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QCD phenomenology of static sources and gluonic excitations at short distances
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New lattice data for thePu and Su
2 potentials at short distances are presented. We compare perturbation

theory to the lower static hybrid potentials and find good agreement at short distances, once the renormalon
ambiguities are accounted for. We use the nonperturbatively determined continuum-limit static hybrid and
ground state potentials at short distances to determine the gluelump energies. The result is consistent with an
estimate obtained from the gluelump data at finite lattice spacings. For the lightest gluelump, we obtain
LB

RS(n f52.5r 0
21)5@2.2560.10(latt.)60.21(th.)60.08(LMS)#r 0

21 in the quenched approximation withr 0
21

'400 MeV. We show that, to quote sensible numbers for the absolute values of the gluelump energies, it is
necessary to handle the singularities of the singlet and octet potentials in the Borel plane. We propose to
subtract the renormalons of the short-distance matching coefficients, the potentials in this case. For the singlet
potential the leading renormalon is already known and related to that of the pole mass; for the octet potential
a new renormalon appears, which we approximately evaluate. We also apply our methods to heavy-light
mesons in the static limit and from the lattice simulations available in the literature we obtain the quenched

resultL̄RS(n f52.5r 0
21)5@1.1760.08(latt.)60.13(th.)60.09(LMS)#r 0

21. We calculatemb,MS(mb,MS) and ap-
ply our methods to gluinonia whose dynamics are governed by the singlet potential between adjoint sources.
We can exclude nonstandard linear short-distance contributions to the static potentials, with good accuracy.

DOI: 10.1103/PhysRevD.69.094001 PACS number~s!: 12.38.Bx, 12.38.Cy, 12.38.Gc, 12.39.Hg
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I. INTRODUCTION

In recent years, we have witnessed growing interest in
physics of gluelumps and static hybrid potentials. In ma
cases this has been driven by increasingly reliable lat
simulations of their properties@1–7#. These results expos
models of low energy QCD to stringent tests and theref
enhance our understanding of the underlying dynamics.
short distance physics of the static hybrid potentials is
particular importance. In this region, hybrids and gluelum
are intimately related and well suited to investigate the in
play between perturbative and non-perturbative physics
short distancesr, one is faced with widely separated scale
1/r @LQCD. In such situations, effective field theorie
~EFTs! are particularly useful since they enable the phys
associated with the different scales to be factorized in a v
efficient and model independent way. One EFT designe
deal with the kinematical case of interest to us correspo
to potential nonrelativistic QCD~pNRQCD! @8# in the static
limit @9#.

In Ref. @9# the gluelumps and the short distance regime
the static hybrids were studied within this EFT framewo
and general features identified. Some results known from
past @5,10–13# were recovered within a unified framewor
and in some cases extended.

One can go beyond this analysis and use lattice data
the knowledge of the~perturbative! octet potential to obtain
numerical values for gluelump masses in a particu
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scheme. However, analogously to the situation with the st
singlet potential, the convergence of the perturbative se
of the octet potential does not appear very promising. Thi
a general problem when different scales are factorized,
in particular perturbative from non-perturbative ones. T
bad convergence is also related to the problem of factoriz
non-perturbative quantities, without defining their perturb
tive counterparts@14#, and is usually believed to be due t
the existence of singularities in the Borel transform of t
perturbative quantity. These singularities appear to be du
scales of ordere2n3 ~the typical scale of the perturbativ
quantity! in an n-loop calculation. In Ref.@15# one of the
present authors proposed that, since these singularities
related to energy scales much lower than the ones that
supposedly included in the perturbative object, they sho
be subtracted from it and introduced in the matrix eleme
of the effective theory. This program has been worked out
the pole mass and the static singlet potential@15,16#. Here
we apply the same approach to the static octet potential. T
will allow us to determine absolute values for the gluelum
masses from the spectrum of the static hybrids, as well a
study up to which scale one can use perturbation theor
describe hybrid potentials.

This paper is organized as follows. In Sec. II we will wo
out the role of gluelumps in pNRQCD, and how gluelum
and hybrid potentials are interrelated. In Sec. III we will th
sketch how our lattice data have been obtained, before
cussing and classifying renormalons and power correcti
in the continuumMS scheme as well as in a lattice scheme
Sec. IV. In the same section we will also generalize
renormalon subtracted (RS) scheme of Ref.@15# to the case
of the octet potential and discuss the scale dependenc
©2004 The American Physical Society01-1
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Sec. V we will obtain the gluelump masses in the RS sche
and relate these results to the lattice scheme. We will c
pare to previous literature and predict the gluelump sp
trum. In Sec. VI we will determine the binding energy
static-light mesons as well as the bottom mass, before
discuss generalizations to and relations with adjoint pot
tials, gluinonium and other objects with relevance to sho
distance QCD in Sec. VII.

II. HYBRID POTENTIALS AND GLUELUMPS

We discuss the relationship between hybrid potentials
gluelumps at short distances. First we consider the EFT
ture, before we discuss the symmetries that are relevan
the non-perturbative case. Finally we compare these ex
tations to lattice data.

A. pNRQCD and gluelumps

The pNRQCD Lagrangian at leading order in 1/m and in
the multipole expansion reads@8,9#

LpNRQCD5E d3r d3R Tr@S†~ i ]02Vs!S1O†~ iD 02Vo!O#

2E d3R
1

4
Fmn

a Fmna1O~r !. ~1!

All the gauge fields in Eq.~1! are evaluated inR and t, in
particular Fmna[Fmna(R,t) and iD 0O[ i ]0O
2g@A0(R,t),O#. The singlet and octet potentialsVi , i
5s,o are to be regarded as matching coefficients, which
pend on the scalenus separating soft gluons from ultraso
ones. In the static limit ‘‘soft’’ energies are ofO(1/r ) and
‘‘ultrasoft’’ energies are ofO(as/r ). Notice that the hard
scalem plays no role in this limit. The only assumption mad
so far concerns the size ofr, i.e. 1/r @LQCD, such that the
potentials can be computed in perturbation theory. Also n
that throughout this paper we will adopt a Minkowski spac
time notation.

The spectrum of the singlet state reads

Es~r !52mOS1Vs~r !1O~r 2!, ~2!

wheremOS denotes an on-shell~OS! mass. One would nor
mally apply pNRQCD to quarkonia and in this casemOS
represents the heavy quark pole mass. For the static hyb
the spectrum reads

EH~r !52mOS1Vo~r !1LH
OS1O~r 2!, ~3!

where

LH
OS[ lim

T→`

i
]

]T
ln^Ha~T/2!f~T/2,2T/2!Hb~2T/2!&.

~4!

f~T/2,2T/2![f~T/2,R,2T/2,R!
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5P expH 2 igE
2T/2

T/2

dtA0~R,t !J ~5!

denotes the Schwinger line in the adjoint representationH
represents some gluonic field, and P represents the pat
dering prescription; for examples see Table IV in Sec. V

Equation~3! allows us to relate the energies of the sta
hybridsEH to the energies of the gluelumps,

LH
OS5@EH~r !2Es~r !#2@Vo~r !2Vs~r !#1O~r 2!. ~6!

This equation encapsulates one of the central ideas of
paper. The combinationEH2Es is renormalon-free in pertur
bation theory@up to possibleO(r 2) effects#, and can be cal-
culated unambiguously non-perturbatively: the ultravio
~UV! renormalons related to the infrared~IR! renormalons of
twice the pole mass cancel each other. However,LH contains
an UV renormalon that corresponds to the leading IR ren
malon ofVo .

The shapes~of some! of the EH(r ) have been computed
on the lattice, for instance, in Refs.@1–6#. On the other hand
the values of~some! LH have also been computed within
variety of models as well as in lattice simulations@12,17#.
Consistency would require that the values ofLH obtained
from EH2Es and the values ofLH directly obtained from
gluelump computations should agree. This will be checked
Sec. V B.

Gluelump states are created by a static source in the o
~adjoint! representation attached to some gluonic content~H!
such that the state becomes a singlet under gauge tran
mations. This is what would happen to heavy gluinos in
static approximation. Hence sometimes gluelumps are
referred to as gluinoballs or glueballinos in the literatu
Without further information, their energy is only fixed up t
a global constant. Only the energy splittings between diff
ent states have well defined continuum limits in lattice sim
lations. In lattice regularization at a lattice spacinga the
normalization ambiguity is reflected in a linear divergen
}a21 while in dimensional regularization one encounters
UV renormalon. In the HQET~heavy quark effective
theory!, picture of a heavy-light meson one faces a simi
problem. In this situation one also has a static source~in the
fundamental representation in this case!, which has to be
attached to some light-quark~and gluonic! content to be-
come a singlet under gauge transformations. The binding
ergyL̄ is again only defined up to a global constant@18# and
only its sum with the pole mass is unambiguous:

MB5mb,OS1L̄OS1O~1/mb!. ~7!

We will investigate this situation in Sec. VI.

B. Symmetries of hybrid potentials and gluelumps

The spectrum of open QCD string states can be co
pletely classified by the quantum numbers associated w
the underlying symmetry group, up to radial excitations.
this case, these are the distance between the end points
1-2
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gauge group representation under which these end po
transform~in what follows we consider the fundamental re
resentation!, and the symmetry group of cylindrical rotation
with reflectionsD`h . The irreducible representations of th
latter group are conventionally labeled by the spin along
axisL, whereS,P,D refer toL50,1,2, respectively, with a
subscripth5g for gerade~even! PC51 or h5u for un-
gerade~odd! PC52 transformation properties. AllL>1
representations are two dimensional. The one-dimensionS
representations have, in addition to theh quantum number, a
sv parity with respect to reflections on a plane that includ
the two end points. This is reflected in an additional6 su-
perscript. The state associated with the static singlet pote
transforms according to the representationSg

1 while the two
lowest-lying hybrid potentials are within thePu andSu

2 rep-
resentations, respectively.

In contrast, point-like QCD states are characterized by
JPC of the usualO(3)^ C rotation group as well as by th
gauge group representation of the source. In the pure ga
sector, gauge invariance requires this representation to
vanishing triality, such that the source can be screened
singlet by the glue. States created by operators in the sin
representation are known as glueballs, octet states as
lumps. In contrast to gluelump states, where the octet so
propagates through the gluonic background, the normal
tion of glueball states with respect to the vacuum energ
unambiguous.

Since D`h,O(3)^ C, in the limit r→0 certain hybrid
levels must become degenerate. For instance, in this li
the Su

2 state corresponds to aJPC5112 state withJz50
while the Pu doublet corresponds to itsJz561 partners.
The gauge transformation property of the hybrid poten
creation operator will also change in this limit,3^ 3*51
% 8, such that hybrids will either approach gluelumps@cf.
Eq. ~3!# or glueballs, in an appropriate normalization. In t
case of glueballs the correct normalization can be obtai
by considering the differenceEH(r )2Es(r ) from which the
pole mass cancels. We will discuss the situation with resp
to gluelumps in detail in Sec. IV.

In perturbation theory, the ground state potential cor
sponds to the singlet potential while hybrid potentials w
have the perturbative expansion of the octet potential.

Recently, Philipsen@19# suggested to non-perturbative
generalize the octet potential, employing a definition that
sembles the perturbative one, after gauge fixing to the
placian Coulomb gauge. He proved that this constructio
equivalent to a gauge invariant correlation function who
eigenvalues will resemble masses of physical states. In
limit r→0 the suggested operator will be an adjoint tempo
Schwinger line, dressed with a non-local but symme
gluon cloud, with theJPC quantum numbers of the vacuum
A similar construction is mentioned in the second paragr
of Sec. VI, as a possible non-perturbative normalizat
point for gluelump energies. The static ‘‘octet’’ potential su
gested in Ref.@19# will have theSg

1 symmetry and, up to a
different non-perturbative offset, the same perturbative
pansion and power term/renormalon structure as the hy
potentials discussed below. Due to the nature of its crea
09400
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operator which is non-local, even in ther 50 limit, at present
it is not obvious to us how this non-perturbative state can
interpreted in terms of the local states we are considerin
this paper, certainly an open question that should be
dressed in the future.

C. Hybrid and gluelump mass splittings

We would like to establish if lattice data on hybrid pote
tials reproduces the degeneracies expected from the a
discussion in the short distance region. In the limitr→0, any
given L>1 hybrid potential can be subduced from anyJPC

state withJ>L and PC51 for h5g or PC52 for h
5u representations. For instance thePu is embedded in
112,121,212,221,•••. The situation is somewhat differen
for L50 states, which have the additionalsv parity: theSg

1

representation can be obtained from 011,122,211,•••,Sg
2

from 022,111,•••,Su
1 from 012,121,••• and Su

2 from
021,112,•••. We list all combinations of interest to us i
Table I. The ordering of low-lying gluelumps has been e
tablished in Ref. @12# and reads with increasing mas
112,122,222,212,312,011,422,121, with a 322 state in
the region of the 422 and 121. The 212 and 312 as well
as the 422 and 121 states are degenerate within prese
statistical uncertainties.1 The continuum limit gluelump
masses are displayed as circles at the left of Fig. 1, where
have added the~arbitrary! overall constant 2.26/r 0 to the
gluelump splittings to match the hybrid potentials. The sim
larity of this value to our estimate of the gluelump energy
Sec. V A is purely accidental.

Juge, Kuti and Morningstar@1# have, for the first time,
comprehensively determined the spectrum of hybrid pot
tials. We convert their data, computed at their smallest lat
spacingas'0.2 fm, into units ofr 0'0.5 fm @20#. Since the
results have been obtained with an improved action and

1The splittings between all states with respect to the 112 ground
state have been extrapolated to the continuum limit in Ref.@12# and
we add our own extrapolations for the 422 and 121 states to these
based on the tables of this reference.

TABLE I. Expected degeneracies of hybrid potentials at sh
distance, based on the level ordering of the gluelump spectr
Note that if the 312 gluelump turned out to be lighter than the 212

then theSu
28 ,Pu8 ,Du ,Fu potentials would approach the 312 state

while theSu
1 ,Pu9 ,Du8 potentials would approach the 212 instead.

Point particleJPC Open stringLh
sv

112 Su
2 ,Pu

122
Sg

18 ,Pg

222 Sg
2 ,Pg8 ,Dg

212 Su
1 ,Pu8 ,Du

312
Su

28 ,Pu9 ,Du8 ,Fu

011
Sg

19

422
Sg

28 ,Pg9 ,Dg8 ,Fg ,Gg

121
Su

18 ,Pu-
1-3
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anisotropic lattices withat'as/4, one might expect lattice
artifacts to be small,2 at least for the lower-lying potentials
Hence we compare these data, normalized toES

g
1(r 0), with

the continuum expectations of the gluelumps@12#. The full
lines are cubic splines to guide the eye while the dashed l
indicate the gluelumps towards which we would expect
respective potentials to converge.

The first seven hybrid potentials are compatible with
degeneracies suggested by Table I. The next state is tric
since it is not clear whether 212 or 312 is lighter. In the
figure we depict the case for a light 212. This would mean
that (Su

1 ,Pu8 ,Du) approach the 212 while

(Su
28 ,Pu9 ,Du8 ,Fu) approach the 312. Note that of the latter

four potentials only data forPu9 andFu are available. Also
note that the continuum statesPu8 , Pu9 and Fu are all ob-
tained from the sameEu lattice representation. For the pu
pose of the figure we make an arbitrary choice to distrib
the former three states among theEu8 ,Eu9 andEu- lattice po-

2On the lattice the relevant symmetry group isD4h rather than
D`h ~see, e.g., Ref.@23#!. In the continuum limit theA1h potentials
will correspond toSh

1 , theA2h potentials toSh
2 and theEh poten-

tials toPh , whereh5u,g. The radial excitations could in principa
correspond to higher spin potentials and in fact one of the th
observed excitations ofEu will correspond to theFu ground state.
In all other cases, associating the lowest possible continuum sp
a given lattice potential seems to agree with the ordering sugge
by the gluelump spectrum~as well as in the large distance strin
limit @1#!. B1h and B2h both correspond toDh . In either case~as
well as for Dg8), at the short distances displayed in the figure,
two lattice representations agree with each other, supporting
view that violations of rotational symmetry are small. In this ca
we only display the lattice representations with better statist

accuracy, i.e. theB1h
(8)s.

