 dimensions is isomorphic to a central
extended NH algebra in d dimensions. Note that we have
obtained a relativistic pp-wave metric from an extended
nonrelativistic algebra.

In the case of the NH brane algebra the generalization of
the pp-wave metric is obtained by considering the qua-
dratic H invariant combination of the generators

C � 2���P�Z� � PaPa (37)

the metric is

ds2 � 2L�L
�
z � LaLa: (38)

Using (11) and (30) we have

ds2 � 2e��Dc�
� 
 e�e

� �ya�
2

R2 � �dya�
2; (39)

where e�, !�� are AdSp�1 vielbein and spin connection,
�Dc�� � dc� �!��c� is the covariant derivative. Note
that this metric contains p� 1 covariantly constant null
vectors @c� , therefore this metric lives in a space with more
than 1 times.
VI. EXTENDED NH ALGEBRAS AS
SUBALGEBRAS OF SO�d� 1; p� 2�

The ordinary particle Galilei group in d dimensions and
its central extension, the Bargmann algebra, are a subgroup
of Poincaré group in d� 1 dimensions.

�Bargmann�d � �Poincare�d�1:

To see this fact we introduce the light cone indices 	

A	 �
1���
2
p �Ad 	 A0�: (41)

Their generators are identified with those of Poincare gen-
erators in d� 1 dimension as
-4
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H � P�; Ka � M�a; Z � P�;

Mab; �a � 1; 2; . . .d� 1�;
(42)

where H and Ka are energy and boost generators in the
Galilei algebra and Z is the central charge.

For the particle NH algebras an analogous construction
can be done where the role of the Poincare group is taken
by the conformal group SO�d� 1; 2�. The group is linearly
realized in d� 3 dimensional space with metric �MN �
��;� . . .�;��, (M;N � f0; 1; . . . ; d; d� 1; d� 2g). It is
useful to introduce two lightlike indices

A	 �
1���
2
p �Ad 	 A0�; A	0 �

1���
2
p �Ad�1 	 Ad�2� (43)

so that the nonzero components of the metric are

��� � ��0�0 � 1; �ab � �ab;

�a; b � 1; . . . ; d� 1�:
(44)

The NH algebras, NH	, are subalgebras of so�d� 1; 2�
whose generators are expressed in terms of so�d� 1; 2�
generators MMN as

P0 �
1

R
�M�0� 	M�0��; Pa �

1

R
Ma�;

Ka �M�0a; Mab �Mab; Z �
1

R
M�0�:

(45)

In the case of the NH	 algebras for general p-branes we
consider the ‘‘multitemporal’’ conformal group in d� 1�
p dimensions, i.e., SO�d� 1; p� 2�. We introduce p� 2
sets of lightlike vectors �	;	0; � � � ;	p� with ��� �
�����

� 1; �� � 0; . . . ; p�. The brane NH	 generators
satisfying extended algebra (4)–(6) and (27)–(29) are
given by

P� �
1
~R
�M���

	M���
�; Pa �

1
~R
Ma�

M�� �M����
�M����

; M�a �M��a;

Mab �Mab; Z� �
1
~R
M���

; Z�� �M����
:

(46)

Summing up we have shown that the extended NH
groups for p-branes in d dimensions are subgroups of
multitemporal relativistic conformal groups in d� p� 1
dimensions,

�extended NH�d � �SO�d� 1; p� 2��d�p�1: (47)
VII. SUMMARY AND DISCUSSIONS

We have constructed NH	 p-brane algebras in d dimen-
sions as contractions of dS(AdS) algebras. Nonrelativistic
brane actions are constructed as WZ terms of these alge-
bras since the p� 2 Eilenberg-Chevalley cohomology
085011
group is nontrivial. These bosonic algebras have noncen-
tral extensions due to the existence of a nontrivial vector
valued 2 form on a representation of the stability group.
These algebras appear also as subalgebras of a multitem-
poral relativistic conformal algebras, SO�d� 1; p� 2�.

Finally we have constructed a generalization of the pp-
wave metric from quadratic H invariant combinations of
the generators. For the case of NH brane algebras we have
seen that these metrics lives in spaces with more than one
time. Since extended NH algebras appear as an special
limit of string theory, it will be interesting to see if one
could give some physical meaning to these space with
more than one time. It will be also interesting to see the
relation with the two time physics, see for example [27].
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APPENDIX: METRICS FROM NONLINEAR
REALIZATIONS

Let us consider a spacetime group G with an unbroken
subgroup H. We split the Lie algebra generators G into
GI 2 G �H and Gi 2H , where GI is generator G
which does not belong to the stability group H. We con-
sider the coset G=H with following parametrization

g � eiGIx
I

(A1)

where xI represent all the Goldstone fields and GI all the
broken generators.

The generatorsGÎ of the whole groupG transform under
the action of G as the adjoint representation of the group

GÎ ! G0
Î
� e�i�

K̂GK̂GÎe
i�K̂GK̂ � �

Î
Ĵ���GĴ;

�
Î
Ĵ��� � e�

K̂f
K̂ Î

Ĵ

;
(A2)

where Î � �I; i�, �K̂’s are the transformation parameters,
f
K̂ Î

Ĵ are the structure constants.
The transformation of a coset element is

g! g0 � g0gh
�1; g0 2 G; h 2 H: (A3)

where h�g0; x� is a compensating H transformation and
depends on x as well as g0 generally. The Maurer-Cartan
one form transforms as

� � �ig�1dg! �0 � h�h�1 � ihdh�1: (A4)
-5
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which implies

�0G=H � h�G=Hh�1 �0H � h�Hh�1 � ihdh�1:

(A5)

Taking into account that

� � �ig�1dg � GIL
I �GiL

i (A6)

we have

L0J � LI�I
J�	�:

L0i � LI�I
i�	� � Lj�j

i�	� � ��ihdh�1�i
(A7)

where 	 2 H is the induced H transformation and in
general depends also on g.

Suppose we have a quadratic generator invariant under
H constructed from GI’s

C � gIJGIGJ: (A8)

The invariance of C under H means

gIJ�I
K�	��J

L�	� � gKL; (A9)
085011
and

gIJ�I
k�	��J

L�	� � 0; gIJ�I
k�	��J

‘�	� � 0

(A10)

for any H transformation 	i. If gIJ is not singular the first
of above equation means �I

k�	� � 0 and H is the auto-
morphism group. Note C is not necessarily a Casimir
operator of G. When the gIJ in the (A8) is not singular
(nondegenerate) we can construct G invariant metric using
its inverse; gIJ

ds2 � gIJL
ILJ: (A11)

Actually it is invariant as

gIJL
ILJ ! gIJL

0IL0J � gIJL
K�K

ILL�L
J � gIJL

ILJ:

where we have used

gKL�K
I�L

J � gIJ ! gKL�I
K�J

L � gIJ: (A13)
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