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Abstract: We consider the confined hydrogen atom (CHA) in position and momentum space.

To this end, we calculate numerically the wavefunctions and energies for various confinement radii

and quantum numbers. We show breaking of degeneracy in CHA for n states. In the limit of an

infinite confinement radii the well-known results for the non-confined hydrogen atom are recovered.

In addition, the static polarizability and pressure are obtained.

I. INTRODUCTION

Since quantum physics was born, one of its biggest

achievements was to understand and compute the

spectrum of the hydrogen atom. Later in the mid-

1930s Michels [1, 2] thought about how confinement

due to extreme pressure would affect its wavefunc-

tion. However, this problem could not be solved an-

alytically, and therefore computational methods are

needed. In recent years, owing to technological ad-

vances, this topic has gained renewed interest in the

context of semiconductor quantum dots [1], for exam-

ple.

In this work we will study the wave functions and

energies of the confined hydrogen atom (CHA) with

an infinite barrier. To do so, we developed a program

which solves numerically the radial Schrödinger equa-

tion of the CHA for an arbitrary confinement radii,

and for different combinations of the quantum num-

bers n and `. We will compare our results with those

reported in reference [2]. In addition, we will evalu-

ate the wave functions in momentum space using a

Fourier Transform program.

Some authors have addressed the CHA with a pen-

etrable wall [3–5]. However, this more complex situa-

tion is beyond the scope of the present work.

We will use Hartree atomic units h̄ = e = me = 1

unless indicated otherwise. The Bohr radius a0 ≈
0.529 Å is the unit of length and p0 = h̄/a0 is the

unit of linear momentum. The unit of energy is the

hartree, Eh ≈ 27.2 eV.

II. THEORY

In this section we will discuss some theoretical

points which will provide us with analytical expres-

sions to be used later on.

From the atomic physics course we know that for

a central potential V (r) the wavefunction ψn`m in

spherical coordinates is the product of the reduced ra-

dial wavefunction Pn` and a spherical harmonic Y`m,

ψn`m(r) = Rn`(r)Y`m(r̂) =
Pn`(r)

r
Y`m(r̂), (1)

where r̂ means angular directions in position space.

The radial Schrödinger equation for the potential V (r)

is
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To obtain the wave function in momentum space we

need to evaluate the Fourier Transform

ψ̃n`m(p) =
1

(2π)
3
2

∫
d3r exp(−ip·r)ψn`m(r). (3)

To compute it we replace the exponential by its ex-

pansion

exp(ip·r) = 4π

∞∑
λ=0

iλ jλ(pr)

λ∑
µ=−λ

Y ∗λµ(p̂)Yλµ(r̂), (4)

where jλ are spherical Bessel functions. Now using

the orthonormality property of the Y`m functions we

compute in (3), using (1) and (4), we get

ψ̃n`m(p) = (−i)` P̃n`(p)Y`m(p̂) (5)

with

P̃n`(p) =

√
2

π

∫ ∞
0

j`(pr)Pn`(r) r dr. (6)

The phase (−i)` in equation (5) is irrelevant because

it disappears in |ψ̃n`m(p)|2. So if we know the wave-

function in position space using equations (5) and (6)

we know it in momentum space. An alternative way

to obtain these results can be done solving directly the

Schrödinger equation in momentum space [5], in the

case of the ordinary hydrogen atom. Both solution

methods involve Gegenbauer polynomials.

Finally, in this section, we are going to solve the

Schrödinger equation for the CHA, whose potential

for no penetrable walls is

V (r) =

{
− 1
r if r ≤ r0,

+∞ if r > r0,
(7)
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where r0 is the confinement radius. In order to solve

equation (2) with this potential we make the substi-

tution

β =
1√
−2E

, ρ =
2r

β
. (8)

Now we make the Ansatz

R(ρ) = ρ` e−ρ/2 F (ρ). (9)

Inserting equations (7), (8) and (9) in equation (2) we

get

ρ
d2F

dρ2
+ (2`+ 2− ρ)

dF

dρ
− (`+ 1− β)F = 0. (10)

In order to have finite values of the wavefunction

at the origin, F should be a confluent hypergeometric

function,

F (ρ) = 1F1(`+ 1− β; 2`+ 2; ρ). (11)

In the case of the CHA we demand another boundary

condition. At r0 the wavefunction must vanish, so we

impose the following condition

1F1(`+ 1− β; 2`+ 2; ρ0) = 0, (12)

where ρ0 = 2r0/β. If r0 is finite, 1F1 is not analytical

so we have to use a computational method. We will

solve numerically equation (12) in the next section.