FIG. 1. Different hybrid potentials@1# at a lattice spacingas

'0.2 fm'0.4r 0 , wherer 0'0.5 fm, in comparison with the glue
lump spectrum, extrapolated to the continuum limit@12# ~circles,
left-most data points!. The gluelump spectrum has been shifted
an arbitrary constant to adjust the 112 state with thePu and Su

2

potentials at a short distance. In addition, we include the sum of
ground state (Sg

1) potential and the scalar glueball massm011

@21,22#. The lines are drawn to guide the eye.
09400
es
e

e
ier

e

tentials. To firmly establish their ordering one would have
investigate radial excitations in additional lattice hybr
channels and/or clarify the gluelump spectrum in more
tail. Should the 212 and 312 hybrid levels be inverted then

(Su
28 ,Pu8 ,Du ,Fu) will converge to the 312 while

(Su
1 ,Pu9 ,Du8) will approach the 212. We note that the or-

dering of the hybrid potentials, with a lowSu
1 , makes the

first interpretation more suggestive.

Finally theSg
19 potential seems to head towards the 011

gluelump but suddenly turns downward, approaching
~lighter! sum of the ground state potential and scalar glueb
@21,22# instead. The latter type of decay will eventually ha
pen for all lattice potentials but only at extremely short d
tances. We also remark that all potentials will diverge ar
→0. This does not affect our comparison with the gluelum
results, since we have normalized them to thePu /Su

2 poten-
tials at the shortest distance available.~The gluelump values
are plotted atr 50 to simplify the figure.!

On a qualitative level the short-distance data are very c
sistent with the expected degeneracies. From the figure
see that atr'2r 0'1 fm the spectrum of hybrid potential
displays the equi-distant band structure one would qua
tively expect from a string picture. Clearly this region,
well as the crossover region to the short-distance beha
r 0,r ,2r 0 , cannot be expected to be within the perturbat
domain: at best one can possibly imagine perturbation the
to be valid for the left-most two data points. With the exce
tion of thePu , Pu8 andFu potentials there are also no cle
signs for the onset of the short distance 1/r behavior with a
positive coefficient as expected from perturbation theo
Furthermore, most of the gaps within multiplets of hybr
potentials, that are to leading order indicative of the size
the non-perturbativer 2 term, are still quite significant, eve
at r 50.4r 0 ; for instance the difference between theSu

2 and
Pu potentials at this smallest distance is about 0.28r 0

21

'110 MeV.

D. The difference between thePu and Su
À hybrids

From the above considerations it is clear that for a m
quantitative study we need lattice data at shorter distance
this paper we have obtained these for the lowest two gluo
excitations,Pu andSu

2 ~see Sec. III!. We display their dif-
ferences in the continuum limit in Fig. 2. We see how the
approach zero at smallr, as expected from the short distan
expansion. pNRQCD predicts that the next effects should
of O(r 2) ~and renormalon-free!. In fact, we can fit the lattice
data rather well with aDEPu2S

g
15APu2S

u
2r 2 ansatz for

short distances, with slope~see Fig. 2!,

APu2S
u
250.9220.52

10.53r 0
23 , ~8!

where the error is purely statistical~lattice!. This fit has been
done using pointsr &0.5r 0 . By increasing the fit range to
r &0.8r 0 the following result is obtained:

APu2S
u
25~0.8360.29!r 0

23 , ~9!
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indicating stability of the result of Eq.~8!.
In order to estimate systematic errors one can add a q

tic term: br4 ~only even powers ofr appear in the multipole
expansion of this quantity!. If the result is stable, our deter
mination ofAPu2S

u
2 should not change much. Actually th

is what happens. If we fit up tor &0.5r 0 , we obtain the
central valueAPu2Su

r 0
350.93 with a very small quartic co

efficient, br0
5520.05. If we increase the range tor

&0.8r 0 , we obtain the same central value,APu2S
u
2r 0

3

50.93, but with a slightly bigger quartic term,br0
5

520.18. Introducing the quartic term enhances the stab
of APu2S

u
2 under variations of the fit range. From this di

cussion we conclude that the systematic error is negligi
in comparison to the error displayed in our result Eq.~8!.

We remark that within the framework of static pNRQC
and to second order in the multipole expansion, one can
late the slopeAPu2S

u
2 to gluonic correlators of QCD.

III. LATTICE DETERMINATION OF HYBRID
POTENTIALS

We extract the hybrid potentials in two sets of simu
tions, using the Wilson gauge action on an isotropic latt
with volume 243348 at b56.2 (a'0.14r 0) as well as on
three anisotropic lattices with spatial lattice spacingsas

'0.33,0.23,0.16r 0 , respectively, with anisotropyas'4at .
The former result has been obtained in the context of
study of Ref.@4# ~and has been published in Ref.@3#! while
the simulation parameters, statistics and smearing of the
ter runs are identical to those of Ref.@24#: (b,j0)
5(5.8,3.1),(6.0,3.2),(6.2,3.25). The isotropic data are us
as a consistency check and in Sec. IV D, while we extra
late the data obtained on the anisotropic lattices to the c
tinuum limit.

Some time was spent on improving the shape of the

FIG. 2. Splitting between theSu
2 and thePu potentials, extrapo-

lated to the continuum limit, and the comparison with a quadratic
to ther &0.5r 0 data points (r 0

21'0.4 GeV). The big circles corre
spond to the data of Jugeet al. @1#, obtained at finite lattice spacin
as'0.39r 0 . The errors in this case are smaller than the symbo
09400
ar-

y

e,

e-

-
e

e

t-

-
n-

-

brid creation operators to optimize the overlap with t
ground state@4#. The Pu potential has been determined o
axis as well as along a plane diagonal,r /as}(1,1,0), while
the Su

2 potential has only been obtained on axis. Typica
we achieved ground state overlaps of around 65% for b
potentials atb55.8 and between 85% and 90% at the larg
two b values. Typical fit ranges for one-exponential fits
correlation functions for thePu(Su

2) potential were 8
<t/at<18 (9<t/at<14) at b55.8, 9<t/at<24 (11
<t/at<21) atb56.0 and 13<t/at<30 (15<t/at<25) at
b56.2. For all further details of the analysis we refer to R
@24# where potentials between sources in non-fundame
representations ofSU(3) were extracted using exactly th
same methods.

Subsequently, the potentials as well as the differences
tween potentials have been extrapolated to the continu
limit. As one such example we display the difference b
tween thePu and the singlet potential in Fig. 3 for distance
r<r 0 . In this extrapolation we somewhat deviate from R
@24#: we follow Ref. @25# in removing the lattice artifacts to
leading order inas , by plotting the data as a function of th
inverse lattice Coulomb propagator,

r̄ 5asF 1

RG
L

21

, ~10!

rather than ofr. The lattice Coulomb propagator for the Wi
son gauge action is given by

F 1

R
G

L

54pE
2p

p d3Q

~2p!3

cos~QR!

4(
i

sinS Qi

2
D , ~11!

and agrees with the continuum 1/R function up toO(a2/r 2)
lattice artifacts.R5r /a denotes an integer-valued thre
vector and theQi5qias are dimensionless. For thePu po-

t

.

FIG. 3. Continuum limit extrapolation of the difference betwe

thePu and theSg
1 potentials vsr̄ 5r @11O(a2/r 2)# as described in

the text@Eqs.~10! and~11!#. The Jugeet al. data are from Ref.@1#.
1-5
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TABLE II. Values ofVo,n with n51/r : exact result~where available! and the estimate using Eq.~19!. We
also display the estimates ofVs,n with n51/r ~extracted from Ref.@15#!.

Ṽo,n5rVo,n Ṽo,0 Ṽo,1 Ṽo,2 Ṽo,3 Ṽo,4

exact (nf50) 0.166667 0.305472 1.27419
Eq. ~19! (nf50) 0.110552 0.244266 1.14193 6.97413 54.4562

Ṽs,n5rVs,n Ṽs,0 Ṽs,1 Ṽs,2 Ṽs,3 Ṽs,4

exact (nf50) 21.33333 22.44378 211.7893
estimate (nf50) 21.20643 22.66564 212.4616 276.1075 2594.2718
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In
tential this procedure removes violations of rotational sy
metry within the statistical errors and brings the plan
diagonal points in line with the on-axis data. Unfortunate
we cannot perform a similar internal test for theSu

2 potential
which we only determined for on-axis separations.

The next step involved fitting differences between hyb
potentials andSg

1 , DEH5EH2ES
g
1, for r>2a to the phe-

nomenological interpolation,

DEH~r !5c11
c21c3ln~r !

r
1c4r 2, ~12!

with parametersci . We then extrapolated these interpolati
curves to the continuum limit, assuming the leading orderas

2

dependence. This was done separately for different pair
two lattice spacings. The central value of the extrapolatio
given by the result obtained from theas'0.33r 0 and as

'0.16r 0 data sets. The error is estimated by the squared
of the statistical error of the fine lattice data set and
difference between the above extrapolation and an extra
lation obtained from theas'0.23r 0 and as'0.16r 0 data
sets. With decreasingr the interpolating fits become less we
constrained and hence the latter systematic uncertainty
creases. The resulting error band is depicted in Fig. 3. R
suringly, theas'0.16r 0 data are already in agreement wi
the continuum limit and theas'0.23r 0 data agree within
errors: the fine lattice data set effectively already correspo
to the continuum limit. The more precise isotropic referen
data (a'0.14r 0) are also close to the continuum limit. W
also notice that the first three data points of the coarse la
data by Jugeet al. @1# (as'0.39r 0) are compatible with our
extrapolation. The same observations hold true for theSu

2

potentials.
Rather than representing the continuum limit extrapola

potentials by error bands, in the remaining parts of this pa
we add the difference between~finite a) interpolation and
~continuum limit! extrapolation to the fine lattice data poin
and increase their errors by the systematic uncertainty
volved in the extrapolation.

IV. STATIC OCTET POTENTIAL

We will discuss the octet potential in the OS (5 ‘‘pole
mass’’! scheme, compute the normalization constant of
renormalon and generalize the RS renormalon subtra
scheme@15# to this case. We will also discuss the structure
09400
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power divergences on the lattice and the analogous la
scheme. Finally we discuss the running of the gluelump m
from one scale to another.

A. OS scheme for the octet potential

The octet potential in the case 1/r @LQCD can be com-
puted order by order in perturbation theory. Nevertheless
is not an IR safe object@26#. Its perturbative expansion read

Vo~r ;nus!. (
n50

`

Vo,nas
n11, ~13!

where we have made explicit its dependence on the IR cu
nus andas5as(n), where we define

n
das

dn
522asFb0

as

4p
1b1S as

4p D 2

1•••G .
In what follows we will always identifyas with aMS. The
first two coefficientsVo,0 , Vo,1 are known, as well as the
leading-logarithm terms of Vo,3 @26# ~for the
renormalization-group improved expression see Ref.@27#!.
Note, however, that these leading logarithms are not ass
ated with to the first IR renormalon. ForVo,2 there exists a
preliminary computation@28#,

Vo,252
1

Nc
221

Vs,21dVo,2 , ~14!

dVo,2'2
1

2Nc

1

~4p!221CA
2

1

r
, ~15!

which we will use in what follows.Vs,2 has been computed
in Ref. @29#. For Vo,3 , we will use the renormalon-base
estimate that we obtain in Sec. IV B~Table II!.

Studying the convergence of perturbation theory of
octet potential in the OS scheme, conclusions similar
those in Ref.@16# are obtained. The poor convergence
demonstrated in Fig. 4, where we try two choices of the sc
n. In part ~a! we usen5n i , where

n i5r 82156.604r 0
21'2.6 GeV ~16!

corresponds to the shortest distancer 8 for which the con-
tinuum limit extrapolated lattice potentials are available.
1-6



QCD PHENOMENOLOGY OF STATIC SOURCES AND . . . PHYSICAL REVIEW D69, 094001 ~2004!
FIG. 4. r 0Vo(r ) ~the octet potential in the OS scheme! at tree level~dashed lines!, one loop~dashed-dotted lines!, two loops~dotted lines!
and three loops~estimate! plus the leading single ultrasoft logarithm~solid lines!. ~a! corresponds to the scalen5n i @cf. Eq. ~16!# and ~b!
to n51/r . In both cases,nus52.5r 0

21. Only the solid curves depend on this choice.
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part ~b! we vary n51/r . Obviously the curves depicted i
the two parts of the figure agree with each other atr 5r 8
'0.15r 0 . Note the difference in the vertical scale.

B. Static octet potential normalization constant

We define the Borel transform of the octet potential
follows:

Vo5E
0

`

dte2t/asB@Vo#~ t !, B@Vo#~ t ![ (
n50

`

Vo,n

tn

n!
.

~17!

The behavior of the perturbative expansion Eq.~13! at large
orders is dictated by the closest singularity to the origin of
Borel transform, which happens to be located att52p/b0 .
This singularity has two sources: one is a UV renorma
which cancels with the renormalon of twice the pole ma
the other is an IR renormalon that cancels with the UV ren
malon of the gluelump energy. This result follows from t
structure of the effective theory and the consequent fac
ization of the different scales in Eq.~3!. Being more precise
the behavior of the Borel transform of the static octet pot
tial near the closest singularity to the origin@u51/2 where
we defineu5b0t/(4p)] reads

B@Vo#„t~u!…5NVo
n

1

~122u!11b
@11c1~122u!

1c2~122u!21•••#1~analytic term!,

~18!

where byanalytic term, we mean a function that is analyti
up to the next IR renormalon atu53/2. This dictates the
behavior of the perturbative expansion at large orders to

Vo,n 5
n→`

NVo
nS b0

2p D n G~n111b!

G~11b! F11
b

~n1b!
c1

1
b~b21!

~n1b!~n1b21!
c21•••G . ~19!
09400
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s

n
,

r-

r-

-

e

The structure of the renormalon is equal to the singlet o
This is due to the fact that the number of octet fields
conserved at leading order in the multipole expansion
that the mass~potential! does not renormalize at this orde
Therefore the values of the coefficientsb,c1 ,c2 , . . . above
are the same as for the case of the static potential and
pole mass and can be found in Refs.@15,30,31#. We display
them here for ease of reference:

b5
b1

2b0
2 , ~20!

c15
1

4bb0
3 S b1

2

b0

2b2D , ~21!

and

c25
1

b~b21!

1

32b0
3

@b1
414b0

3b1b222b0b1
2b2

1b0
2~22b1

31b2
2!22b0

4b3#. ~22!

The only difference with respect to the static singlet poten
is the value ofNVo

. The cancellation of the renormalon i
Eq. ~3! requires

2Nm1NVo
1NL50, ~23!

whereNL is the normalization constant of the renormalon
the gluelump mass (B@L# reads the same as Eq.~18!, with
the replacementNVo

°NL). Therefore, unlike in the static

singlet potential case, we cannot fixNVo
from the knowledge

of Nm alone. Yet we will ~approximately! determineNVo

from low orders in perturbation theory of the octet potenti
Note also thatNL is independent ofH, the specific gluonic
content of the gluelump, since it only depends on the h
energy behavior, which is universal. To leading non-triv
order one obtains,NVo

5CA/22Cf ,NL52CA/2.
In analogy to Refs.@15,16,32# we define the new function
1-7
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DVo
~u!5 (

n50

`

DVo

(n)un5~122u!11bB@Vo
(0)#„t~u!…

5NVo
n@11c1~122u!1c2~122u!21•••#

1~122u!11b3~analytic term!, ~24!

and try to approximately determineNVo
by using the first

three coefficients of this series. In analogy to Refs.@15,16#,
we fix n51/r and obtain@up to O(u3)uu51/2],

NVo
50.16666720.062429210.0097633350.114001.

