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We prove that the tetracanonical map of a variety X of maximal Albanese dimension

induces the Iitaka fibration. Moreover, if X is of general type, then the tricanonical map

is birational.

1 Introduction

In the study of smooth complex algebraic varieties, the natural maps defined by dif-

ferential forms are of special importance. In particular, pluricanonical maps have been

extensively studied.

When X is of maximal Albanese dimension, the study was started by Chen and

Hacon [4, 5]. Their results were improved by Jiang [10], who showed that the fifth canon-

ical map induces the Iitaka fibration. Recently, Tirabassi [17], showed that if X is of

general type, then the fourth pluricanonical is birational.

Combining Theorems 4.1 and 5.1, we obtain the following statement.

Theorem A. Let X be a smooth projective variety of maximal Albanese dimension.

Then,

(1) the linear system |4KX| induces the Iitaka fibration of X;
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(2) if X is of general type, then the linear system |3KX| induces a birational

map. �

These bounds are optimal for varieties of maximal Albanese dimension. On the

one hand, if X is a curve of genus 2, then |2KX| is not birational (varieties of general type

whose bicanonical map is not birational have been studied in [1, 13]). Furthermore, we

produce varieties of dimension at least 4, whose tricanonical map does not induce the

Iitaka fibration (see Example 5.6).

We observe that when χ(X, ωX) > 0, the birationality of the tricanonical map was

proved by Chen and Hacon [5, Theorem 5.4]. Hence, we restrict ourselves to the case

χ(X, ωX) = 0. In this situation, we have a special fibration where the mth pluricanonical

linear system restricts surjectively to a general fibre for m ≥ 3 (see Lemma 3.5). On the

base of this fibration, we construct two positive line bundles (see Lemmas 3.3 and 3.4).

One of them induces a birational map ϕ on the base. The other one is used to prove a

nonvanishing result which shows that the fibration followed by ϕ factors through the

pluricanonical map. We use these line bundles to apply Lemma 2.1, which allows us to

proceed by induction on the dimension of X. When X is of general type, it is enough to

consider the tricanonical map to get the nonvanishing mentioned above. The lack of this

nonvanishing is what forces us to consider the tetracanonical map for nongeneral type

varieties (as we note in Remark 5.5).

Notation. In the sequel, X will always be a smooth complex projective variety of

maximal Albanese dimension. We denote by aX : X → AX the Albanese morphism. Given

an abelian variety A, let Â be its dual. For a morphism t : X → A to an abelian variety

and a coherent sheaf F on X, we denote by Vi(F , t) the ith cohomological support loci:

{P ∈ Pic0
(A) | Hi(X,F ⊗ t∗ P ) �= 0}.

We will use the terms M-regular, I.T.-index j (IT j for short) and continuously globally

generated (CGG for short) as they are defined in [15]. We will say that F is a GV-sheaf if

codimPic0(X)V
i(F , aX) ≥ i for all i ≥ 0. Given two divisors E and F , we will write E 	 F if

F − E is effective.

2 Preliminaries

We begin with some easy lemmas.
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Lemma 2.1. Let f : X
g−→ Z

h−→ Y be fibrations between smooth projective varieties. Let L

be an line bundle on X. If the following two conditions hold:

(1) the image of H0(X, L) → H0(Xy, L|Xy) induces a map birationally equivalent

to g|Xy : Xy → Zy for a general fibre Xy of f ;

(2) there are line bundles Hi, 1 ≤ i ≤ M, on Y such that L − f∗Hi is effective and

the multiple evaluation map

ϕY : Y → P(H0(Y, H1)
∗) × · · · × P(H0(Y, HM)∗)

is birational.

Then, the linear system |L| induces a map birationally equivalent to g : X → Z . �

Proof. Since the L − f∗Hi are effective we have a map π that induces the following

diagram:

X

f

��

ϕ|L|
��

g

��

P(H0(X, L)∗)

π

��

Z

ϕZ

��

h

��

Y
ϕY

�� P(H0(Y, H1)
∗) × · · · × P(H0(Y, HM)∗)

Condition (2) guarantees that ϕ|L| separates generic fibres of f and condition (1) shows

that the map ϕ|L| factorizes as ϕZ ◦ g and a general fibre of h is mapped birationally

via ϕZ . �

We will need the following lemma to ensure the birationality of ϕY in the

previous lemma.

Lemma 2.2. Let π̂ : Ŷ → Y be a generically abelian Galois covering between smooth pro-

jective varieties of maximal Albanese dimensions. Denote by G the Galois group of π̂ .
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We denote bŶ = aY ◦ π̂ : Ŷ → AY. Assume that V0(ωŶ, bŶ) = Pic0
(Y) and

π̂∗ω2
Ŷ

=
⊕
χ∈G∗

Hχ ,

where Hχ is the torsion-free rank-1 sheaf corresponding to the character χ ∈ G∗.