Moreover, as wavefunction in position space is not an-

alytical neither in momentum space will be. Hence we

will solve equation (6) numerically.

III. COMPUTER PROGRAMS

In this section we will explain the two programs that

were developed to obtain the wavefunction in CHA

conditions: one to solve equation (12) and the other

to solve (6), as both are not, in general, analytical.

In the first program we created the hypergeometric

function using a recurrence relation. The definition of

our function is

1F1 =

∞∑
k=0

(1− β + `)k
(2`+ 2)k

(2r/β)k

k!
≡
∞∑
k=0

Ak, (13)

where (α)k ≡ Γ(α + k)/Γ(α) are Pochhammer sym-

bols. From this equation we get the recurrence rela-

tion

Ak+1

Ak
=

(1− β + `+ k)(2r0/β)

(2`+ 1 + k)(k + 1)
. (14)

Making a loop using (14) we can compute hypergeo-

metric functions starting from A0 = 1 with an error

of 10−6. Now we have to solve equation (12). We will

use the Regula-Falsi method to find a β that solves

equation (12). With β and 8 we get the Energy, and

with 9 and 1 we obtain the wavefunction for CHA.

Exploring different ranges on Regula-Falsi we find all

states for a given `. The first root corresponds to the

n = 1 state and successive roots are the excited states

[1]. Then, we compare these energies with [2], which

has really high precision. They fit perfectly within our

tolerance.

The second program is responsible for transform-

ing the wavefunction from position space to momen-

tum space. It reads Pn`(r) delivered by the first pro-

gram. Then it uses linear interpolation to obtain more

points. Finally it uses equation (6) to get Pn`(p), tak-

ing care of the indeterminacy sin(pr)/r when r → 0.

To do the integral we adopted Simpson’s method with

105 points. In order to convince ourselves that our

program worked correctly we checked with the ana-

lytical expressions of Pn`(r) for the non-confined hy-

drogen atom. Using equation (6) we obtain the re-

duced radial distribution function in momentum space

of them. Then we checked if it fits with our program.

Here are some examples that can be found in reference

[5]

P̃10(p) =
25/2√
π

1

(p2 + 1)2
, (15)

P̃20(p) =
32√
π

4p2 − 1

(4p2 + 1)3
, (16)

P̃21(p) =
128
√

2√
3π

p

(4p2 + 1)3
, (17)

P̃30(p) =
108
√

2√
3π

81p4 − 30p2 + 1

(9p2 + 1)4
. (18)

As we see in figure 1 we represented correctly Pn`
in momentum space for some analytical functions.

Which means that our program does accurately the

Fourier Transform.

IV. RESULTS AND DISCUSSION

In this section we show some numeric and graphic

results calculated with our programs and [2] in CHA

conditions as some interesting physical properties.

In table I we display some energies obtained with

our program for different values of r0. Our tolerance

for the energy is 10−6.

As we can see in table I as our r0 decreases energies

increases. In addition our results for negatives en-
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FIG. 1: Reduced radial wavefunctions in momentum space

for the non-confined hydrogen atom for 1s, 2s, 3s and 2p

obtained using our program. They fit perfectly equations

15 to 18.

TABLE I: Energies of low states for different values of r0.

Negative energies are computed using our program and

possitives are extracted from [2].

r0 1s 2s 2p

2 −0.125 000 3.327 509 1.576 019

2.5 −0.334 910 1.865 480 0.851 978

3 −0.423 967 1.111 684 0.481 250

4 −0.483 265 0.420 236 0.143 527

5 −0.496 417 0.141 254 0.007 594

6 −0.499 277 0.012 725 −0.055 555

7 −0.499 863 −0.051 260 −0.087 479

8 −0.499 996 −0.084 739 −0.104 450

9 −0.499 999 −0.102 835 −0.113 727

10 −0.483 265 −0.112 806 −0.118 859

∞ −0.500 000 −0.125 000 −0.125 000

ergies matches perfectly with the values reported by

[2]. Our program can not compute positive energies

as β would be imaginary. These energies will be taken

from [2]. Furthermore, energies become positive. In

the non-confined hydrogen atom bound-state energies

are all negative and between [− 1
2 , 0] as n increases be-

cause the potential is Coulombic for all r. But in the

CHA as seen in equation (7) our potential has an infi-

nite barrier. This allows the existence of bound states

with positive energies.

As a consequence of equation (12) all wavefunctions

in position space go to 0 at r = r0. In addition as

the wavefunctions does not extend to infinity we see

that in momentum space our wavefunction is smaller

near p = 0. This can be understood easily from the

properties of Fourier transform.