~25!

The convergence is rather good and, moreover, we ha
sign alternating series. In fact, the scale dependence is
coming milder when we go to higher orders~see Fig. 5!.
Note that if the two-loop coefficientVo,2 had been equal to
that of the singlet case@29# ~with color factor Cf°CA/2
2Cf), we would have obtainedNVo

50.146542.

We can now compute estimates forVo,n by using Eq.
~19!. These, as well as estimates forVs,n , are displayed in
Table II for nf50. We can see that the exact results a
reasonably well reproduced. Hence we feel confident that
are near the asymptotic regime dominated by the first
renormalon and that for highern our predictions will accu-
rately approximate the exact results.

In order to avoid large corrections from terms depend
on nus , the predictions should be understood withnus51/r
and later on one can use the renormalization group equa
for the static potential@27# to keep track of thenus depen-
dence.

C. RS scheme for the octet potential

In Sec. IV A we have demonstrated the poor converge
of the perturbative expansion of the octet potential in the
scheme. This bad behavior is usually believed to be du
the singularities in the Borel transform of the perturbat
expansion. Nevertheless, these singularities are fake s
they cancel with singularities in the matrix elements. On
other hand, this lack of convergence of perturbation the
arises because at higher orders in perturbation theory sm
and smaller momenta contribute to the short-distance ma

FIG. 5. x[nr dependence ofNVo
for nf50 at LO ~dashed-

dotted line!, NLO ~dotted line! and NNLO ~dashed line!.
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ing coefficients of the effective theory. This clashes with t
logic of scale separation in the EFT formalism. The soluti
advocated in Ref.@15# was to subtract this behavior from th
matching coefficients. At the practical level this was imp
mented by subtracting the Borel plane singularities of
matching coefficients. In Refs.@15,16# this has been worked
out for the pole mass and the static singlet potential and
refer to these references for the definitions and further
tails. In particular Eq.~2! reads

Es~r !52mRS~n f !1Vs,RS~r ;n f !1O~r 2!, ~26!

where

mRS~n f !5mOS2dmRS~n f !, ~27!

Vs,RS~r ;n f !5Vs~r !12dmRS~n f !, ~28!

and~in the above equation we have already used the fact
the renormalon of the singlet potential cancels with the o
of minus twice the pole mass!,3

dmRS~n f !

5 (
n51

`

Nmn f S b0

2p D n

as
n11~n f !(

k50

`

ck

G~n111b2k!

G~11b2k!
.

~29!

For the static hybrids, the spectrum reads

EH~r !52mRS~n f !1Vo,RS~r ;n f !1LH
RS~n f !1O~r 2!.

~30!

Obviously, we have to define the octet potential and the gl
lump mass above. In the RS scheme the octet potential r

Vo,RS~n f !5Vo2dVo,RS5 (
n50

`

Vo,n
RSas

n11 , ~31!

where

dVo,RS5 (
n51

`

NVo
n f S b0

2p D n

as
n11~n f !(

k50

`

ck

G~n111b2k!

G~11b2k!
.

~32!

This specifies the gluelump mass which reads

LH
RS~n f !5LH2dLRS~n f !, ~33!

where

3Actually, throughout this paper we use the RS’ scheme as defi
in Ref. @15# instead of the RS scheme, since we believe this to h
a more physical interpretation. For simplicity of notation we wi
however, refer to this modified scheme as the ‘‘RS scheme,’’ om
ting the ‘‘prime.’’
1-8
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dLRS~n f !

5 (
n51

`

NLH
n f S b0

2p D n

as
n11~n f !(

k50

`

ck

G~n111b2k!

G~11b2k!
.

~34!

Note that the potentials andLH
RS depend onn f which, in the

context of pNRQCD, can be thought of as a matching sc
between ultrasoft and soft physics. In what follows, we w
set n f52.5r 0

21. Results for different values ofn f can be
obtained using the running onn f , which is renormalon in-
dependent.

Analogously to the discussion of Ref.@16#, we can study
the convergence of the perturbative expansion in the
scheme. In Fig. 6 we can see that the stability is gre
improved, compared to the OS scheme discussed in the
vious section. No matter whether we choose to work w
as(n i) or as(1/r ), the expansions converge towards the sa
curve. In Fig. 7 we can also see that they agree with
continuum limit lattice data~we have to subtract an unknow

FIG. 6. r 0Vo,RS at tree level~dashed lines!, one loop~dashed-
dotted lines!, two loops ~dotted lines! and three loops~estimate!
plus the leading single ultrasoft logarithm~solid lines!. For the scale
of as(n), we setn5n i ~stable behavior at large distances! or n
51/r ~diverging at large distances!. We keptn f52.5r 0

21 fixed.

FIG. 7. r 0@Vo,RS(r )2Vo,RS(r 8)#1C at tree level~dashed lines!,
one loop~dashed-dotted lines!, two loops~dotted lines! and three
loops ~estimate! plus the leading single ultrasoft logarithm~solid
lines! compared with the non-perturbative continuum-limit resu
for EPu

(r )2EPu
(r 8) ~symbols with error bars!. For the scale of

as(n), we setn5n i51/r 8 ~stable behavior at large distances! or
n51/r ~diverging at large distances!. A ~small! constantC is arbi-
trarily adjusted to show agreement with the lattice data.
09400
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constant for this comparison!. In this figure the errors of
EPu

(r )2EPu
(r 8) for r .r 8 are purely statistical while the

~strongly correlated! systematic error of the continuum lim
extrapolation is only displayed for the first data poi
@EPu

(r 8)2EPu
(r 8)50#, where it is largest.

The price we pay to obtain convergent expansions inas
for the potentials is the introduction of power-like term
~proportional ton f , with logarithmic corrections!. This be-
havior very much resembles that of lattice regularizat
with a hard cutoff which we discuss below.

D. Lattice scheme for the octet potential

It is conceptionally illuminating also to consider the sit
ation in lattice regularization. In this case, the inverse latt
spacinga21 results in a hard UV cutoff of the gluon mo
menta. Feynman diagrams are UV finite and EFT matrix
ements are manifestly renormalon-free as long as they
obtained in non-perturbative numerical simulations. T
price paid is the existence of power divergences}a21,
which cannot be eliminated in the continuum limit.

The analogy with the previous sections can be made q
evident. In particular, all the quantities that we have defin
in the OS and RS schemes can also be defined in a la
scheme. There are some differences, however. The la
gluelumpLH

L (a) has a power divergence to start with~which
can be traded in for a renormalon ambiguity when subtrac
in perturbation theory!. In this sense it is similar toLH

RS(n f).
While formally many expressions resemble those of the
case,a21 plays a slightly different role thann f that separates
soft from ultrasoft scales sincea!r !n f

21 . Another differ-
ence is that at finite lattice spacings the potentials rem
finite asr→0. In particular, we will see that gluelumps a
the r→0 limits of hybrid potentials~at finite lattice spacing!,
in perturbation theory as well as non-perturbatively. Th
should not be surprising since ther→0 limit at finite lattice
spacing corresponds to the situationr !a. This means that
the ultraviolet cutoff;a21 is much smaller thanr 21 and
that the dynamical degrees of freedom are only the ultra
ones. Actually, in this situation,n f and 1/a play an analogous
role.

Let us illustrate the above by first considering perturb
tion theory, before discussing the scale separation and
the lattice scheme translates into other schemes, at finite
tice spacings as well as in the continuum limit.

For simplicity we will consider the Wilson discretizatio
of the continuum action. In this case the ‘‘lattice Coulom
term’’ @1/R#L takes the form Eq.~11!. For instance, one can
calculate the finite value,@1/0#L53.17 . . . .Using this nota-
tion, one finds the lattice results

Vs,L~r ;a!52dmstat
L ~a!2CfaLa21F 1

RG
L

@11O~aL!#

~35!

Vo,L~r ;a!52dmstat
L ~a!

1S CA

2
2Cf DaLa21F 1

RG
L

@11O~aL!#,

~36!
1-9
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where the ‘‘self-energy’’ is given by

admstat
L ~a!5

Cf

2
aLF1

0
G

L

1•••

5
Cf

2
aLS v11v2

aL

4p
1v3

aL
2

~4p!2
1••• D .

~37!

Note that unlike in dimensional regularization, by using
hard cutoff, such power divergencies appear naturally as
of the perturbative expansion. Equations~35! and ~36! are
both known toO(as

2) and Eq.~35! ~as well as the difference
Vo2Vs) is also known approximately toO(as

3), up to
O(as

3a2/r 2) lattice corrections@33#. In pure gauge theory
with Wilson action, the coefficients of the expansion
dmstat

L read@18,33–35#

v153.1759115 . . . , ~38!

v250.21003~5!3103, ~39!

v3520.4~3!3103. ~40!

aL53/(2pb) denotes the lattice coupling at a scalea21

which can be translated into other schemes such asMS by
means of a perturbative computation,

aL5as~a21!F12b1

as~a21!

4p
2~b222b1

2!
as

2~a21!

~4p!2
1•••G

~41!

with @36#

b1'73.93539066, ~42!

b2'b1
211388.1645. ~43!

Let us now consider the singlet case. We have

E
S

g
1

L
~r ;a!5Vs,L~r ;a!1LQCD@O~LQCD

2 r 2,LQCD
2 a2,a2/r 2!#,

~44!

whereLQCD represents a generic non-perturbative scale
r 0

21. The last two terms account for possible no
perturbative lattice artifacts, which vanish asa→0. From the
quarkonium energy Es(r ) at r @a, we can non-
perturbatively obtain the heavy quark mass in a latt
scheme

mL~a!5
1

2
@Es~r !2E

S
g
1

L
~r ;a!#1O~a2/r 2!. ~45!

By redefining

V̄s,L~r ;a!5Vs,L~r ;a!22dmstat
L ~a!, ~46!
09400
rt

f

e
-

e

we can then achieve formal correspondence to Eqs.~26! and
~2!, respectively,

Es~r !52mL~a!1Vs,L~r ;a!1O~r 2! ~47!

52mOS1V̄s,L~r ;a!1O~r 2!, ~48!

where the above two equations are correct up toO(LQCD
2 a2)

andO(a2/r 2) lattice corrections.
We can relate the heavy quark mass in the lattice sch

to the OS scheme,

mL~a!5mOS2dmstat
L ~a!. ~49!

dmstat
L (a) contains the same renormalon asmOS, such that

Eq. ~49! has good convergence properties when expande
terms ofas. mL(a) is proportional toa21, with logarithmic
as well asO(a2) lattice corrections. One can convertmL(a)
order by order in perturbation theory into saymMS(n), with-
out renormalon ambiguity.

In the lattice scheme we also haveE
S

g
1

L
(0;a)

5Vs,L(0;a)50: the sources are ‘‘smeared out’’ on a scalea
since the gluon, due to the UV cutoff, cannot resolve str
tures smaller than the lattice spacing. Consequently, the C
lomb term does not diverge asr→0 but approaches a finite
value in units ofa. In perturbation theory, in the limitr
→0, the lattice@1/R#L term exactly cancels with 2dmstat

L :
the perturbative expansion ofVs,L(r ;a), Eq. ~35! above,
does not contain the renormalon associated with the p
mass. Non-perturbatively, in the limitr→0 the Wilson loop
becomes a time independent constant, such thatE

S
g
1

L
(0;a)

50 too. As r .0 the perturbativeVs,L acquires a power
term.

Next we consider the hybrid case. We can calculate
gluelump mass in perturbation theory,4

adLL~a!5
CA

2
aLF1

0G
L

1•••

5
CA

2
aLS v11v2

aL

4p D1•••, ~50!

wherev1 andv2 are the same as for the case ofdmstat
L and

can be found in Eqs.~38! and ~39! above. Note that the
O(as

3) term is expected to be different and is not known
present. However,LH is related to the difference betweenVo
andVs , such that any difference with respect to thev3 of Eq.
~40! above will be suppressed by a color factor 1/Nc

2 .
The tree level expression forVo,L is displayed in Eq.~36!.

While the perturbative expansion ofVs,L was unaffected by
the renormalon of the pole mass, the one ofVo,L contains the
same renormalon as the expansion ofdLL . For r @a the
renormalon-free combinationVo,L(r ;a)2dLL(a) plays the

4In the context of perturbation theory we do not distinguish b
tween different gluelumps since the mass splittings have an ent
non-perturbative origin.
1-10
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role of Vo,RS(r ;n f) in Eq. ~30!. At r 50 we have,
Vo,L(0;a)5dLL(a) as well as the non-perturbative equalit

EPu

L ~0;a!5E
S

u
2

L
~0;a!5LB

L~a!. ~51!

We redefine

V̄o,L~r ;a!5Vo,L~r ;a!2dLL~a!22dmstat
L ~a!, ~52!

to achieve formal correspondence with Eqs.~3! and ~6!:

EH
L ~r ;a!2E

S
g
1

L
~r ;a!

5LH
L ~a!1@V̄o,L~r ;a!2V̄s,L~r ;a!#1O~r 2!.

~53!

Note thatEH
L (r ;a)5EH(r )22mL(a)1O(a2/r 2), in analogy

to Eq. ~45!. The combination

V̄o,L~r ;a!2V̄s,L~r ;a!5
CA

2
aLa21S F 1

RG
L

2F1

0G
L
D 1O~a2!,

~54!

vanishes forr 50 and is renormalon-free. The same hol
true for EH

L (0;a)2E
S

g
1

L
(0;a)2LH

L (a)50: Eq. ~53! is not

only valid for r .a but also for5 r 50. We have

LH
L ~a!5LH

OS1dLL~a!. ~55!

Note that the above equation is only correct up to n
perturbativeO(LQCD

2 a2) contributions toLH
L r 0 . Again LH

L

is renormalon-free but has a power divergence. By subtr
ing dLL(a) order by order in perturbation theory one c
obtain an on shellLH

OS, but at the price of a renormalo
ambiguity. Note the similarity between the above equat
and Eq.~33!.