Then, there exists Hχ0 such that the multiple evaluation map

ϕP1···PM : Y → P(H0(Y,Hχ0 ⊗ P1)
∗) × · · · × P(H0(Y,Hχ0 ⊗ PM)∗)

is birational for some Pi ∈ Pic0
(Y), 1 ≤ i ≤ M. �

If π̂ is an isomorphism, then Lemma 2.2 is contained in the proof of Chen and

Hacon [5, Theorem 4.4].

Proof. We first write

π̂∗ωŶ =
⊕
χ∈G∗

Lχ ,

where L0 = ωY and all Li are torsion-free rank-1 sheaves on Y.

Since V0(ωŶ, bŶ) = Pic0
(Y), we conclude that there exists χ1 such that

V0(Lχ1 , aY) = Pic0
(Y). Denote by Z the closed subset where Lχ1 is not locally free. Then,

for any P ∈ Pic0
(Y), the line bundle L ⊗2

χ1
⊗ P is globally generated on the open dense

subset

Y −
⎛
⎝Z ∪

⋂
P∈Pic0(Y)

Bs(|Lχ1 ⊗ P |)
⎞
⎠ .

Since there is the natural G-map of torsion-free sheaves on Y,

(π̂∗ωŶ)⊗2 → π̂∗ω2
Ŷ
,

if we take χ0 = χ2
1 , then we have an inclusion L 2

χ1
↪→ Hχ0 . Hence, there is an open dense

subset U of Y such that the sheaf Hχ0 |U is locally free and for any P ∈ Pic0
(Y), Hχ0 ⊗ P

is globally generated over U , that is, ϕP |U is a morphism.
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On the other hand, we consider π̂∗(ω2
Ŷ

⊗ J (‖ωŶ‖)). Since J (‖ωŶ‖) ↪→ OŶ

is G-invariant, we can write

π̂∗(ω2
Ŷ

⊗ J (‖ωŶ‖)) =
⊕
χ∈G∗

H ′
χ ,

where H ′
χ is torsion-free sub-sheaf of Hχ . Moreover, we have

H0(Y,H ′
χ ) � H0(Y,Hχ )

and

Hi(Y,H ′
χ ⊗ P ) = 0,

for any P ∈ Pic0
(Y) and i ≥ 1.

Therefore, H ′
χ0

⊗ P is globally generated and locally free on the open subset U

and Supp(Hχ0/H
′

χ0
) is contained in Y − U . Now, let V = U − Exc(aY) and for any point

y∈ V , from the exact sequence

0 → Iy ⊗ H ′
χ0

→ H ′
χ0

→ Cy → 0,

we see that aY∗(Iy ⊗ H ′
χ0

) is a M-regular sheaf, so it is CGG (see [15, Proposition 2.13]).

Hence, for any z∈ V different from y, there exists P ∈ Pic0
(Y) such that Iy ⊗ H ′

χ0
⊗ P is

globally generated on z.

This shows that for any two different points y, z∈ V there exists P ∈ Pic0
(Y) and

a divisor DP in |Hχ0 ⊗ P | such that y∈ DP but z /∈ DP . Therefore ϕP (y) �= ϕP (z).

We take P1, . . . , PM such that ϕP1···PM becomes stable, namely ϕP1···PM is birational

equivalent to ϕP1···PM P for any P ∈ Pic0
(Y). Then, ϕP1···PM is birational. �

The following lemma should be compared with [3, Lemma 3.1].

Lemma 2.3. Let f : X → Y be a surjective morphism between smooth projective vari-

eties. Assume that X is of maximal Albanese dimension. Then, KX/Y is effective. �

Proof. We have the natural inclusion f∗Ω1
Y

i−→ Ω1
X. Denote by F the saturation of

i( f∗Ω1
Y). Then, det(F ) − f∗KY is an effective divisor on X. We then consider the exact
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sequence

0 → F → Ω1
X → Q → 0.

Since X is of maximal Albanese dimension, Ω1
X is generically globally generated and

hence so is Q.

Hence, det(Q) is also an effective divisor. Hence, KX/Y = det(F ) − f∗KY + det(Q)

is effective. �

The following lemma is used in [9, Lemma 2.3] under the assumption that the

plurigenera are positive (since X is of maximal Albanese dimension, this condition is

automatically satisfied). We recall it here for easy reference.

Lemma 2.4. Suppose that f : X → Y is an algebraic fibre space between smooth

projective varieties. Assume that Y is of general type. Then, the Iitaka model of

(X, KX + (m − 2)KX/Y) dominates Y, for any m ≥ 2. �

3 Positive Bundles on the Base and Surjectivity of the Restriction Map to a Fibre

We will use the following definition that it is strongly related to Hypotheses 4.7 in [1].