Let us show now some graphics of Pn`(r) and P̃n`(p)

comparing them for r0 with r0 =∞.
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FIG. 2: Comparing of r0 = 3 with r0 = ∞ for 1s in

position space.
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FIG. 3: Comparing of r0 = 3 with r0 = ∞ for 1s in

momentum space.

Using computed negatives energies with our pro-

gram and positives from [2], we will show energy evo-

lution depending on r0 in figure 8.

From figure 8 we can extract interesting properties

for CHA. As r0 grows, the energy approaches to or-

dinary hydrogen atom energies: E = − 1
2n2 . In addi-

tion, states with the same n now have different ener-
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FIG. 4: Comparing of r0 = 7 with r0 =∞ for 2s.
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FIG. 5: Comparison of r0 = 7 with r0 = ∞ for 2s in

momentum space.

gies. We have broken the accidental degeneracy. Also

En,`+1 < En,` as expected owing to the centrifugal

barrier.

Now we will compute the force per unit area re-

quired to confine the hydrogen atom to r0. This is

called electronic pressure [6] and is given by

P (r0) = − 1

4πr20

∂E(r0)

∂r0
=

1

4πr30

(
2E − 〈V 〉

)
, (19)

where we have used the Virial Theorem.

Next we are going to compute the static polarizabil-

ity

α =
4

9
〈r2〉2. (20)
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FIG. 6: Comparing of r0 = 7 with r0 =∞ for 2p.
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FIG. 7: Comparison of r0 = 7 with r0 = ∞ for 2p in

momentum space.

In table II we list P (r0) and α for different values of

r0 for the 1s ground state, which results fit with [3–5].

As could be anticipated, we clearly see that as r0 is

reduced we need more pressure to confine the atom.

Moreover, the atom is harder to polarize as it becomes

more confined. At r0 = ∞ we recover polarizabilty

obtained in the atomic course and pressure, obviously,

is 0.

Finally, we will mention that CHA can be treated

using an approximation method which is linear in en-

ergy[1]. There ground-state energy correction can be

computed numerically for r0 � 1, see [1], as

∆E0(r0) ≈ 8r0(r0 − 1) e−2r0 . (21)
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of 1/r0.

TABLE II: Pressure and polarizability for some r0 at

ground state 1s

r0 P (106 atm) α (10−24 cm3)

2 3.7115 0.05040

2.5 1.1104 0.10284

3 0.2724 0.17386

4 0.0368 0.33946

5 0.0052 0.47479

6 0.0010 0.54909

10 0.0000 0.59253

∞ 0.0000 0.59274

With this equation we can approximate the pressure

when r0 � 1 as

P (r0) ≈ 4e−2r0

π
[1− 2

r0
+

1

r20
] (22)

V. CONCLUSIONS

• We found a way to treat with CHA and com-

pute negative energies fitting with [2] for differ-

ent states changing r0.

• We passed position wave function to momentum

space and graphic both as shown in figures 2-7.

• We have seen that confinement breaks acciden-

tally degeneracy and En,l+1 < En,l.

• We otained same results as [3–5] for pressure

and polarizabily.

• We demonstrate higher electronic pressure

means more confinement but less polarizability.

• A possible continuation of this article would be

study potential with penetrable walls [3–5] or

state transitions [7].
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Fernández-Varea to support and help me developing

this project. I also wish to thank all the teachers I

had at university and high school, for teaching me

things that helped me to understand some maths and

physics. Finally, I am grateful to my family and

friends to encourage me during my studies.

[1] D. Djajaputra and B. R. Cooper, Hydrogen atom in a

spherical well: linear approximation, European Journal

Physics 21 (2000) 261–267.

[2] N. Aquino, G. Campoy, and H. E. Montgomery, Highly

accurate solutions for the confined hydrogen atom, In-

ternational Journal of Quantum Chemistry 107 (2007)

1548–1558.

[3] E. Ley-Koo and S. Rubinstein, The hydrogen atom

within spherical boxes with penetrable walls, Journal

of Chemical Physics 71 (1979) 351–357.

[4] H. E. Montgomery Jr. and K. D. Sen, Dipole polariz-

abilities for a hydrogen atom confined in a penetrable

sphere, Physics Letters A 376 (2012) 1992–1996.

[5] B. H. Bransden and C. J. Joachain, Physics of Atoms

and Molecules, 3rd edition, Appendix 5.

[6] H. E. Montgomery Jr., Variational perturbation treat-

ment of the confined hydrogen atom, European Journal

of Physics 32 (2011) 1275–1284.

[7] S. Goldman and C. Joslin, Spectroscopic Properties of

an Isotropically Compressed Hydrogen Atom, Journal

of Chemical Physics 96 (1992) 6021–6027