In Fig. 8 we compare non-perturbative data on the sp
ting between hybrid potentials with respect to the grou
state potential with the perturbative expectation. The d
have been obtained by us on an isotropic lattice atb56.2
with lattice spacinga'0.137r 0 . Both gaps, EPu

L 2E
S

g
1

L

~squares! and E
S

u
2

L
2E

S
g
1

L
~pentagons! are plotted as a func

tion of r̄ /a @see Eq.~10!#. The differences are indicative o
the size of the expected non-perturbativeO(r 2) contribu-
tions. We compare the non-perturbative data to the pertu

5Based on the results of Sec. V B below as well as of Ref.@21#,
we know that the 112 glueball will become lighter than the glue
lump LB

L(a) arounda,r c'r 0/7, when using the Wilson action. In

fact we discussed a similar situation in Sec. II C, for theSg
18 po-

tential. This limit is not yet relevant for thePu andSu
2 potentials at

the lattice spacings covered in this paper. In the casea,r c , Eq.
~53! will still apply for r c

21@r 21@LQCD; however, Eq.~51! will
become modified; it would apply to the first radial excitations in t
hybrid channels rather than to the ground states, until finally aro
a'r 0/12 a continuum of two-glueball states is encountered.
09400
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tive expectation forVo,L(r ;a)2Vs,L(r ;a). The latter pertur-
bation theory will suffer from the same renormalo
ambiguity asdLL(a) and the difference between perturb
tion theory and non-perturbative data corresponds toLB

OS.
The left-most points~open symbols! correspond to theLB

gluelump, plotted atr̄ /a5@1/0#L'0.315.
The evaluation was done both in terms ofas(a

21) and
as(n f) wheren f52.5r 0

21'0.34a21. To simplify the figure
we disregard the uncertainty in the determination ofLMS

50.602(48)r 0
21 @37#. At leading order~LO! and next-to

leading order~NLO! lattice perturbation theory results ar
available@33# ~diamonds and squares!. Since everything is
plotted as a function ofr̄ /a5@1/R#L

21 all diamonds lie ex-
actly on top of the dashed continuousr @a curves while at
small distances there are differences between the das
dotted NLO curves and the exact NLO results~circles!. In
addition we plot ther @a limits to next-to-next-to leading
order ~NNLO! ~dotted curves!. The shapes of the perturba
tive curves remain qualitatively stable while the normaliz
tion is not convergent as the order of the expansion is
creased and is also strongly affected by the scale ofas(n).
This behavior reflects the presence of the renormalon
LB

OS, quite similar to what we can see in Fig. 4~a!.
By comparing with the renormalon-free right-hand si

~rhs! of Eq. ~53! a better convergence can be achieved. Ho
ever, such a comparison is only possible up toO(as

2) as we
do not exactly know theO(as

3) contribution to the counter-
term dLL(a) in the lattice scheme. Instead we choose
demonstrate the quality of the perturbative expansion in F
9 by adding global normalization constants to all curves

such a way that agreement is produced atr /a5A2. ~We
shall return to the question of renormalon cancellation
d

FIG. 8. Splitting between the lowest two hybrids and theSg
1

potentials~pentagons and squares! as a function ofr̄ /a @see Eq.
~10!# at a fixed lattice spacing,a'0.137r 0 , in comparison to

Vo,L(r ;a)2Vs,L(r ;a)5V̄o,L(r ;a)2V̄o,L(r ;a)1dLL(a) at tree
level ~dashed lines, diamonds!, one loop ~dashed-dotted lines
circles! and two loops~dotted lines,r @a estimates!. The open sym-
bols correspond to the respective gluelumps, non-perturbati
~square with pentagon! and in lattice perturbation theory~diamonds
and circles!.
1-11
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LH
L (a) in Sec. V B.! Indeed the differences between NNL

and NLO are smaller than those between NLO and L
Moreover, at higher orders the scale dependence is redu
The n5a21 curves seem to describe the data better at sm
r while then5n f curves seem to work better at largerr. Up
to distances as big asr̄ 5r 0'7.3a the perturbative curves
seem to have an accuracy better than the non-perturb
uncertainties, estimated by the differenceES

u
2(r )2EPu

(r ).

We mentioned above that while formally the lattice spa
ing a21 appears in the same places in the lattice schem
the scalen f did in the RS scheme of Sec. IV C, these tw
scales should not be confused with each other asa21.r 21

.n f.LQCD. Conceptionally we have been discussing t
situation in which the potentials are evaluated in perturba
theory at scalesn.n f while LH

RS is an ultrasoft matrix ele-
ments, associated with physics at scales smaller thann f . The
lattice encapsulates the same physical picture. For insta
to each finite order in perturbation theory,6 Vs/o,L(r ;a)

→r→` 2dmstat
L (a) andVo,L(0,a)5dLL(a): the power contri-

bution to the lattice massdmstat
L ~whose perturbation theory i

affected by the IR renormalon of the on-shell mass! corre-
sponds to the UV behavior of the potentials while the pow
contribution toLH

L ~whose perturbative expansion has t
UV renormalon ofLH

OS) is associated with the low energ
behavior ofVo,L . This is the same renormalon/power ter
structure as in the continuum OS/RS schemes.

For a!r ,LQCD
21 lattice effects become invisible and th

6In fact this is one way to define 2dmstat
L in perturbation theory:

the r-independent part of the Fourier transform of the moment
space lattice potential@33#.

FIG. 9. Splitting between the lowest two hybrids and theSg
1

potentials~pentagons and squares! as a function ofr̄ /a @see Eq.
~10!# at a fixed lattice spacing,a'0.137r 0 , in comparison with

V̄o,L(r ;a)2V̄o,L(r ;a)1C at tree level~dashed lines, diamonds!,
one loop~dashed-dotted lines, circles! and two loops~dotted lines,
r @a estimates!. The vertical normalizationC has been adjusted t

produce agreement atr /a5A2. The open symbols correspond
the respective gluelumps, non-perturbatively~square with penta-
gon! and in lattice perturbation theory~diamond and circles!.
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formulas elaborated above apply under the replacem
RS°L. To illustrate this quasi-continuum limit, we elimi
nate thea21 dependence from the expressions altogeth
which is straightforward:

Es~r !52mL~a!1E
S

g
1

L
~r ;a! ~56!

52mL~n f
21!1Vs,L~r ;n f

21!1O~r 2!,
~57!

where

Vs,L~r ;n f
21!5Vs,L~r ;a!22dmstat

L ~a!12dmstat
L ~n f

21!,
~58!

mL~n f
21!5mL~a!1dmstat

L ~a!2dmstat
L ~n f

21!.
~59!

Note that the running from one scale to another
renormalon-free. For the hybrid case we can directly writ

EH~r !52mL~n f
21!1@Vo,L~r ;n f

21!2dLL~n f
21!#

1LH~n f
21!1O~r 2!, ~60!

where the combinationVo,L2dLL replaces theVo,RS of Eq.
~30!.

Finally, we mention that the situationr 50 on the lattice
resembles ther !n f

21 continuum situation. Unlike in the
continuum, however, on the lattice, even atr 50, all observ-
ables remain finite asa21 provides us with a hard UV cutoff

E. Scale dependence

As we have mentioned in the previous sections, the r
ning of pole mass and gluelump energies withn f , in the RS
scheme, and witha, in the lattice scheme, is renormalon-fre
Therefore, the functional dependence can be described
convergent expansion in perturbation theory. Nevertheles
order to achieve the renormalon cancellation, the same s
n has to be used in the perturbative expansion. This produ
large logarithms if the scalesn f andn f8 are widely separated
and, eventually, some errors, if one works to finite order
perturbation theory. In the RS scheme, there exists a solu
to this problem. Even thoughdmRS(n f) suffers from the
renormalon ambiguity, the differencedmRS(n f)2dmRS(n f8)
is renormalon-free. We can perform a resummation
dmRS(n f) with any prescription to avoid the singularity i
the Borel plane since it will cancel in the difference. We w
take here the principal value~PV! prescription, which yields

dmRS
PV~n f !5Nmn fas~n f !(

s50

`

csFDb2sS 2
2p

b0as
D21G ,

~61!

where

Db~x!5xex$cos~pb!G~2b!2xb@G~2b!2G~2b,x!#%
~62!

and
1-12
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G~b,x!5E
x

`

dttb21e2t ~63!

denotes the incompleteG function.
The first term in Eq.~62! corresponds toLMS, once in-

troduced in the sum of Eq.~61!. It cancels from the
combination,7 dmRS

PV(n f)2dmRS
PV(n f8), and we will not con-

sider it any longer. The sum of Eq.~61! represents softer an
softer singularities in the Borel plane. Therefore, we exp
at least the differencedmRS

PV(n f)2dmRS
PV(n f8) to converge~al-

though, obviously, we have no mathematical proof of th!.
Since the first three terms are known we can check if
actually happens. We can see that this is so with a h
degree of confidence in Fig. 10.

We can also compare2dmRS
PV(n f)1dmRS

PV(n f8) with the
corresponding difference, calculated at finite order in per
bation theory:

2dmRS~n f !1dmRS~n f8!

52
n f82n f

2
Ṽs,1as

2~n!2H n f82n f

2
Ṽs,2

1Fn f

2

b0

p
lnS n f

n D2
n f8

2

b0

p
lnS n f8

n D G Ṽs,1J as
3~n!1•••.

~64!

We depict this comparison in Fig. 11, where we taken5n f
to minimize one of the logarithms. We see how the fin
order results approach the PV curve,8 which we will use in
what follows wherever we need the running.

7One may wonder if this cancellation materializes itself in pract
since we only know the first three terms of the series. However,
checked this numerically and the results turned out to be virtu
indistinguishable.

8For finite order computations we takeas with one, two, three,
etc. loop running according to the order inas at which we work. If
instead, we useas with four-loop running~the highest accuracy
known until now! the convergence to the PV result is accelerate

FIG. 10. 2dmRS
PV(n f)1dmRS

PV(n f8) at LO ~dashed line!, NLO
~dashed-dotted line! and NNLO ~dotted line! according to the sum
in Eq. ~61!. We taken f859.76r 0

21 .
09400
t
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A similar behavior holds if, instead ofdmRS, we study
dLRS.

For the lattice scheme we cannot perform an analyt
resummation as higher order terms are unknown. On
other hand, there exist non-perturbative lattice determi
tions of the static masses@LH

L (a) and E(a)5L̄L(a)] for
different lattice spacings. They provide us with no
perturbative measurements of the running against which
finite order results can be tested. It is also possible to re
results in both schemes by perturbative renormalon-free
pressions. We will investigate both the running within t
lattice scheme and the translation between both scheme
Secs. V B, VI A and VI C below.

V. PHENOMENOLOGICAL ANALYSIS
OF THE GLUELUMP SPECTRUM

We will determine the lowest gluelump energyLB from
two different observables in two different schemes: from
non-perturbative differenceEPu

(r )2ES
g
1(r ) in the con-

tinuum limit in the RS scheme as well as from gluelum
energiesLB

L(a) obtained at finite lattice spacings in a lattic
scheme. The lattice and RS schemes can be translated
each other and we find internal consistency. We fina
present results on the whole gluelump spectrum and com
our findings to previous literature.

The situation discussed here is similar to the one enco
tered in the ‘‘binding energy’’ in static-light systems whic
we will address in Sec. VI. These mesons very much
semble gluelumps, with the only difference that the sourc
in the fundamental representation and screened by a
quark rather than by a gluonic operator.

A. Determination of LB
RS from the static potentials

We intend to determineLB from the hybrid potentials.
For this purpose we will use ournf50 lattice continuum
limit data onDEPu

(r )5EPu
(r )2ES

g
1(r ) as obtained in Sec

III. Using this difference allows us to eliminate the pow
divergence that appears in lattice simulations of the pot
tials ~or, in the continuum OS scheme, the renormalon as
ciated with the pole mass!. Note that the difference has

e
e

ly

.

FIG. 11. 2dmRS(n f)1dmRS(n f8) at LO ~dashed line!, NLO
~dashed-dotted line! and NNLO~dotted line! in perturbation theory
@see Eq.~64! with n5n f ] versus the principal value result~solid
line!. We taken f859.76r 0

21 .
1-13
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well defined continuum limit. It is also interesting to see th
the large distance linear term is cancelled as well. At
same time,LB will still additively contribute to this combi-
nation, see Eq.~6!. In order to extract this non-perturbativ
constant, the perturbative difference between octet and
glet potentials has to be subtracted. For a reliable determ
tion, the perturbative series has to be well defined and s
convergence. However, this is complicated by the contri
tion from the renormalon discussed above and can only
achieved in a scheme where such renormalon singular
are taken into account. We have worked out the RS sch
in Sec. IV C, which is well suited for this purpose.

We fit LB using the following equality~see Figs. 12 and
13 for the quality of the fit!:

EPu
~r !2ES

g
1~r !5LB

RS~n f !1Vo,RS~r ;n f !2Vs,RS~r ;n f !,

~65!

where the non-perturbatively obtained left-hand side~lhs! is
renormalon-free but on the rhs the renormalon can be sh

FIG. 12. Splitting between thePu and theSg
1 potentials and the

comparison with Eq.~65! for n5n i @see Eq.~16!# at n f52.5r 0
21.

r 0@(Vo,RS2Vs,RS)(r )1LB
RS# is plotted at tree level~dashed line!,

one loop ~dashed-dotted line!, two loops ~dotted line! and three
loops ~estimate! plus the leading single ultrasoft logarithm~solid
line!.

FIG. 13. Splitting between thePu and theSg
1 potentials and the

comparison with Eq.~65! with n51/r for n f52.5r 0
21. r 0@(Vo,RS

2Vs,RS)(r )1LB
RS# is plotted versusr at tree level~dashed line!,

one loop ~dashed-dotted line!, two loops ~dotted line! and three
loops~estimate! plus the RG expression for the ultrasoft logarithm
~solid line!.
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between the two contributions, the ultrasoft matrix elem
LB and the soft Wilson coefficientVo2Vs , at a given order
of perturbation theory. This is why we have to specify t
scheme, the RS scheme in our case, which we use to e
nate~or to reduce! this ambiguity.

Obviously, LB is a function of the scalen f . We fix n f

52.5r 0
21 and the final result at this scale reads

LB
RS5@2.2560.10~ latt.!60.21~ th.!60.08~LMS!#r 0

21 .
~66!

Note thatLB is the only fit parameter. Also note that th
above value corresponds to thenf50 case. The errors of this
determination stem from several sources~for the above fit we
use lattice data up to distances of around 0.5r 0):

~1! ‘‘latt.’’ denotes the statistical error of the fit:60.10.
~2! ‘‘th.’’ stands for the theoretical errors.
We first consider the error due to the truncation of t

perturbative series~higher orders in perturbation theory/sca
dependence!. We obtain a first estimate by performing th
perturbative expansion inas(n i) or in as(1/r ). This provides
us with an estimate of neglected subleading logarithms.
tually, in both cases one and the same number,LB

RS

'2.25r 0
21 , is obtained, which we take as our central valu

The effects of higher orders in perturbation theory are e
mated by considering the convergence of the determina
of LB

RS at each order in perturbation theory. Working wi
as(n i), the series$2.43,2.37,2.28,2.25% is obtained. This se-
ries seems to show convergence for the last terms. In
case, the corrections are small. Working withas(1/r ), the
series$2.00,2.40,2.31,2.25% is obtained. This series is clearl
convergent although the corrections are larger than when
ing as(n i) as the expansion parameter. To be conserva
we will take the difference between the last two terms as
error made by truncating the perturbative series:60.06.
There is also some source of error from the normalizat
constant of the renormalon of the singlet and octet poten
For the singlet potential~following Ref. @15#! we estimate a
10% error inNVs

, which produces a60.10 error. For the
octet potential, the error is very small compared with oth
sources of error. Even if, conservatively, we consider
general shift produced by settingdVo,250 ~note that this
also accounts for the error in perturbation theory of the oc
static potential! our result only changes by'0.01/0.02. We
will neglect this error to avoid double counting. In the abo
analysis we have neglected non-perturbative effects. On g
eral grounds they have the short-distance structure,

dnp~EPu
2ES

g
1!.r 2FS Vo

RS2Vs
RS

LQCD
D 1Br2. ~67!

The Br2 term is due tor•O†EO type contributions in the
pNRQCD Lagrangian~see Ref.@9# for details!. The other
term in Eq.~67! is due tor•O†ES type contributions. This
produces a perturbative mass gap.F is the convolution of a
short distance and a long distance piece, depending on
ratio of Vo

RS2Vs
RS over the masses of the gluelumps. For t

purpose of estimating the uncertainty it seems reasonab
1-14
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TABLE III. The inverse lattice spacing, the mass of the 112 gluelumpLB
L in the lattice scheme, as we

as its conversion to the RS scheme to different orders in perturbation theory. NNNLO* stands for an e
obtained neglecting 1/Nc

2 corrections, for details see the text. In the last column, we state the valu
LB

RS(a21) using Eq. ~66! and the running according to the PV prescription, Eq.~61!. The errors only
incorporate the statistical uncertainties as well as the 8% uncertainty inLMSr 0 , added in quadrature, but n
estimates of ‘‘theoretical’’ errors.

a21r 0 LB
Lr 05LB

RSr 0(LO) LB
RSr 0(NLO) LB

RSr 0(NNLO) LB
RSr 0(NNNLO*) LB

RSr 0

2.94 5.33~10! 1.59~19! 2.82~12! 2.37~15! 2.41~10!