Definition 3.1. Let F be a coherent sheaf on an abelian variety A. We say that

F is almost M-regular if V0(F ) = Â, codimÂVi(F ) ≥ i + 1, for 1 ≤ i ≤ dim A− 1, and

dim Vdim A(F ) = 0. �

Let X be a smooth projective variety of dimension n and maximal Albanese

dimension. We know that the pushforward of the canonical bundle aX∗ωX is a GV-sheaf

but it often fails to be M-regular, which makes the tricanonical map difficult to study.

Hence, we consider the set

SX := {0 < j < n| V j(ωX, aX) has a component of codimension j},

which measures how far aX∗ωX is from being almost M-regular.

Setting 3.2. Assume that SX is not empty. We denote by k the maximal number of SX

and Q + B̂ ⊆ Vk(ωX, aX) a codimension-k component, where Q is zero or a torsion element
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of Pic0
(X) − B̂. Let the following commutative diagram:

X
aX

��

f

��

AX

pr

��

Y
aY

�� B

be a suitable birational modification of the Stein factorization of the composition pr ◦ aX,

such that Y is smooth. �

Lemma 3.3. Assume SX is not empty, so we are in Setting 3.2. Then, for some bira-

tional model of f : X → Y, there exists a line bundle L on Y such that aY∗L is almost

M-regular, V0(L , aY) = B̂, and OX(KX + jQ) ⊗ f∗L −1 has a nontrivial section for some

j ∈ Z. Moreover:

(1) if Q is trivial, we can take L to be ωY and j = 0;

(2) if Q ∈ Pic0
(X) − B̂, then we can take L such that aY∗L is M-regular. �

Proof. We know by Green and Lazarsfeld [7, Theorem 0.1] that the dimension of a

general fibre of f is k.

Assume first that Q is trivial. For PB ∈ B̂ − ⋃
j V1(Rj f∗ωX, aY) �= ∅ (e.g., [16,

Theorem 5.8]),

0 < hk(X, ωX ⊗ a∗
X PB) = hk(X, ωX ⊗ f∗ PB)

= h0(Y, Rk f∗ωX ⊗ a∗
Y PB) for example [16, Proposition. 3.14]

= h0(Y, ωY ⊗ a∗
Y PB) [11, Proposition 7.6].

By generic vanishing χ(Y, ωY) = h0(Y, ωY ⊗ a∗
Y PB) for a general PB ∈ B̂. Hence χ(Y, ωY) > 0

and V0(ωY, aY) = Pic0
(Y).

Moreover, the pull-back by pr of any codimension- j component of V j(ωY, aY) is

a codimension-( j + k) component of V j+k(ωX, aX) (by Kollár [12, Theorem 3.1]). Hence by

the maximality of k, we know that

codimB̂ Vi(ωY, aY) ≥ i + 1
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for all 0 < i < dim Y and aY∗ωY is almost M-regular. By Lemma 2.3, OX(KX − f∗KY) is

effective.

Now, assume that Q ∈ Pic0
(X) − B̂. We may choose Q such that G ∩ B̂ = 0, where

G := 〈Q〉 is the subgroup generated by Q.

Claim. Up to a birational modification of X and Y, there exists a diagram

X̃
π

��

f̃
��

bX̃
��

X
aX

��

f

��

AX

pr

��

Ŷ
π̂

��

bŶ
��

Y
aY

�� B

(1)

where all varieties are smooth and the vertical morphisms are fibrations (in particular,

Ŷ is a modification of the Stein factorization of f ◦ π ). Moreover π : X̃ → X is birational

to G-cover, π̂ : Ŷ → Y is a generically G-cover, and f̃ is a G-equivariant morphism.We

also have

π̂∗ωŶ =
⊕

iLi, (2)

where L0 = ωY and all Li are torsion-free rank-1 sheaves on Y. �

Proof of the claim. We first consider the étale cover π : X̃ → X induced by G. Let Ŷ

be the Stein factorization of f ◦ π . By Pareschi and Popa [16, Theorem 5.8 and Propo-

sition 3.14], Rj f∗(ωX ⊗ Q) are GV-sheaves for all j ≥ 0. Then, by Kollár [12, Theorem

3.1], for PB ∈ B̂ general hk(ωX ⊗ Q ⊗ a∗
Y PB) = h0(Y, Rk f∗(ωX ⊗ Q) ⊗ a∗

Y PB). Since Q + B̂ ⊂
Vk(ωX, aX), Rk f∗(ωX ⊗ Q) �= 0. If we denote by Xy a general fibre of f , then we know that