5.27 6.99~05! 1.97~17! 3.20~10! 2.88~12! 2.89~13!

7.32 8.36~05! 2.21~17! 3.55~10! 3.25~13! 3.16~13!
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keep only the leading term in this expansion. This is equi
lent to having a quadratic contribution,

dnp~EPu
2ES

g
1!.APu2S

g
1r 2. ~68!

If we introduce this term into the fit, we obtainr 0LB'2.30
@working with as(1/r )] with APu2S

g
1.20.4r 0

23 . We take

the difference as an indication of the error due to no
perturbative effects. By summing linearly all the above
rors we obtain60.21.

~3! ‘‘ LMS’’: this error is due to the uncertainty inLMS

5@0.60260.48#r 0
21 @37#: 60.08.

We have performed the fit using lattice data within a w
dow of inverse distances ranging from aboutn i'2.6 GeV
down to n f'1 GeV. From the plots~see Figs. 12 and 13!
one can actually see that the curves follow the lattice data
to values r &r 0 . This corresponds to very low energie
(,500 MeV). Being conservative, we will not use data d
termined at these low energies without a better understan
of the dynamics. Nonetheless, such a fit would actually p
duce very similar numbers to the ones quoted above. Th
even more so if a quadratic term is included. In gene
introducing more lattice points reduces the statistical err
~‘‘latt.’’ !. Including a quadratic term will reduce the theore
ical error onLB since some of the changes that occur wh
altering the order of perturbation theory can be absorbed
a variation ofAPu2S

g
1. However, the addition of a second fi

parameter increases the statistical error and also the un
tainty due toLMS. We conclude that while the individua
errors depend on the precise fitting details the total e
remains remarkably stable.

One might ask whether, in addition toLB , a reliable
value ofAPu2S

g
1 can be obtained. This, however, would r

quire more lattice data at short distances as well as a m
detailed understanding of ther 2 renormalon of the static sin
glet potential.

We do not consider theSu
2 data in this section as we hav

already established in Sec. II D that the difference with
spect to thePu potential is proportional tor 2 to leading
order. Hence we cannot obtain any independent new in
mation on LB from these data that have larger statistic
errors.
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B. Determination of LB
RS from LB

L

There exists a direct determination ofLB
L(a) ~the 112 or

B gluelump! by Foster and Michael@12#. The numerical val-
ues are displayed in Table III, where we used the samer 0 /a
values as were used in this reference. It is clear from
discussion in Sec. IV D that these are perfectly sensible n
bers if incorporated into a global scheme with renorma
cancellation, for instance, with the potentials also defined
the lattice scheme as in Sec. IV D. In doing this we are a
to independently determineLB in a different scheme. Con
sistency would require that after translating the lattice in
the RS scheme the results should agree with each other
will check this in this section.

The master formula that relates the lattice and the
scheme reads~known up to NNLO!

LH
RS~n f !5LH

L ~a!2@dLH
L ~a!1dLH

RS~n f !#. ~69!

Both LH
RS andLH

L have a power-like dependency onn f and
a21, respectively, but are renormalon-free,LH

L exactly and
LH

RS within the precision of our estimation of the renormalo
contribution. This implies that the combinationdLL1dLRS
does not contain a renormalon either if calculated in a c
sistent way:dLL(a) anddLRS(n f) contain one and the very
same renormalon contribution~with negative relative sign!.
The sum of both terms, expanded in terms ofas has good
convergence properties~using the same normalization poin
to enforce the renormalon cancellation at each order in p
turbation theory!. The explicit expression at NNLO reads

dLL~a!1dLRS~n f !

5
CA

2
v1a21as~n!

1H CA

2

a21

4p
$v21v1@2b112b0ln~na!#%

1n f~Ṽs,12Ṽo,1!J as
2~n!1•••, ~70!

where thev i can be found in Eqs.~38! and ~39!, b1 in Eq.

~42! andṼo,1 andṼs,1 in Table II. An estimate of theO(as
3)

term can be obtained from Eq.~78! below, under the replace
1-15
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G. S. BALI AND A. PINEDA PHYSICAL REVIEW D 69, 094001 ~2004!
ments,Cf°CA and Ṽs,i°2(Ṽs,i2Ṽo,i). This estimate will
be subject toO(1/Nc

2) corrections to the coefficientv3 .
In principle, n f and a21 need not be equal but we wi

take them similar to avoid large logarithms. The large n
merical values ofv2 andb1 are mainly due to contribution
from lattice-specific tadpole diagrams that arise because
breaking of Lorentz symmetry becomes particularly evid
at UV scales.a21. This often results in badly convergen
perturbative series when expanded in terms ofaL(a). How-
ever, the convergence is vastly improved, once the serie
reexpressed in terms of a more ‘‘physical’’ coupling lik
as(a

21)5aL@12b1aL
2/(4p)1•••# ~see, e.g. Refs

@33,38#!. This is also evident from Eq.~70! as v1'3.17,
(v22b1v1)/(4p)'21.97 „and @v322b1v22(b2

22b1
2)v1#/(4p)2'14.5….

We can now translate theLB
L values obtained by Foste

and Michael@12# into the RS scheme. The results are sho
in Table III and are also displayed in Fig. 14. ‘‘NLO’’ an
‘‘NNLO’’ refer to translating from the lattice scheme to th
RS scheme via Eq.~70! to O(as) andO(as

2), respectively.9

Obviously, to leading order,LB is scheme independen
‘‘NNNLO*’’ stands for an estimate obtained assuming th
the next-to-next-to-next-to leading order~NNNLO! contribu-
tion to dLL is equal to the NNNLO contribution todmL with
the replacement of the overall factorCf°CA . This is correct
up to O(1/Nc

2) effects. Finally, the conversion from the la
tice to the RS scheme has been performed using the f
loop running ofas at n5a215n f . This accelerates the con
vergence to the RS results. If, instead, we use then-loop
running ofas that is consistent with the order of the calc
lation, we still see convergence but with, in the NLO a

9Note that the counting here differs from that used in Fig. 11
the RS scheme, where we labeledO(as

2) as ‘‘LO.’’

FIG. 14. The lowest gluelump massLB
L as obtained on the lat

tice ~diamonds!, as well as converted into the RS scheme at N
~squares!, NNLO ~pentagons! and NNNLO* ~NNNLO estimate,
circles!. The error band corresponds to the result forLB

RS of Eq.
~66!, without the ‘‘theoretical’’ error, run to different scales, accor
ing to the PV prescription, Eq.~61!. The dashed lines, drawn t
guide the eye, are explained in the text.
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NNLO cases, larger corrections. This is mainly due to
fact that within the present window of energies the valu
obtained foras(n) from LMS from a one- or two-loop run-
ning are significantly different from those from the thre
loop running~which is close to four loop!. The lattice pre-
diction of LMS that we use as an input applies to very hi
energies, such that it is important to runas down to n
>2.5r 0

21 as precisely as possible.
Within present errors we can fit the data with straight lin

but there will be logarithmic corrections and, in the gluelum
dataLB

Lr 0 , additionalO(a2)5O(n f
22) lattice artifacts. The

figure reveals that at the lattice spacings investigated th
are tiny, relative to the linear slope. Except for these latt
corrections the running ofLB

L is non-perturbatively accurate
Needless to say that the power dependence ona21 is univer-
sal for all gluelumps, such that gluelump mass splittin
have a well defined continuum limit, which is also confirm
in Ref. @12#.

In lattice perturbation theory we can calculate the ‘‘ru
ning’’ of the gluelump data toO(as

2) @and up toO(as
3) if we

neglectO(1/Nc
2) effects#. There is a renormalon ambiguity i

the absolute value. However, the slope is not affected by t
If we take the valueLH

L (7.32r 0
21)'8.36r 0

21 from Table III
and perform the running with NNNLO* accuracy, we obta
the dashed line that joins the ‘‘LO’’ RS(5L) points. We can
see that this parametrization is quite close to the n
perturbatively evaluated data. Moreover, there is overall c
vergence, with higher order terms being numerically sma
in the lattice scheme. We will discuss this in more detail
Sec. VI, in the context of the static-light binding energyL̄L,
which has a similar perturbative expansion, up to an ove
factor Cf /CA , see Fig. 15.

In Fig. 14 we also compare the value obtained in Sec. V
above@Eq. ~66!#, with running according to the PV prescrip
tion Eq. ~61!, with the results obtained directly from th
lattice determination of the gluelump mass via Eq.~70!. We
see clear convergence with alternating signs from LO~dia-
monds!, NLO ~squares!, NNLO ~pentagons! and NNNLO*

FIG. 15. Perturbative running of the binding energyL̄ in the
lattice scheme, in comparison with lattice data, starting at the sm
est available lattice spacing. The NNNLO error band incorpora
the error due to the uncertainty inLMS @37#, and the statistical error
1-16
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~circles! towards the result calculated from thePu and Sg
1

potentials in the previous section and its running~error
band!. Our NNNLO* estimates already agree with this err
band. The dashed lines connecting the NLO, NNLO a
NNNLO* points are the corresponding transformations
the curve through the LO points and just drawn to guide
eye. All errors displayed in Fig. 14 are statistical only, pl
the uncertainty onLMS. Within the theoretical errors of Eq
~66! (60.21r 0

21), in fact we already find agreement at th
NNLO level. In Secs. VI A and, in particular, Sec. VI C, w
will analyze the running of the binding energy of static-lig
mesons in more detail; see also Fig. 18.

We obtain an independent second prediction forLB
RS from

the gluelump data. The statistical errors are smaller in
gluelump case than those we encountered from the c
tinuum potentials. In a first step we obtain the fit parame

LB
RS~7.32r 0

21!5@3.2160.04~ latt.!60.42~ th.!

60.10~LMS!#r 0
21 , ~71!

from a global NNNLO* fit,

LH
L ~a!5LH

RS~n f !1@dLH
L ~a!1dLH

RS~n f !#, ~72!

where we have chosenn5n f57.32r 0
21. We can then conver

this result into

LB
RS5@2.3160.04~ latt.!60.33~ th.! 20.19

10.18~LMS!#r 0
21 ,

~73!

for n f52.5r 0
21, using the PV running in the RS scheme. Th

compares well with the result from the potentials, Eq.~66!.
The errors displayed in Eq.~71! above are due to the

following sources:
~1! ‘‘latt.’’ is the sum of the statistical error (60.03) and

the error encountered when varying the fit range~i.e. exclud-
ing the left-most data point!: 60.01.

~2! ‘‘th.’’ is the sum of perturbative and non-perturbativ
errors. As perturbative errors we take the difference betw
NNLO and NNNLO* results (60.20) as well as a 10% un
certainty inNVs

2NVo
(60.18). To investigate possible non

perturbative effects we include ana2 term into the fit. We
estimate an additional60.04 uncertainty from this source
Adding these three errors linearly results in60.42.

~3! ‘‘ LMS’’ stands for the uncertainty due to the error
LMSr 0 @37#: 60.10.

Whereas the statistical error is smaller in this determi
tion than the one of Eq.~66! and the uncertainty due to th
error of LMS is comparable in size, the systematics are l
well under control, which is reflected in the large theoreti
error. First of all, for the lattice gluelumps we only have t
perturbative result toO(as

2) with an estimate of theO(as
3)

term while in Sec. V A we knew theO(as
3) results and have

an estimate of theO(as
4) terms. Furthermore, as the previo

analysis was based on observables with a well defined
tinuum limit, we circumvented the problem of disentangli
the a21 ‘‘running’’ of LBr 0 from O(LQCD

2 a2) lattice arti-
facts. With gluelump data on more and, in particular, fin
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lattice spacings the latter disadvantage~which at present is,
however, not the dominant one! can in principle be over-
come. In conclusion, it is nice to observe perfect agreem
between the two predictions, which enhances our confide
in the methods applied and adds further credibility to o
error estimates.

C. Higher gluelump excitations

Now that we have fixed the energy of the lightest glu
lump, we can quote absolute values for the remaining gl
lump spectrum using the results of Foster and Michael@12#.
We display our predictions in Table IV where the errors c
respond to the sum of the individual uncertainties, add
linearly. The dominant uncertainty is that ofLB , as the mass
differences between the different gluelumps have been de
mined with very good accuracy. Needless to say that th
results are scheme and scale dependent. The quoted num
refer to the RS scheme withn f52.5r 0

21'1 GeV. With the
information presented in this paper they can be run to diff
ent scales. For ease of reference we also converted t
values into GeV units~usingr 0

215394 MeV). However, we
note that one should add a scale uncertainty of about 10%
them to account for the fact that all results have only be
obtained in the quenched approximation.

Note that the gluelump operators can be represente
terms of gluonic fields@9,39#. In general one and the sam
gluelump can be created by infinitely many different adjo
operatorsH. Within each channel we display~one of! the
lowest dimensional such choice~s! in the table. The basic
building blocks are the covariant derivativeDi ~with JPC

5121, dimension 1!, the chromomagnetic fieldBi (112,
dimension 2! and the chromoelectric fieldEi (122, dimen-
sion 2!. The curl of the electric field has the quantum num
bers of the magnetic field, such that on the lattice all sta
can be created by operators that are local in time. Furt
more,D•B andD•E can be eliminated, the first because it
identically zero, using the Jacobi identity, the second by
plying the equations of motion. One example: the low
dimensional operator that creates the 312 state isD $ iD jBk% ,

TABLE IV. Absolute values for the gluelump masses in th
continuum limit in the RS scheme atn f52.5r 0

21'1 GeV, in r 0

units and in GeV. Note that an additional uncertainty of about 1
should be added to the last column to account for the quenc
approximation. We also display examples of creation operatorH
for these states. The curly braces denote complete symmetriz
of the indices.

JPC H LH
RSr 0 LH

RS/GeV

112 Bi 2.25~39! 0.87~15!

122 Ei 3.18~41! 1.25~16!

222 D $ iBj % 3.69~42! 1.45~17!

212 D $ iEj % 4.72~48! 1.86~19!

312 D $ iD jBk% 4.72~45! 1.86~18!

011 B2 5.02~46! 1.98~18!

422 D $ iD jDkBl % 5.41~46! 2.13~18!

121 (B`E) i 5.45~51! 2.15~20!
1-17
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where the curly braces denote the sum over all 10 symme
permutations of the indices. This includes three ter
Di( jD jBj50 such that indeed there remain only seven
dependent operators to create this seven-dimensional re
sentation. Also note thatD $ iBj % andD $ iEj % each only contain
five independent operators, consistent withJ52, etc.

It is interesting to see that the level ordering roughly c
responds to the lowest dimension of the creation opera
once the equations of motion are used to eliminate theE field
@9#. This makes theE field ‘‘heavier’’ than aB field, increas-
ing its dimension by one. The 322 gluelump ~two deriva-
tives and oneE which corresponds to dimension five, aft
substitutingE) is not included into the table as no controlle
continuum limit extrapolation was possible. However,
mass at fixed finite lattice spacing is in the same ball park
that of the other dimension five states, 422 and 121, in
support of this naı¨ve operator counting picture.

D. Comparison with previous results

We shall relate our results to previous determinations
the gluelump masses. All these suffer from the problem
obtaining the global constant and, in none of these,
scheme was clearly defined, such that they need not yield
same results that we obtain.

In Ref. @39# the gluelumps were studied within a strin
model. One general feature of this approach is the exces
predicted states. This seems to be a problem of this m
since it does not appear to be compatible with QCD, or m
precisely with its realization for this kinematical regime: pN
RQCD @9# ~see also the discussion in Ref.@40#!. The predic-
tion of this model,LB(nf50)51.87 GeV, is by a factor of
two larger than our result.

In Ref. @41#, the same value for the electric and magne
correlation length is obtained:LE(nf50)5LB(nf50)
50.90(5)(10) GeV, from lattice simulations using the coo
ing method. The number forLB coincides with ours. How-
ever, the splitting between chromoelectric and chromom
netic correlators is unaccounted for. From the results
Foster and Michael one would then assign a systematic e
of the order of this splitting'400 MeV: clearly a better
conceptional understanding of how ‘‘cooling’’ removes sh
distance fluctuations, without destroying essential infra
physics, would be useful. On the other hand, it is comfort
that numbers similar to our results are obtained in this
proach, which is also meant to subtract the perturbative c
tributions from the low energy matrix element.

In Ref. @42# a sum rule analysis of the electric and ma
netic correlator was made. The main result wasLE(nf50)
5(1.960.5) GeV. It should be noted that the value ofLMS
on the lattice is now smaller by 5%, compared to the va
used in this analysis. Taking this into account we find t
result compatible with ours@1.25~16! GeV#, within errors.
Moreover, in this analysis, evidence forLE.LB was re-
ported.

In Ref. @43#, an MIT bag model calculation was used
obtain the gluelump spectrum. No errors were assigne
this evaluation. The value ofLB is about 500 MeV larger
than ours and quite consistent with the sum rules evaluat
09400
ic
s
-
re-

-
r,

s

f
f
e
he

of
el
e

c

g-
f
or

t
d
g
-

n-

-

e
s

to

n.

The same holds true forLE ; however, for the higher excita
tions the agreement with the results of Foster and Michae
less convincing.

In Ref. @11#, lattice correlation functions that are need
to calculate relativistic corrections to the static potential w
used in order to check the validity of the stochastic vacu
model in the Gaussian approximation. Under this assum
tion, which was to some extent tested in this reference, th
correlation functions could be related to gluonic fie
strength correlators and upper limits for the gluelump mas
were obtained:LB(nf50)<1.64(16) GeV andLE(nf50)
<1.04(15) GeV, respectively: the ordering of the gluelum
is wrong, however; the upper limits quoted are in no cont
diction to our results~or indeed to a different ordering!.

In Ref. @44# a constituent quark model was used. T
results roughly agree~within a 200–300 MeV error! with the
splittings predicted by Michael and Foster and the hyb
spectrum at short distances~see Ref.@40# for some criticism
of this evaluation!. For the lightest gluelump they obtai
LB'1.4 GeV.

We have seen how different determinations ofLB result
in values ranging from less than 1 GeV up to nearly 2 G
These numbers are all scheme dependent. This may ex
the huge differences between different results. Our re
provides strong constraints on vacuum models. Furtherm
the RS scheme provides a unified framework to study
non-perturbative effects in an unambiguous and model in
pendent way.

VI. STATIC-LIGHT SYSTEMS

The situation discussed above very much resembles
one that one encounters in heavy-light mesons in the s
limit. In this case, the adjoint source is replaced by a fun
mental source which is not screened by gluonic fields but
a light Dirac quark instead.~A light Higgs scalar in the fun-
damental representation would be an alternative possibil!

In these systems the binding energyL̄ of the 1
2

2 state~which
will correspond to pseudoscalar and vector heavy-light m
sons, once 1/mb corrections and the spin of the heavy qua
are taken into account! plays a role similar to that of theLB
discussed above. The experimental mass of theB mesonMB
can be factorized into

MB5L̄1mb1O~1/mb!, ~74!

where bothL̄ and mb depend on scheme and scale. In t
literature~see, e.g. Ref.@18#! the binding energy in the lattice
scheme is referred to asE(a)5L̄L(a), which is renormalon-
free but has ana21 power divergence. For the Wilson actio
andnf50 this dmstat

L (a) power term is known toO(as
3) in

perturbation theory@Eqs.~37!–~40!#. Subtracting this pertur-
bative result introduces renormalons.

It is also possible to define the binding energy in an e
tirely non-perturbative renormalon-free and power-term f
way, for instance by subtracting the energy of a tempo
Schwinger line in Coulomb or Landau gauge@45#. In fact the
same can be achieved in the case of the lowest gluelu
mass, either by subtracting the energy of an adjo
1-18
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TABLE V. The inverse lattice spacing@51#, the static-light binding energyL̄L5E @34,48–50# in the lattice scheme, as well as it
conversion to the RS scheme to different orders in perturbation theory. In the last column, we state the values ofLB

RS(a21) using the PV
running, Eq.~61!, of the result, Eq.~76!, in the RS scheme. The errors only incorporate the statistical uncertainties as well as t
uncertainty inLMSr 0 @37#, added in quadrature. The values in the last column, which have been obtained from the physicalY(1S) andB
meson masses, have additional errors inherited from Eq.~76!, which, however, will only result in an overall upward or downward shift a
will not affect their differences.

Ref. a21r 0 L̄Lr 0 L̄RSr 0(NLO) L̄RSr 0(NNLO) L̄RSr 0(NNNLO) L̄RSr 0

@50# 2.93 2.45~ 6! 0.79~10! 1.34~ 7! 1.16~ 8! 0.99~1!

@34# 2.93 2.22~ 4! 0.56~ 9! 1.11~ 5! 0.93~ 6! 0.99~1!

@34# 4.48 2.86~ 4! 0.83~ 8! 1.37~ 6! 1.23~ 6! 1.16~3!

@48# 5.37 3.28~ 6! 1.03~ 9! 1.59~ 7! 1.45~ 8! 1.22~4!

@34# 6.32 3.44~ 8! 0.96~11! 1.53~ 9! 1.40~ 9! 1.28~4!

@48# 7.36 3.83~ 8! 1.10~11! 1.70~ 9! 1.57~10! 1.34~4!

@49# 7.36 3.87~11! 1.14~13! 1.74~12! 1.61~12! 1.34~4!

@34# 8.49 4.24~ 8! 1.24~11! 1.87~ 9! 1.74~10! 1.40~4!

@48# 9.76 4.49~10! 1.20~13! 1.85~11! 1.72~12! 1.45~5!
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Schwinger line in a fixed gauge~see also Ref.@19#! or by
subtracting the on-shell mass of an adjoint Polyakov-Wils
line, encircling a compactified lattice dimension. From
EFT point of view, however, one would like to combine
non-perturbative low energy result with a perturbative cal
lation at high energies. For instance, to quote a value for
b quark mass in theMS scheme, the UV renormalon of th
binding energy is required to cancel the IR renormalon of
OS mass and hence a perturbative subtraction is esse
the renormalon of the expansion of the power divergenc
the same as the one that is encountered in the conve
from the OS mass into theMS mass. This procedure ha
been implemented in the past in calculations of theb quark
mass from lattice simulations in the static limit@18#.

The b quark mass has also been obtained in perturba
QCD in the RS scheme atn f52 GeV from theY(1S) sys-
tem using EFTs@15#. Subtracting this value from the spin
averaged mass of theB meson yields

L̄RS~n f51 GeV!5@0.36560.085~ th.! 20.061
10.045~LMS!# GeV.

~75!

This number is different from the value quoted in Ref.@15#,10

since here we have performed the running ton f51 GeV us-
ing the PV prescription and not includedO(1/mb) correc-
tions into the fit~these two effects partially compensate ea
other!. Using the PV prescription allows us to perform th
logarithm resummation for the renormalon related term
However, the result strongly depends on the value ofLMS.

Equation~75! has been obtained from the physicalY and
B systems, not in the quenched approximation. The s
r 0

215394620 MeV @20,46,47# is also obtained fromY phe-
nomenology. Reexpressed in terms ofr 0 we get

10Again, note that what we call the RS scheme here correspo
to the RS8 scheme of Ref.@15#.
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L̄RS~n f52.5r 0
21!5@0.9260.22~ th.! 20.11

10.15~LMS!#r 0
21 .

~76!

In what follows we will extractL̄RS from lattice data of
static-light mesons. After addressing theb quark mass we
will conclude with a more detailed study of the running
the lattice and RS schemes, using precision data from
static potential within an energy range, 2&r 0n f5r 0 /a
&15.

A. Determination of L̄RS

We will use Eq.~76! as our starting point for thenf50
situation. In order to compare with lattice results in t
quenched approximation we will employ thenf50 running
of L̄RS(n f) and keep in mind that on top of the errors stat
above one might expect an additional 10% quenching er

L̄L(a) has been calculated on a variety of lattice spacin
by different collaborations@34,48–50#. The main source of
uncertainty in these determinations is the extrapolation
zero light quark mass. We used ther 0 /a values from the
interpolation of Ref.@51# to assign the scale.11 The results are
displayed in Table V and are roughly consistent with ea
other, with the exception of the coarsest lattice pointr 0
'2.93a that corresponds tob55.7. Here the raw data o
Ref. @50# are more accurate but the chiral extrapolation
Ref. @34# should be better controlled.

We multiply the values obtained forLB
Lr 0 of Ref. @12#

~that are displayed in Table III! by the color factorCf /CA .
At b55.7,6.0 and 6.2, respectively, we obtain the numeri
values 2.37~4!, 3.11~2! and 3.72~2!. The corresponding val-
ues in Table V read 2.45(6)u2.22(4), 3.28~6! and
3.83(8)u3.87(11) where for bothb55.7 andb56.2, two

ds11These values slightly differ from those quoted in Ref.@12# used
in Table III, which cover a smaller window of lattice resolutions
1-19
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independent determinations exist. The qualitative agreem
is remarkable: not only the perturbative expansions ofdL
and dmstat are dominated by terms that are proportional
the respective Casimirs of the gauge group representatio
the static source but also the non-perturbative values th
selves. In fact also in the RS scheme the result Eq.~66! is
close to the value displayed in Eq.~76!, multiplied by
CA /Cf59/4.
f-

th
d
ti-

th

-
rn

e

g
d

t
ti

he

09400
nt

of
-

Similar to the discussion in Sec. V B, we can translate
results from the lattice scheme into the RS scheme. The m
ter formula in this case is very similar to Eq.~69! and reads
~known to NNNLO!,

L̄RS~n f !5L̄L~a!2@dmstat
L ~a!2dmRS~n f !#, ~77!

with
dmstat
L ~a!2dmRS~n f !5

Cf

2
v1a21as~n!1H Cf

2

a21

4p
@v21v1B1~na!#1

n f

2
Ṽs,1J as

2~n!

1H Cf

2

a21

~4p!2
$v312v2B1~na!1v1@B2~na!1B1

2~na!1b1
2#%1

n f

2
F Ṽs,22Ṽs,1

b0

p
lnS n f

n
D G J as

3~n!

1•••, ~78!
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Bi~x!52bi12b i 21ln~x!, i 51,2, ~79!

and the coefficientsṼs,1 and Ṽs,2 can be found in Table II.
The coefficientsv i and bi can be found in Eqs.~38!–~40!
and Eqs.~42! and ~43!, respectively.

Equations~77! and~78! also relate results obtained at di
ferent lattice spacings to each other,

L̄L~a8!5L̄L~a!2@dmstat
L ~a!2dmstat

L ~a8!#. ~80!

To illustrate this we display theLL(a) values of Table V in
Fig. 15, together with the expected running, starting at
finest, i.e. rightmost, lattice point at LO, NLO, NNLO an
NNNLO. The NNNLO error band contains both the statis
cal error and that due to the uncertainty inas(a). The run-
ning is done in each order in a self-consistent way to

given order inas, according to Eq.~78! ~without the Ṽs,i

terms!. We usedn59.76r 0
21 and the initial valueas(n) was

calculated fromLMSr 0 using the four loop running. We ob
serve convergence and, moreover, the series is sign alte
ing. To NNNLO, except for the lower lying of the two
r 0 /a'2.93 data points, there is no contradiction betwe
data and the expectation. However, the points of Ref.@34#
have a slightly more pronounced slope such that ther 0 /a
'2.9,4.5 and 6.3 points (b55.7,5.9 and 6.1! lie below the
curve while ther 0 /a'8.5 point (b56.3) lies somewhat
above.

We also display the data of the table in Fig. 16, in analo
to Fig. 14, but we disregard the LO result that is alrea
displayed in Fig. 15. The size ofdmstat

L (a)2dmRS(a
21) in-

creases linearly ina21, with logarithmic corrections: a
coarse lattice spacings there might be significant perturba
O(as

4) and non-perturbativeO(a2/r 0
2) corrections affecting

the slope of this function while at fine lattice spacings t
slope can be determined accurately but thedm difference
e

e

at-

n

y
y

ve

itself becomes large. An accurate conversion between
two schemes can therefore neither be obtained at extrem
fine nor at very coarse lattice spacings. Settingn5n f , the
difference between NLO and NNLO translation is minimiz
for 3&r 0n f&4 while that between NNLO and NNNLO is
minimal for 7.5&r 0n f&9, where the widths of these band
are determined by our uncertainty in the value ofLMSr 0 .

We choose to translate the lattice scheme results into
RS scheme by means of a global NNNLO fit to ther 0 /a
.5, i.e. b>6.0 data, expanded in terms ofas(n
59.76r 0

21), where we setn f5n. The result reads

L̄RS~9.76r 0
21!5@1.760.08~ latt.!60.18~ th.!

60.04~LMS!#r 0
21 . ~81!

Note thatL̄RS is the only fit parameter.
The dashed curves in Fig. 16 correspond to such

NNNLO fit to the LO results, subsequently transformed
the same way as the data points to NLO, NNLO a
NNNLO. The error band corresponds to the result of E
~81!, without the theoretical error, run to different energie
using the PV prescription, of Eq.~61!: unlike the band dis-
played in Fig. 14 above, this is not the result of an indep
dent determination. We would also have found agreem
with the result of Eq.~76!, but only within the large theoret
ical errors of this un-quenched determination.

At high order in the perturbative expansion and at hi
energies one would expect the slope of the non-perturba
running in the lattice scheme, translated into the RS sche
to approach that of the running within the RS scheme. D
carding the four data points of Ref.@34#, Fig. 16 nicely con-
firms this expectation. We will investigate this running wi
higher accuracy in Sec. VI C.
1-20
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The errors of the determination Eq.~81! above stem from
the following sources:

~1! ‘‘latt.’’ is the sum of the statistical error (60.03) and
the error encountered when varying the fit rangeamin

21 r0

54.48,5.37,6.32 (60.05): 60.08.
~2! ‘‘th.’’ is the sum of perturbative and non-perturbativ

errors. As the perturbative error we take the difference
tween NNLO and NNNLO results. Varying the fit range
above this difference never exceeds60.04. We also study
the error due to the uncertainty ofNVs

obtaining60.06. To
investigate possible non-perturbative effects we include
a2 term into the fit. We estimate an additional60.08 uncer-
tainty. Adding these three errors linearly results in60.18.

~3! ‘‘ LMS’’ stands for the uncertainty in the determinatio
of LMSr 0 @37#: 60.04.

Using the running in the RS scheme~we note that the
error due to the uncertainty ofNVs

almost cancels in the
running!, we obtain

L̄RS~2.5r 0
21!5@1.1760.08~ latt.!60.13~ th.!

60.09~LMS!#r 0
21 ~82!

from the value of Eq.~81!. This nf50 result compares rea
sonably well with the phenomenologicalnf54 value of Eq.
~76! and its error is of a comparable size.

B. Comment on theb quark mass

We cannot resist the temptation to obtain a value for
RS scheme bottom quark mass, using Eq.~74! and our
quenched result, Eq.~82!. We obtain

mb,RS~1 GeV!5@4849632~ latt.!660~ th.!

635~LMS!# MeV, ~83!