Q|Xy is OXy. Hence, a general fibre of f̃ is isomorphic via π to a general fibre of f . So G is

also the Galois group of the field extension k(Ŷ)/k(Y). After modifications of f̃ : X̃ → Ŷ,

we may assume that G acts also on Ŷ, f̃ is a G-equivariant morphism, and π̂ : Ŷ → Y is a

generically G-cover of smooth projective varieties. Hence

π̂∗ωŶ = Rk( f ◦ π)∗ωX̃ =
⊕

i(Rk f∗(ωX ⊗ Qi)) =
⊕

iLi,

where L0 = ωY and all Li are torsion-free rank-1 sheaves on Y and we conclude the proof

of the Claim. �
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The same arguments as in the case where Q is trivial show that V0(Ŷ, bŶ) = B̂

and codimB̂ Vi(ωŶ, bŶ) ≥ i + 1 for all 0 < i < dim Ŷ. Moreover, we have

ker(B̂ → Pic0
(Ŷ)) = B̂ ∩ ker(ÂX → ÂX̃)

= B̂ ∩ 〈Q〉 = 0.

Hence for i �= 0, Vdim Y(Li, aY) = ∅ and aY∗Li is M-regular (in particular, χ(Y,Li) > 0).

We can take a modification ε : Y′ → Y such that

L ′
i := ε∗Li (3)

is locally free for all i. Moreover, we consider a birational model of diagram (1):

X̃
π

��

f̃ ��

X

f
��

X̃′

�����
π ′

��

f̃ ′
��

X′ η

�����

f ′
��

Ŷ
π̂

�� Y

Ŷ′

�����

π̂ ′
�� Y′ ε

�����

(4)

where all varieties are smooth, all slanted arrows are birational modifications, and π ′ is

birational equivalent to the étale cover induced by G.

Since we have π̂∗Li ↪→ ωŶ, we conclude that ωŶ′ ⊗ π̂ ′∗L ′−1
i has a nontrivial

section. We know KX̃′/Ŷ′ is an effective divisor by Lemma 2.3. Hence,

0 < h0(X̃′, ωX̃′ ⊗ f̃ ′∗ω−1
Ŷ′ ) ≤ h0(X̃′, ωX̃′ ⊗ f̃ ′∗π̂ ′∗L ′−1

i )

=
∑

j

h0(X′, ωX′ ⊗ η∗Qj ⊗ f ′∗L ′−1
i ).

So there exists j such that ωX′ ⊗ η∗Qj ⊗ f ′∗L ′−1
i is effective. Thus in Condition (2), we

can take f ′ : X′ → Y′ to be the birational model of f and take L to be any L ′
i for i �= 0. �
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Lemma 3.4. Assume SX is not empty, so we are in Setting 3.2. Consider the birational

model obtained in Lemma 3.3. Then, after modifying f by blowing-up Y, there exists a

line bundle H on Y and i ∈ Z such that OX(2KX + iQ) ⊗ f∗H −1 has a nontrivial section.

Moreover, we can take Pi ∈ Pic0
(Y), 1 ≤ i ≤ M such that the multiple evaluation map

ϕY : Y → P(H0(Y,H ⊗ P1)
∗) × · · · × P(H0(Y,H ⊗ PM)∗)

is birational. �

Proof. If Q is trivial, we just take H to be ω2
Y. By Lemma 2.2, we conclude.

If Q ∈ Pic0
(X) − B̂, then we use the same notation as in the proof of Lemma 3.3.

Note that we can consider diagram (1) obtained in the Claim. Now, we apply Lemma 2.2

to π̂ and we take H to be the direct summand Hχ0 of π̂∗ω2
Ŷ
.

As in diagram (4), we can take an appropriate model of f and assume that H

is a line bundle. Since π̂∗H ↪→ ω2
Ŷ
, as in the proof of Lemma 3.3, there exists an integer

i ∈ Z such that OX(2KX + iQ) ⊗ f∗H −1 is effective. �

Lemma 3.5. Assume SX is not empty, so we are in Setting 3.2. Let L be the line bundle

obtained in Lemma 3.3. Then, for y a general point of Y, the restriction map

H0(X,OX(mKX − (m − 3) f∗L ) ⊗ P ) → H0(Xy,OXy(mKXy) ⊗ P )

is surjective, for any m ≥ 2 and P ∈ V0(ωm
X , aX). �

Proof. We just prove the statement for P = OX, the same argument works for any

P ∈ V0(ωm
X , aX).

There are two distinguished cases, whether Q is trivial or not, which we address

with slightly different techniques.

Case A. Assume that Q is trivial.

We have seen in the proof of Lemma 3.3 that χ(Y, ωY) > 0, so Y is of general

type. By Lemma 2.4, the Iitaka model of (X, KX + (m − 2)KX/Y) dominates Y and by Jiang

[9, Lemma 2.1] there exists an asymptotic multiplier ideal sheaf I := J (‖KX + (m −
2)KX/Y‖) on X such that aY∗ f∗(OX(2KX + (m − 2)KX/Y) ⊗ I ) is an I T0 sheaf. Hence, by

Pareschi and Popa [15, Proposition 2.13],

F := f∗(OX(2KX + (m − 2)KX/Y) ⊗ I )
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is CGG outside the exceptional locus of aY.

We conclude, similarly to [1, Proposition 4.4 and Corollary 4.11] that, F ⊗ ωY is

globally generated in an open dense subset of Y. Indeed, we first note that |ωY ⊗ P | is

not empty for all P ∈ B̂. Take Pi, 1 ≤ i ≤ N such that the evaluation map

N⊕
i=1

H0(Y,F ⊗ Pi) ⊗ P −1
i → F

is surjective. Then

N⊕
i=1

H0(Y,F ⊗ Pi) ⊗ H0(Y, ωY ⊗ P −1
i ) ⊗ OY → F ⊗ ωY

is surjective over Y − ⋃
1≤i≤N Bs(|ωY ⊗ Pi|). Finally, this evaluation map factors through

H0(Y,F ⊗ ωY) ⊗ OY → F ⊗ ωY.

Moreover, by Jiang [9, Lemma 3.5], F is a nonzero sheaf on Y of rank Pm(Xy).

Hence, over a general point y∈ Y, F ⊗ k(y) is isomorphic to H0(Xy,OXy(mKXy)). Since

F ⊗ ωY ⊂ f∗(OX(mKX − (m − 3) f∗KY))

and they have the same rank Pm(Xy), we conclude the proof of the lemma when Q is

trivial.

Case B. If Q is nontrivial, we use the same notation as in the proof of Lemma 3.3.

After the modification performed in diagram (4), we can assume that we have a birational

model of f : X → Y such that there exists a diagram

X̃
π

��

f̃
��

bX̃
��

X
aX

��

f

��

AX

pr

��

Ŷ
π̂

��

bŶ
��

Y
aY

�� B

where all varieties are smooth, the vertical morphisms are fibrations, and π is bira-

tional to an étale cover. Moreover, if π̂∗ωŶ = ⊕iLi, then the line bundle L constructed in

Lemma 3.3 is a birational modification of Li for i �= 0.
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We claim that the Iitaka model of (X, (m − 1)KX − (m − 2) f∗L ) dominates Y.

Indeed, by Lemma 2.4, the Iitaka model of (X̃, (m − 1)KX̃/Ŷ + f̃∗KŶ) dominates Ŷ. By

definition of Li (see (2)), we have π̂∗Li 	 KŶ, which implies that π∗ f∗L 	 f∗KŶ (recall

(3) and L = L ′
i for some i �= 0). This implies that (m − 1)KX̃/Ŷ + f̃∗KŶ 	 π∗((m − 1)KX −

(m − 2) f∗L ) + E , where E is some π-exceptional divisor. Since π is birational to an étale

cover, the claim is clear.

Then, by Jiang [9, Lemma 2.1] there is an ideal I of X such that

aY∗( f∗OX(mKX) ⊗ I ⊗ L −(m−2))

is an I T0 sheaf and by Jiang [9, Proof of Lemma 3.9] f∗OX(mKX) ⊗ I ⊗ L −(m−2) has rank

Pm(Xy). We conclude as before, that for i �= 0, f∗(OX(mKX − (m − 3) f∗L )) is globally

generated over an open dense subset of Y. �

Remark 3.6. Observe that we can consider a birational model f : X → Y such that

both L and H are line bundles in Y that fulfil the desired properties listed in

Lemmas 3.3–3.5.

In particular, when in Setting 3.2 Q is nontrivial, we also have the following

diagram:

X̃
π

��

f̃
��

bX̃
��

X
aX

��

f

��

AX

pr

��

Ŷ
π̂

��

bŶ
��

Y
aY

�� B

where all varieties are smooth, the vertical morphisms are fibrations, and π is birational

to an étale cover. Moreover, ωŶ ⊗ π̂∗L −1 and ω2
Ŷ

⊗ π̂∗H −1 have nontrivial sections. �

4 General Type Case

In this section, X will be a variety of general type.

Theorem 4.1. Let X be a smooth projective variety, of maximal Albanese dimension

and general type. Then, the linear system |3KX + P | induces a birational map, for any

P ∈ Pic0
(X). �
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Proof. We reason by induction on the dimension of X, which we will denote by n. Note

that for n= 1 the result is well known. So we assume that for any PY ∈ Pic0
(Y), |3KY +

PY| induces birational map for any smooth projective variety Y of maximal Albanese

dimension, general type, and dim Y ≤ n− 1.