FIG. 16. The binding energyL̄, obtained on the lattice and
converted into the RS scheme at NLO~squares!, NNLO ~penta-
gons!, NNNLO ~circles! and the result of Eq.~81!, run to different
scales using the PV prescription~neglecting the ‘‘theoretical’’ er-
rors!. The dashed lines are explained in the text.
09400
-

n

e

where we have translated Eq.~82! into physical units for
n f51 GeV and also added an extra theoretical error
630 MeV, due to 1/mb corrections, combined quadraticall
with the theoretical error inherited from the lattice determ
nation of L̄RS. From this number we can compute theMS
scheme result,

mb,MS~mb,MS!5@4191629~ latt.!647~ th.!61~LMS!# MeV,
~84!

where we have performed any running and manipulat
with nf54 and used the PV prescription to runmb,RS from 1
GeV up to the bottomMS mass.12 In this way higher order
terms in the relation between theMS and the RS mass ar
minimized. If instead one determinesmb,MS(mb,MS) directly
from its perturbative relation withmb,RS(1 GeV) one obtains
a somewhat larger result, but with sizable higher order ter
Note that some of the theoretical errors, such as the un
tainty of NVs

, are correlated with the running ofas.
Obviously one has to allow for quenching errors. Naı¨vely

one might assume anO(10%) effect on the binding energ
which amounts to 50 MeV in Eq.~83!. However, this might
be an underestimate since the running of the mass with
scale in thenf50 case is very different from that fornf

54 and the relative effect onL̄!mb , due to a different
running, is larger than that on the quark mass. To illustr
this we also work consistently withnf50 and obtain

mb,MS~mb,MS!5@4339629~ latt.!649~ th.!69~LMS!# MeV.
~85!

This differs from the value of Eq.~84! by almost 150 MeV.
Note that we have used thenf50 valueLMS50.602r 0

21 to
obtain the above results. Using thenf55 QCD world aver-
ageas(Mz)50.118 instead~running it across the bottom fla
vor threshold down to 1 GeV!, the central value of Eq.~84!
would read,mb,MS(mb,MS)54113 MeV. The difference be
tween these two values may also be indicative of the typ
size of the error due to quenching.

We feel that 1 GeV might be a more natural scale
obtain annf54 prediction from the quenched model than
GeV and hence we prefer the central value of Eq.~84!. After
all, the quenched model has been adjusted to reproduce
energy QCD phenomenology and indeed Eqs.~76! and ~82!
agree with each other within errors. However, as discus
above and as indicated by the 150 MeV difference from
ing a different perturbative running, such predictions have
be consumed with some caution. Equation~84! demonstrates
the precision that can be achieved in lattice simulations
static-light mesons with sea quarks to NNNLO. Obvious
the ‘‘latt.’’ error can systematically be reduced. Note th

12We ignore the charm mass threshold. Since the charm qu
mass is not much heavier than 1 GeV this is a small effect anyh
completely paled by our dominant source of uncertainty, thenf

50 approximation.
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TABLE VI. The inverse lattice spacing, the estimate of the static-light binding energy in the la

scheme,L̄pot
L 5ES

g
1

L (r 0)/21D, Eqs.~86! and ~87!, as well as its conversion to the RS scheme to differ

orders in perturbation theory. The errors only incorporate the statistical uncertainties of theES
g
1(r 0) data, as

well as the 8% uncertainty inLMSr 0 @37#, added in quadrature. The overall error due to the uncertainty inD,

which does not affect the running ofL̄L, is not displayed.

a21r 0 L̄pot
L r 0 L̄RSr 0(NLO) L̄RSr 0(NNLO) L̄RSr 0(NNNLO)

1.95 2.11~10! 0.64~14! 1.30~10! 0.99~12!

2.42 2.35~10! 0.81~12! 1.39~10! 1.16~11!

2.94 2.51~4! 0.86 ~8! 1.40 ~5! 1.22 ~6!

3.80 2.81~5! 0.95 ~8! 1.49 ~5! 1.33 ~6!

4.47 3.02~3! 1.00 ~7! 1.54 ~4! 1.39 ~5!

5.35 3.29~2! 1.05 ~7! 1.61 ~4! 1.46 ~5!

7.30 3.84~2! 1.13 ~7! 1.73 ~4! 1.59 ~5!

9.89 4.53~2! 1.21 ~8! 1.87 ~5! 1.73 ~6!

12.74 5.23~3! 1.26 ~9! 1.99 ~6! 1.85 ~7!

14.36 5.47~10! 1.16~13! 1.92~12! 1.78~12!
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with NNNLO perturbative results, the dominant theoretic
uncertainty~apart from the sea quark content! is due to 1/mb
corrections.

C. The running of L̄ from the static lattice potential

To leading order, the singlet static energyEs is the sum of
twice the heavy quark mass and the singlet potential, Eq.~2!,
while MB is the sum of the quark mass and the bindi
energyL̄, Eq.~7!. Consequently, in the OS (RS) schemesVs

contains twice the leading renormalon~power term! of L̄. In
QCD with sea quarks this is also evident from the lar
distance behavior, whereEs(r ) will approach 2MB .

In the lattice scheme, the non-perturbative energyE
S

g
1

L

differs from Es by twice the quark mass, Eq.~45!, and con-
tains the same power term as the static-light energyL̄L

~times two!. One can explicitly verify this in perturbation
theory. In QCD with sea quarksE

S
g
1

L
(r ) will approach 2L̄L

for r *r c , where r c denotes the distance associated w
‘‘string breaking’’ and is implicitly defined byEs(r c)
52MB . We find the static potential@46,52# ES

g
1 to exceed

the values of 2L̄L of Ref. @48# at r .r c5(2.2560.15)r 0 , a
distance that is statistically indistinguishable from the va
r c'2.3r 0 , obtained in simulations withnf52 light sea
quarks@3,13#.

The difference 2L̄L2E
S

g
1

L
(r 0)5E

S
g
1

L
(r c)2E

S
g
1

L
(r 0) is a

constant, up toO(a2) lattice artifacts. In what follows we
will investigate the running of

L̄pot
L ~a!5

1

2
E

S
g
1

L
~r 0 ;a!1D, ~86!

as a function ofa21. The static lattice potentialES
g
1(r 0)/2

can be determined more precisely thanL̄L: in terms of com-
puter time it is cheaper to obtain with the same statist
09400
l

e

e

l

error and, since no chiral extrapolation is involved, with v
tually no systematic uncertainties. However, we do not kn
the absolute normalizationD. We reanalyze the lattice poten
tials of Refs.@46,52# to correctly account for the propagatio
of the uncertainty ofr 0 into the combinationr 0ES

g
1(r 0). By

matching the lattice potential E
S

g
1

L
(r 0)/25(2.856

60.014)r 0
21 to L̄L5(3.84460.065)r 0

21 at b56.2 (r 0 /a
'7.3), where we have two independent results for the la
quantity @48,49#, we obtain

D5~0.98860.067!r 0
21 . ~87!

For ease of comparison with Sec. VI A, we display the
sulting L̄pot

L (a) in Table VI as well as in the figures. Th
additional uncertainty due to the error inD should be kept in
mind.

We displayL̄pot
L in Table VI, together with conversion

into the RS scheme, according to Eqs.~77! and ~78!. The
data are also depicted in Fig. 17~full diamonds!, together
with the results from the static-light energiesL̄L ~open dia-
monds!. Except for the four data points of Ref.@34# at
r 0 /a'2.9,4.5,6.3 and 8.5, whose slope is somewhat inco
patible with the results from the other references as wel
with perturbation theory~as we already noticed in Sec
VI A !, we find agreement between the non-perturbative r
ning of ES

g
1(r 0)/2 and that ofL̄L, down to the lowest scales

This need not be so since in principle the results may di
by O(a2/r 0

2) lattice terms. We also compare this runnin
with the expectation from the valueLMS'0.602r 0

21 ~solid
line!, where we use the normalization suggested by the c
tral value of Eq.~81!, L̄RS(n f59.76r 0

21)'1.70r 0
21.

As can be seen there is no contradiction between the
tice data and NNNLO perturbation theory down to scales
low as 2r 0

21 and as high as 15r 0
21. This agreement is quan

tifiable: a one-parameter NNNLO fit to thea21.5r 0
21 data
1-22
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~setting LMS50.602r 0
21) yields x2/NDF53.53/4, with the

value~translated into the RS scheme for ease of comparis!

L̄RS~9.76r 0
21!5~1.7160.01!r 0

21 . ~88!

Including all available data results inx2/NDF56.91/9 with

L̄RS(9.76r 0
21)5(1.7060.01)r 0

21. The errors of the above
examples are purely statistical. The uncertainties inD and
LMS as well as theoretical errors are unaccounted for. If
go to NNLO we obtain thex2/NDF values of 16.3~all data
points!, 23.0 (a21.5r 0

21) and 6.7 (a21.9r 0
21). Also, the

predicted value ofL̄RS(9.76r 0
21)r 0 becomes somewhat un

stable, ranging from 1.76~all data points!, 1.79 (a21

.5r 0
21), up to 1.91 (a21.9r 0

21): within the accuracy of
the data it is essential to go to at least NNNLO in pertur
tion theory.

In Fig. 17 and Table VI we have also displayed the
sults, translated into the RS scheme to different orders
perturbation theory. In Fig. 18 we focus on this comparis
This figure very much resembles Fig. 16, only that now
error bars are smaller as we discard the error ofD, which
will only affect the overall value ofL̄ but not the running
with the scale. The dashed lines correspond to NNNLO p
turbation theory in the lattice scheme withLMS50.602r 0

21,
and the central value of Eq.~88! as normalization point. This
running perfectly agrees with the data down to very lo
energies. As already observed in Sec. VI A, we also find n
convergence fora21*3r 0

21, as the order of the perturbatio
theory is increased. The error band corresponds to the

FIG. 17. The binding energyL̄pot
L , Eq. ~86!, in the lattice

scheme~full diamonds!, in comparison withL̄L of Sec. VI A~open
diamonds!. The constantD has been adjusted by requiring agre
ment between the two data sets atr 0'7.3a. The uncertainty ofD
5(0.98860.067)r 0

21 is not included into the errors. NLO, NNLO

and NNNLO refer to transformations ofL̄pot
L into the RS scheme to

different orders in perturbation theory. The solid line correspond
the NNNLO expectation withLMS'0.602r 0

21, and the central

value of Eq.~81!, L̄RS(n f59.76r 0
21)51.70r 0

21.
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prescription of the running in the RS scheme13 with
L̄RS(9.76r 0

21)5(1.7060.04)r 0
21, run to different scales, us

ing LMS5(0.60260.048)r 0
21. Note that the errors that we

display in this case are only due to the uncertainty inas,
with all other error sources of Eq.~81! ~as well as the uncer
tainty of D) ignored.

We find excellent agreement between data and the
dicted running. In fact, one can in principle determineas
from the logarithmic corrections to thea21 running of the
binding energy: in dedicated lattice simulations of the sh
distance static potential tremendous statistical accuracy
be achieved and tiny lattice spacings are accessible@25#.
Even using our static singlet potentials@46,52# that are less
accurate than those of this recent reference, a two-param
NNNLO fit to the a21.5r 0

21 data yields LMS5(0.590
60.036)r 0

21 and L̄RS(9.76r 0
21)5(1.7360.04)r 0

21 with
x2/NDF53.35/3. Including the whole energy range, down
a21'2r 0

21, results in LMS5(0.62760.026)r 0
21 and

L̄RS(9.76r 0
21)5(1.6860.02)r 0

21, still with very acceptable

x2/NDF56.08/8. The results forL̄RS are in perfect agree
ment with those obtained in Eqs.~81! and ~88!. Moreover,
the fits are consistent with the value of Ref.@37#, LMS

5(0.60260.048)r 0
21, within statistical errors smaller tha

the uncertainty of this reference value.

13At n f@n59.76r 0
21 we find some differences between th

NNNLO running in the lattice scheme~dashed black line! and the
PV prediction~error band!, due to large logarithms in the differ
ence, Eq.~80!, where we have not attempted a logarithmic resu
mation.

o

FIG. 18. The binding energyL̄pot
L , Eq. ~86!, translated into the

RS scheme at NLO~squares!, NNLO ~pentagons! and NNNLO
~circles!. We have neglected an overall error in the vertical scale
60.067r 0

21, due to the uncertainty ofD, that does not affect the
running. The dashed lines correspond to the NNNLO running in
lattice scheme withLMS50.602r 0

21, where we used the fit result o

Eq. ~88!, L̄RS(9.76r 0
21)'1.71r 0

21, as normalization. The error ban

corresponds to the prediction of Eq.~81!, L̄RS(9.76r 0
21)5(1.70

60.04)r 0
21, and includes the uncertainty due toLMS5(0.602

60.048)r 0
21 ~but no other errors!.
1-23
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In conclusion, we have demonstrated that the running
the binding energy in the lattice scheme can be reprodu
with incredible accuracy in NNNLO perturbation theory,
terms ofas. This accuracy is possible since, unlike in t
case of the binding energy itself, there is no leading ren
malon contribution to its running. Down to energies of abo
1 GeV we do not see any sign of a break-down of pertur
tion theory or evidence of significant non-perturbative co
tributions to the running. We have also confirmed that
theoretical errors estimated in Eqs.~81! and ~82! are indeed
conservative.

VII. GLUINONIUM AND OTHER RELATED ISSUES

We already mentioned that gluelumps are interesting
the context of bound states, including heavy adjoint partic
such as gluinos of supersymmetry~SUSY! models~even if it
is quite likely that they will decay before any kind of ha
ronization takes place!. In this case, to leading order i
HGET ~heavy gluino effective theory!, the gluino mass can
be obtained from the relation,

MG̃5LB
OS1mg̃,OS5LB

RS~n!1mg̃,RS~n!, ~89!

in a scheme of choice that can then be converted into
mass in, say, theMS schemem̄g̃(m̄g̃), analogously to the
discussion of Sec. VI. We will limit most of the discussio
below to the RS and OS schemes but translation into lat
schemes is straightforward.

MG̃ denotes the mass of the lightest~spin-averaged! glue-
ballino. Note that in this context the gluelump energyLB

plays the same role as the binding energyL̄ did for heavy-
light mesons. We haveLH

RS(n f)5LH
OS2dLRS(n f) and hence

mg̃,RS~n f !5mg̃,OS1dLRS~n f !: ~90!

dmg̃,RS52dLRS in the glueballino case corresponds to t
dmRS of heavy-light mesons. We can also write down t
above equations in the lattice scheme in which case, u
the same conventions as in other parts of this paper,dmg̃,L
5dLL .

In addition to glueballinos one can imagine gluino-glui
bound states: gluinonia,G. Their dynamics is dictated by th
following Lagrangian:

LpNRQCD,G5E d3r d3R Tr$SG
†~ i ]02VA,s!SG

1OG,1
†~ iD 02VA,o!OG,11•••%, ~91!

at leading order in 1/mg̃ and in the multipole expansion. Thi
is analogous to Eq.~1!, replacing the static sources in th
fundamental by static sources in the adjoint representat
This means that there will be further multiplets in Eq.~91!
that we will not consider in this paper.

The singlet potential between two adjoint sourcesVA,s(r )
has been calculated in perturbation theory toO(as

2) and the
corresponding energyEA

L(r ;a) was determined in lattice
simulations~see, e.g. Ref.@24#!. Up to lattice artifacts}a2

we can write
09400
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EA~r !52mg̃,L~a!1EA
L~r ;a! ~92!

52mg̃,L~a!1VA,s,L~r ;a!1O~r 2! ~93!

52mg̃,RS~n f !1VA,s,RS~r ;n f !1O~r 2!, ~94!

where the normalization ofEA
L(r ) with respect toEA(r ) can

be obtained from the gluinonium spectrum. Obviously,

lim
r→`

EA~r !52MG̃ , ~95!

while for the bottomonium energy in QCD with sea quar
one obtains~up to 1/mb corrections and neglecting radial an
gluonic excitations!,

lim
r→`

Es~r !5 lim
r→`

EH~r !52MB . ~96!