Observe that SX is empty if and only if aX∗ωX is almost M-regular. Since X is of

general type, if SX is empty, then χ(X, ωX) > 0 (e.g., [1, Proposition 4.10]). We note that

Chen and Hacon have proved that |3KX + P | induces a birational map in this situation

(see [5, Theorem 5.4]).

From now on, we will assume SX is not empty. As in the last section, we are in

Setting 3.2:

X
aX

��

f

��

AX

pr

��

Y
aY

�� B

Consider an appropriate birational model of f : X → Y in the sense of Remark 3.6.

Let y∈ Y be a general point and denote by Xy a general fibre of f . By Lemma 3.5,

the restriction map

H0(X,OX(3KX) ⊗ P ) → H0(Xy,OXy(3KXy) ⊗ P ) (5)

is surjective for any P ∈ Pic0
(X) and, by the induction hypothesis,

|3KXy + P |Xy|

induces a birational map. �

We have also produced interesting line bundles on Y in Lemmas 3.3 and 3.4. Let

H be the line bundle on Y constructed in Lemma 3.4. According to Lemma 2.1, in order

to conclude the proof of the theorem, we just need to prove the following claim.

Claim ‡. For every P ∈ ÂX and every P ′ ∈ B̂, the line bundle

3KX + P − f∗(H + P ′)

has a nontrivial section.
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Let be J := J (‖2KX − f∗H + 1
N f∗H‖), where N is an integer large enough and

H is an ample divisor on Y. For any P ∈ ÂX, we define

FP := f∗(OX(3KX − f∗H ) ⊗ J ⊗ P ).

Observe that to conclude the proof of the claim it is enough to see that V0(FP , aY) = B̂.

For any ample divisor H ′ on Y, we have that

Hi(X,OX(3KX − f∗H ) ⊗ J ⊗ P ⊗ f∗OY(H ′)) = 0, (†)

for any i > 0. We postpone the proof of (†) to the end of the proof of this theorem. From (†)
we deduce that

Ri f∗(OX(3KX − f∗H ) ⊗ J ⊗ P ) = 0,

for any i > 0 (see, e.g., [14, Lemma 4.3.10]). Therefore,

χ(Y,FP ) = χ(X,OX(3KX − f∗H ) ⊗ J ⊗ P )

is constant for P ∈ ÂX.

By Lemmas 3.3 and 3.4, there exist integers i and j and effective divisors

D1 ∈ |KX + iQ − f∗L | and D2 ∈ |2KX + jQ − f∗H |. Let m = i + j and write D = D1 + D2 ∈
|3KX + mQ − f∗H − f∗L |, that is,

H0(X,OX(3KX + mQ − f∗H − f∗L )) = H0(X,OX(D)) �= 0.

Since

J = J

(
‖2KX − f∗H + 1

N
f∗H‖

)

⊃ J (‖2KX − f∗H ‖) H is ample on Y

= J (‖2KX + jQ − f∗H ‖) Q is torsion

⊃ OX(−D2) by Lazarsfeld [14, Theorem 11.1.8],
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we have

H0(Y,FmQ ⊗ L −1) = H0(X,OX(3KX + mQ − f∗H − f∗L ) ⊗ J )

⊃ H0(X,OX(D1)) �= 0. (6)

Therefore, since V0(L , aY) = B̂, we have h0(Y,FmQ ⊗ P ′) > 0 for all P ′ ∈ B̂.

On the other hand, we see by Jiang [9, Lemma 2.5] that FP is a GV-sheaf for any

P ∈ ÂX. Therefore, for P ′ ∈ B̂ general and any P ∈ ÂX,

h0(Y,FP ⊗ P ′) = χ(Y,FP ) = χ(Y,FmQ) = h0(Y,FmQ ⊗ P ′) > 0.

Hence, by semicontinuity, for any P ∈ ÂX, V0(FP , aY) = B̂.

Proof of (†). We use the same notation as in the proof of Lemmas 3.3 and 3.4, which is

summarized in Remark 3.6.

Note that 2KX̃/Ŷ 	 π∗(2KX − f∗H ) + E , where E is some π-exceptional divisor.

Since KX̃/Ŷ + 1
N f̃∗π̂∗H is a big Q-divisor on X̃, then 2KX − f∗H + 1

N f∗H is a big Q-divisor

on X. So (†) is a consequence of Nadel vanishing theorem (see [14, Theorem 11.2.12]). �

5 Iitaka Fibration

In this section, X will not necessarily be a variety of general type.

Theorem 5.1. Let X be a smooth projective variety, of maximal Albanese dimension.

Then, the linear system |4KX + P | induces a model of the Iitaka fibration of X, for any

P ∈ V0(ω2
X, aX). �

Before starting the proof of Theorem 5.1, which is parallel to the proof of

Theorem 4.1, let us fix the notation.
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Setting 5.2. Consider the following diagram:

X
aX

��

g

��

AX

prZ

��

Z
aZ

�� AZ

where g : X → Z is a model of the Iitaka fibration of X such that Z is smooth. Let K

be the kernel of prZ . We denote by Xz a general fibre of g, which is birational to its

Albanese variety K̃, and the natural map K̃ → K is an isogeny. We know that pr∗
Z ÂZ is

an irreducible component of

K := ker(ÂX → Pic0
(Xz))

and denote by Q := K /pr∗
Z ÂZ . Observe that Q can be also identified with ker(K̂ → ˆ̃K). �

Remark 5.3. The group Q is often nontrivial and this is exactly the reason why the tri-

canonical map cannot always induce the Iitaka fibration. In some specific cases, given

information about Q, we can prove that the tricanonical map or some twisted tricanon-

ical map (the maps induced by |3KX + P | for some P ∈ Pic0
(X)) will induce the Iitaka

fibration (see Remark 5.5).

Nevertheless, we will construct a variety of maximal Albanese dimension (see

Example 5.6), where NONE of the twisted tricanonical maps is birationally equivalent

to the Iitaka fibration. �

Before proving the theorem, we start with an easy well-known observation. We

add its proof for the convenience of the reader.

Lemma 5.4. The kernel K defined in Setting 5.2, satisfies

K = V0(ωm
X , aX) for all m ≥ 2. �

Proof. It is clear that V0(ωm
X , aX) ⊆ K . If P ∈ K , then g∗(ωm

X ⊗ P ) is a nontrivial torsion-

free sheaf. By Jiang [9, Lemma 2.1], g∗(ωm
X ⊗ J (‖ωm−1

X ‖) ⊗ P ) is an IT0 sheaf for any

m ≥ 2. Hence, we conclude since 0 < h0(Z , g∗(ωm
X ⊗ J (‖ωm−1

X ‖) ⊗ P )) ≤ h0(X, ωm
X ⊗ P ). �
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Proof of Theorem 5.1. We will prove the theorem by induction on the dimension of

X. We suppose that the statement is true in dimension ≤ n− 1 and assume dim X = n.

If X is of general type, then we are back to Theorem 4.1. Hence we can assume

κ(X) = dim Z = n− l, for some number l > 0. In particular, SX is not empty.

Hence, we are in Setting 3.2. Let k be the maximal number of SX and let Q + B̂ be

an irreducible component of Vk(ωX, aX) of codimension k. Since Vk(ωX, aX) ⊆ V0(ωX, aX),

by Chen and Hacon [4, Lemma 2.2], B̂ ↪→ pr∗
Z ÂZ (recall Setting 5.2). Hence, Settings 3.2

and 5.2 combine in the following commutative diagram:

X
aX

��

g

��
f

��

AX

prZ

��
pr

		

Z
aZ

��

h

��

AZ

��

Y
aY

�� B,

where we choose an appropriate birational model of f : X → Y in the sense of

Remark 3.6.

Let y∈ Y be a general point and denote by Xy and Zy general fibres of f and h.

By Easy Addition Formula (e.g., [8, Theorem 10.4]), dim Y + κ(Xy) ≥ κ(X) = dim Z . Hence

κ(Xy) ≥ dim Zy and thus g|Xy : Xy → Zy is the Iitaka fibration of Xy.

By Lemmas 3.5 and 5.4, the restriction map

H0(X,OX(4KX + P )) → H0(Xy,OXy(4KXy + P |Xy))

is surjective, for any P ∈ K . Note that P |Xy ∈ V0(ω2
Xy

, aXy), so by induction hypothesis,

|4KXy + P |Xy|

induces the Iitaka fibration g|Xy : Xy → Zy.

Let H be the line bundle on Y constructed in Lemma 3.4. Then, by Lemma 2.1,

we just need to prove the following claim to complete the proof of the theorem.
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Claim. For every P ∈ K and every P ′ ∈ B̂,

4KX + P − f∗(H + P ′)

has a nontrivial section.

Let be J := J (‖3KX − f∗H + 1
N f∗H‖), where N is an integer large enough and

H is an ample divisor on Y. For any P ∈ K , we define

GP := g∗(OX(4KX + P − f∗H ) ⊗ J ).

To conclude the proof of the claim it is enough to see that V0(h∗GP , aY) = B̂.

By Jiang [9, Lemma 2.1], we have

Hi(Z ,GP ⊗ Q′′ ⊗ h∗H ′) = 0,

for any i ≥ 1, any ample divisor H ′ on Y, and any Q′′ ∈ ÂZ . Hence,

Rih∗(GP ⊗ Q′′) = 0,

for any i > 0 (see, e.g., [14, Lemma 4.3.10]). Therefore,

χ(Y, h∗(GP ⊗ Q′′)) = χ(Z ,GP ⊗ Q′′) (7)

is constant for Q′′ ∈ ÂZ .