In combining Eq.~94! with Eqs.~26! and~30! we obtain the
important equality,

EA~r !12@EB~r !2Es~r !#

5VA,s,RS~r ;n f !12@Vo,RS~r ;n f !2Vs,RS~r ;n f !#

12MG̃1O~r 2!, ~97!

where we have used the fact thatMG̃5mg̃,RS1LB
RS andEB

P$EPu
,ES

u
2%. The effect ofdmRS cancels from the combi-

nation EB2Es and dLRS from EA12EH . Since the glue-
ballino mass is a physical observable this implies that, up
O(r 2) corrections, the combinationVA,s(r )12@Vo(r )
2Vs(r )# is scale independent and free of renormalon a
power contributions: the UV renormalon ofVo is cancelled
by the UV renormalon ofVs while the leading IR renorma
lon of Vo , which we studied in this paper, is cancelled
one-half of the UV renormalon ofVA,s . In fact, to O(as

2)
this combination explicitly vanishes and theO(as

3) term is
suppressed by a color factor 1/Nc

2 .
In the above equationEB(r ) corresponds to thePu or Su

2

hybrid levels. For a generalEH(r ) we would have to replace
the MG̃ on the rhs by the mass of the excited glueballino
the respective channel. Atr→` the rhs of Eq.~97! will
approach 2MG̃ , see Eqs.~95! and ~96!.

We wish to compare our expectation with lattice da
This can either be done after an extrapolation of these to
continuum limit or at finite lattice spacing in the lattic
scheme. Reexpressing Eq.~97! in terms of the energy levels
as determined in the lattice scheme@EA(r )5EA

L(r ;a)
12mg̃,L(a), etc.#, and using the conventions of Sec. IV D
this amounts to

EA
L~r ;a!12@EPu

L ~r ;a!2E
S

g
1

L
~r ;a!2LB

L~a!#

5VA,s,L~r ;a!12@Vo,L~r ;a!2dLL~a!2Vs,L~r ;a!#

1O~r 2!1•••

5O~r 2!1O~as
3/Nc

2!1O~LQCD
2 a2!1O~a2/r 2!.

~98!
1-24
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Both the lhs and rhs of the above equation are explicitly f
of a21 power terms~and of leading renormalons!. In fact the
rhs vanishes in perturbation theory, to at leastO(as

3/Nc
2). As

indicated in the equation, in general there will be no
perturbativeO(a2/r 2) as well asO(LQCD

2 a2) lattice arti-
facts, in addition to theO(r 2) corrections from higher term
in the multipole expansion.

The above combination is extremely interesting as
small r there should only be a quadratic but no linear ter
At r *2r 0 the adjoint string will break and the lhs of th
equation will approach zero like 1/r . In the intermediate re-
gion 0.5r 0,r ,2r 0 one would expect two non-perturbativ
contributions, a linear term from the slope ofEA(r ), with an
effective string tension@24#, seff5@3.0960.10#r 0

22, as well
as a 1/r term that dominantly originates from the differen
between static hybrid and singlet potentials and whose c
ficient will approach 2p as r→`, in an effective string
model expectation. In fact forr'r 0 one would expect this
1/r term still to dominate over the linear term.

We wish to compare this expectation to numerical da
Unfortunately, on isotropic lattices where we know the glu
lump mass in the lattice scheme we did not compute
adjoint potential while on our anisotropic data sets all pot
tials, singlet, adjoint and hybrid, are available but the glu
lump mass is unknown. In Fig. 19 we display the combin
tion EA

L(r )12@EPu

L (r )2E
S

g
1

L
(r )# as a function ofr̄ 5r @1

1O(a2/r 2)#, Eq. ~10!, at our finest anisotropic lattice spa
ing, as'0.16r 0'4at which, within errors, is compatible
with the continuum limit, see Sec. III and Ref.@24#. Note
that there is an additional 1% overall error on the ordin
and the abscissa due to the conversion from lattice units
units of r 0 that we do not display.

From Eq.~98! we would expect the combination shown
approach the gluelump energy in the lattice scheme,LB

L(a),
as r→0. We see that the approach towards this limit is
markably flat. In fact, excluding ther .0.9r 0 data, which are
clearly in the non-perturbative regime anyway, we are una
to resolve deviations of the data from a constant. Note
the units on the ordinate, 0.2r 0

21'80 MeV, are quite small.
A linear plus quadratic fit,

EA
L~r !12@EPu

L ~r !2ES
g
1~r !#52LB

L1cr2, ~99!

to r ,0.5r 0 data, yields

2LB
L5~15.5160.10!r 0

21 , c5~0.0760.70!r 0
23 .

~100!

A purely phenomenological fit to the same functional fo
for all distances results in

2LB
L5~15.4560.06!r 0

21 , c5~0.3860.07!r 0
23 ,

~101!

while in a physically completely unmotivated funnel para
etrization, 2LB

L1e/r 1kr, we obtain

2LB
L5~14.9560.20!r 0

21 , e5~0.0860.04!,
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k5~0.8460.18!r 0
22 . ~102!

Ther dependence is so weak that on the 1% error level of
lattice data we are unable to discriminate between differ
parametrizations. However, we can determine the gluelu
mass rather precisely,LB

L(as ,at)5(7.7560.0560.07)r 0
21,

where the second error reflects the uncertainty in the lat
determination ofr 0 /at . In fact the same can be done for th
as'0.23r 0 andas'0.33r 0 data sets. The respective resu
read LB

L5(6.7160.0460.09)r 0
21 and LB

L5(5.7560.10
60.05)r 0

21 , respectively. The data are in agreement with
linear slope ina21 but, unfortunately, at present we on
know the NLO perturbation theory for the anisotropic ca
After subtracting twice these gluelump energies, we fi
scaling of the coarse lattice data with the results depicte
the figure, within error bars of comparable size.

In particular, from the fit to the funnel type parametriz
tion we see that the data leave little room for perturbat
theory style short-distance Coulomb terms. This is in agr
ment with our expectation. However, miraculously there
also no evidence for a quadratic term in ther ,0.9r 0 data
and, in fact, we can set the limits 0.46.cr0

3.20.18 for such
a contribution, from ther ,0.7r 0 data. We believe that the
smallness of this term is accidental as had we replaced
Pu by the Su

2 potential, it would certainly be present; se
Sec. II D. One can, however, speculate that there might b
cancellation ofr 2 effects and thatPu does not receive a
significant r 2 contribution in the multipole expansion. Thi
issue should be addressed in future theoretical and nume
studies with enhanced accuracy.

The observed slope at larger distances ('0.84r 0
22) is

much smaller than that of the adjoint potential in this regi
('3.09r 0

22), in agreement with our expectation that the 1r
contribution from the difference 2(EPu

2ES
u
2) cannot be ne-

glected.
There is no evidence of a linear non-standard sh

distance term forr ,0.9r 0 , at least not of the size expecte
in various models@53#. A possible explanation of the absenc
of such a term from our calculation of a quantity that va
ishes to low orders in perturbation theory would be th
as(q) itself receivesO(1/q2) corrections~see Refs.@53#!.
We remark to this end thatas is not a physical observable. I
the MS scheme it is perturbatively defined. The differen
betweenas and any non-perturbative generalization of th
coupling, which would allow inclusion of such singularitie
will necessarily not be universal but depend on the presc
tion used. However, we are investigating a physical obse
able here that is scheme independent.

Combinations of different potentials that lead to renorm
lon and low order perturbation theory cancellations are c
tainly an arena worthwhile studying for a determination
higher order terms in the multipole expansion and for test
the validity of the standard operator product expansion p
ture. As we shall detail below many such combinations ex

There are also hybrid excitations in the adjoint chann
The perturbation theory in this case is richer than for pot
tials between fundamental sources as8^ 851% 8% 8% 10
% 10* % 27: in addition to singlet and octet, we have anoth
1-25
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octet, two decuplet fields and a 27-let which have to be
cluded into Eq.~91!. Consequently, adjoint hybrid potentia
cannot only have the octet perturbative expansion but s
will correspond to decuplets and others to 27-lets. Note
the decuplet representation is not self-adjoint but has van
ing triality as it should be.

The renormalon of the octet potential between adjo
sources is the same as in the fundamental case but the
cuplet and 27-plet adjoint potentials contain new renorm
lons, which are related to those of the singlet potentials
tween color charges in these respective representations.
exactly resembles the situation discussed above where
adjoint singlet potential contains the same renormalon as
fundamental octet potential. In fact one can define an infin
tower of states with different renormalons following th
construction, a theoretically interesting enterprise but
likely to be of much direct phenomenological use.

The inclusion of the octet states of Eq.~91! is necessary
for any consistent pNRQCD calculation of gluino pair pr
duction near threshold at NLO@54#. At NNLO the decuplet
and 27-plet fields will also play a role. In fact such contrib
tions, depending on the mass of the gluino~and on its exis-
tence!, might be of bigger importance than in the case oft t̄
production because there are more of them. This is an e
ing and very cleancut situation sincev2 and r 21 are bigger
by a factor;CA /Cf than for quarkonia, such that all ‘‘soft’
physics is clearly and extremely safely within the perturb
tive domain.

Let us finally mention thatLB , the binding energy of the
lightest glueballino, determines the size of the splitting b
tween the adjoint singlet potential and the lowest adjo
hybrid potential at short distances, the latter of which, unf
tunately, has never been determined in lattice simulatio
This is very different from the case of fundamental sour
where binding energies of heavy-light systems,L̄, are much
smaller than the gaps between ground state and hybrid e
tations. In ‘‘hadrinos,’’ which contain stable adjoint source
gluonic excitations would hence play a very prominent r

FIG. 19. The combinationEA
L(r )12@EPu

L (r )2ES
g
1

L (r )#, Eq.

~98!, as a function ofr̄ 5r @11O(a2/r 2)#, Eq. ~10!, together with
various fits on an anisotropic lattice with resolutionas'4at

'0.16r 0 .
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and simple constituent-gluino models might fail terribly. U
fortunately, in nature we do not encounter such particles
would, however, be most entertaining to confirm this exp
tation in lattice simulations.

VIII. CONCLUSIONS

We report compelling evidence that for distances arou
1 GeV21 the gluonic excitations of the static potential are
the short distance regime. We are able to obtain a value
the lowest-lying massLB of the bilocal gluonic correlation
functions with well controlled uncertainties, by fitting to th
difference between thePu and Sg

1 potentials. The RS
scheme result reads

LB
RS~nf50!5@2.2560.10~ latt.!60.21~ th.!

60.08~LMS!#r 0
21 ~103!

for n f52.5r 0
21'1 GeV. Translated into physical units th

reads

LB
RS~1 GeV!5@887639~ latt.!683~ th.!632~L MS!# MeV.

~104!

Note that one should also add an extra error of order 1
due to quenching to these numbers. With the informat
presented in this papern f can be run to different scales~see
Fig. 14!. We also obtain values for the masses of other gl
lumps, listed in Table IV, as well as for the non-perturbati
slopeAPu2S

u
250.9220.52

10.53r 0
23 of the quadratic difference be

tween the lowest two hybrid potentials.
In order to state sensible numbers forLB , the scheme for

the renormalon cancellation has to be specified. Otherw
very different numbers can be obtained, as we can see f
a comparison of the result in the lattice and the RS schem
One can translate from one scheme into the other in
renormalon-free way, order by order in perturbation theo
and check whether both results are consistent with e
other. We have been able to confirm this. If we use the gl
lump results from Foster and Michael@12# at finite lattice
spacing, we obtain LB

RS(2.5r 0
21)5@2.3160.04(latt.)

60.33(th.)20.19
10.18(LMS)#r 0

21 , which is perfectly compatible
with the result of Eq.~103!, albeit with slightly larger errors.

We also investigate the binding energy of heavy-light m
sons in the static limit and to NNNLO in the conversion. W
arrive at similar conclusions. For the binding energy we o
tain thenf50 value,

L̄RS~n f52.5r 0!5@1.1760.08~ latt.!60.13~ th.!

60.09~LMS!#r 0
21 , ~105!

which is in good agreement with the phenomenologi
value, obtained from the experimentalY(1S) andB meson
systems@15#, L̄RS5@0.9260.22(th.)20.11

10.15(LMS)#r 0
21 .

We have demonstrated the internal consistency of our
proach. Lattice predictions forLB

L andL̄L at different lattice
spacings have been studied. We have shown that the pe
1-26



is
nc
on
h

pr
on
so
a

m
v
-
W
a
o

um

d

in

e
a
tu
ot
di

t
m
ex

ca
in
D
e
te

ses

is
llels
an
e.
re.
ergy
the
be
the

at we

nd
ui-
ht
are

he
he

ny
ted
of

ing

/A/
02/

QCD PHENOMENOLOGY OF STATIC SOURCES AND . . . PHYSICAL REVIEW D69, 094001 ~2004!
bative series, Eq.~80!, relating LB
L(a) and L̄L(a) with

LB
L(a8) and L̄L(a8), respectively, in the lattice scheme

free of renormalon singularities and has nice converge
properties, as indicated by the consistency with the n
perturbatively obtained values. In particular this means t
from the knowledge ofLB

L andL̄L at a given lattice spacing
values at different lattice spacings can accurately be
dicted. We have studied the conversion of lattice predicti
for LB

L and L̄L into the RS scheme. This conversion is al
dictated by a perturbative series which is free of renorm
lons. We have verified that the values in the lattice sche
indeed approach the results in the RS scheme with a con
gent pattern and, remarkably, then f-scale dependence pre
dicted by the RS scheme is reproduced, within errors.
remark that for then f-scale running it is possible to obtain
resummed non-perturbative expression in which the ren
malon is cancelled and at the same time the logarithm res
mation is performed.

We stress that the RS scheme used here is designe
smoothly converge to (MS-style dimensional regularization!
perturbation theory at low orders inas; after all, the renor-
malon effect only sets in asymptotically at large orders
perturbation theory. Different values forLB and forL̄ can be
obtained in other schemes but only at the inconvenienc
having large corrections to ‘‘standard’’ perturbation theory
low orders. In this sense we consider our approach ‘‘na
ral’’; the RS scheme incorporates salient features of b
dimensional and lattice regularization. The approach rea
benefits from results computed in theMS scheme, the
scheme in which perturbative quantities are usually known
the highest order. On the other hand, by subtracting renor
lons we encounter explicit power divergencies, which is
actly what one obtains with a hard lattice cut off, too.

Our model independent non-perturbative predictions
directly be incorporated into perturbative calculations, with
effective field theories, or exploited in the context of QC
vacuum models or calculations based on non-local cond
sates. Obvious phenomenological applications in the con
s,

,

s.
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of EFTs are pNRQCD in the kinematic domainmv2

&LQCD,mv, translating glueballino masses into RS orMS
gluino masses within HGET~heavy gluino effective theory!,
or converting heavy-light meson masses into quark mas
within HQET.

We observe thatLB'(CA /Cf)L̄'mG/2, wheremG de-
notes the mass of the lightest glueball. The first similarity
not necessarily surprising since there are technical para
betweenLB , which corresponds to the binding energy of
adjoint source, andL̄, the energy of a fundamental sourc
We do not intend to advocate a constituent gluon pictu
Nevertheless, it may seem reasonable that the binding en
of the glue to an adjoint source has about half the size of
energy of an entirely gluonic state. It should, however,
noted that the latter is an unambiguously defined state in
physical spectrum while for the binding energyLB we nec-
essarily encounter the scheme and scale dependence th
discussed.

We have also investigated the scenario of gluinonia a
other excitations in non-fundamental channels. While gl
nos might not exist in nature and certainly do not form lig
bound states, such that phenomenological applications
limited, from a theoretical and conceptual point of view t
existence of this part of the spectrum is very interesting. T
inclusion of such potentials allows one to identify ma
combinations in which renormalons and other un-wan
contributions vanish, opening up a window to the study
non-perturbative short distance physics.
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