By Lemmas 3.3 and 3.4, we know there exists m ∈ Z such that

H0(X,OX(3KX + mQ − f∗H − f∗L )) �= 0.

Observe that P − mQ is not necessarily in pr∗
Z ÂZ . But, since P − mQ ∈ K , we

have that aZ∗g∗OX(KX + P − mQ) is a nontrivial GV-sheaf. In particular, V0(g∗OX(KX +
P − mQ), aZ ) �= ∅. Hence there exists Q0 ∈ pr∗

Z ÂZ such that P − mQ + Q0 ∈ V0(ωX, aX).

Therefore,

4KX + P + Q0 − f∗H − f∗L = (KX + P − mQ + Q0) + (3KX + mQ − f∗H − f∗L )
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is the sum of two effective divisors. By the same argument as in (6),

H0(Z ,GP ⊗ h∗L −1 ⊗ Q0) �= 0.

We know that V0(L , aY) = B̂ (see Lemma 3.3) and h∗(GP ⊗ Q′) is a GV-sheaf for any P ∈ K

and any Q′ ∈ ÂZ (see [9, Lemma 2.5]). Hence, for P ′ ∈ B̂ general,

h0(Y, h∗GP ⊗ P ′) = χ(Y, h∗GP ) = χ(Y, h∗(GP ⊗ Q0)) by (7)

= h0(Y, h∗(GP ⊗ Q0) ⊗ P ′) > 0.

By semicontinuity, V0(h∗GP , aY) = B̂ for any P ∈ K . �

Now, we can make more precise Remark 5.3.

Remark 5.5. In the previous proof, observe that if P − mQ lies in pr∗
Z ÂZ , then 3KX +

P + Q0 − f∗H − f∗L is effective for some Q0 ∈ pr∗ ÂZ . So, we could have improved the

result to the tricanonical map (assuming the induction hypothesis). In particular, if Q :=
K /pr∗

Z ÂZ is trivial for X and the successive fibres of the induction process, then the

tricanonical map twisted by an element in K induces the Iitaka fibration.

Moreover, if for some P ∈ K , P + pr∗
Z ÂZ is an irreducible component of

V0(ωX, aX), then we can again prove that the tricanonical map twisted by an element in

K induces the Iitaka fibration. This shows that varieties of maximal Albanese dimen-

sion, where none of the twisted tricanonical map is birational equivalent to the Iitaka

fibration, are closely related to varieties of maximal Albanese dimension, of general type

with vanishing holomorphic Euler characteristic. �

We finish with an example of maximal Albanese dimension, whose tricanonical

map does not induce the Iitaka fibration. This example is based on the famous Ein–

Lazarsfeld threefold, which is constructed in [6, Example 1.13] and further investigated

in [2].

Example 5.6. We take three bielliptic curves Ci of genus 2, i = 1, 2, 3. Let ρi : Ci → Ei be

the double cover over an elliptic curve Ei and denote by τi the involution of fibres of ρi.
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We write

ρi∗OCi = OEi ⊕ L −1
i ,

where Li is a line bundle on Ei of degree 1.

Let Y be the threefold (C1 × C2 × C3)/(τ1, τ2, τ3), which has only rational singu-

larities. We know that aY : Y → E1 × E2 × E3 is a (Z/2Z × Z/2Z)-cover.

We then take an abelian variety A and a (Z/2Z × Z/2Z)-étale cover Ã→ A. Set

{OA, P1, P2, P3} to be the kernel Â→ ˆ̃A.

Denote H = (Z/2Z × Z/2Z) and let X′ be the variety (Y × Ã)/H , where H acts diag-

onally on Y × Ã. Note that X′ has only rational singularities and let X be a resolution of

singularities of X′. The Albanese morphism

aX : X → E1 × E2 × E3 × A

is birationally a (Z/2Z × Z/2Z)-cover.

After permutation of {Pi, i = 1, 2, 3}, we have

aX∗ω3
X � (L 2

1 � L 2
2 � L 2

3 � OA) ⊕ (L 3
1 � L 3

2 � L 2
3 � P1)

⊕ (L 3
1 � L 2

2 � L 3
3 � P2) ⊕ (L 2

1 � L 3
2 � L 3

3 � P3).

It is easy to check that for any P ∈ Pic0
(X), the linear series |3KX + P | cannot

induce the Iitaka fibration X → E1 × E2 × E3.

Using, the notation of Setting 5.2, observe that

K = V0(ω2
X, aX) =

⋃
Q∈{OA,P1,P2,P3}

E1 × E2 × E3 × {Q}

and Q = Z/2Z × Z/2Z. Indeed, Q can be identified with {OA, P1, P2, P3}. �
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