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Abstract

GIP action in type 2 diabetic (T2D) patients is altered. We hypothesized that methylation changes could be present in GIP
receptor of T2D patients. This study aimed to assess the differences in DNA methylation profile of GIPR promoter between
T2D patients and age- and Body Mass Index (BMI)-matched controls. We included 93 T2D patients (cases) that were uniquely
on diet (without any anti-diabetic pharmacological treatment). We matched one control (with oral glucose tolerance test
negative, non diabetic), by age and BMI, for every case. Cytokines and hormones were determined by ELISA. DNA was
extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Our results showed
that T2D patients were more insulin resistant and had a poorer b cell function than their controls. Fasting adiponectin was
lower in T2D patients as compared to controls (7.063.8 mgr/mL vs. 10.064.2 mgr/mL). Levels of IL 12 in serum were almost
double in T2D patients (52.8658.3 pg/mL vs. 29.7637.4 pg/mL). We found that GIPR promoter was hypomethylated in T2D
patients as compared to controls. In addition, HOMA-IR and fasting glucose correlated negatively with mean methylation of
GIPR promoter, especially in T2D patients. This case-control study confirms that newly diagnosed, drug-naı̈ve T2D patients
are more insulin resistant and have worse b cell function than age- and BMI-matched controls, which is partly related to
changes in the insulin-sensitizing metabolites (adiponectin), in the proinflammatory profile (IL12) and we suggest in the
methylation pattern of GIPR. Our study provides novel findings on GIPR promoter methylation profile which may improve
our ability to understand type 2 diabetes pathogenesis.
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Introduction

Twin cohort studies have shown that shared genetic factors can

only explain a fraction of the differences in incident type 2 diabetes

(T2D) [1]. Behavioral (sedentary lifestyle, westernized food

patterns) and environmental factors (organic pesticides, chemical

exposures, and air pollutants) contribute to the development of

T2D [2]. Moreover, inflammation induces inhibition of the insulin

signalling pathway which can lead to insulin resistance and T2D.

Recently, it has been proposed that epigenetic mechanisms could

be involved in the complex interplay between genes and the

environment [3]. Indeed, a recent study showed the presence of an

epigenetic dysregulation in pancreatic islets from T2D patients [4].

Briefly, they found differences in DNA methylation profiles in

several promoter regions in islets from T2D patients [4]. DNA

methylation is the best studied epigenetic modification and

influences transcripcional regulation [5]. DNA methylation is a

reversible process that can be modulated by both stochastic and

environmental stimuli [6]. On the other hand, GIPR gene codifies

for the receptor of the incretin GIP, a gastrointestinal hormone

that stimulates insulin response after an oral glucose challenge. In

T2D patients, GIP action is reduced, whereas its secretion does

not seem to be altered. There is increasing evidence supporting an

important role for GIPR as a candidate for mediating insulin

secretion after oral glucose challenge [7]. We speculated that GIPR

gene could be affected by alterations in DNA methylation in T2D

patients, which could explain the dysregulation of GIP action in

T2D patients [8,9]. As DNA methylation occurs principally in the

upstream regulatory regions of the genes [10], we concentrated on

the promoter of GIPR. A previous study has shown that T2D-
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related methylation may be reflected in accessible tissues such as

peripheral blood [11].

The principal aim of this study was to compare the pattern of

DNA methylation on GIPR promoter between T2D patients and

age- and Body Mass Index (BMI)-matched controls. The

secondary aims were to compare the metabolic and cytokine

profiles between T2D patients and matched controls.

Materials and Methods

Ethics Statement
This study was approved by the ethics committees of the

Hospital Clı́nic and complies with all laws and international ethics

guidelines outlined in the Declaration of Helsinki. All human

subjects provided written, informed consent.

Study Design and Subjects Included
We conducted a case-control study where cases were defined as

patients suffering from T2D that were treated only by diet.

Eligibility criteria for cases were the following: clinical diagnosis of

T2D between December 2010 until December 2011, adequate

glycemic control after a period of minimum six months of low-

carbohydrate diet and lifestyle interventions, no pharmacological

therapy for T2D needed to achieve the glycemic control.

Diagnosis of T2D was done following ADA recommendations

[12], by either a random elevated fasting glucose value (confirmed

twice) and/or by performing an oral glucose tolerance test

(OGTT). In case oral medication was needed for optimal glycemic

control, those patients were excluded from the study. Cases and

controls were recruited from the same primary health center.

Eligibility criteria for controls were as follows: a negative OGTT at

recruitment, no previous diagnosis of T2D or prediabetes, no

chronic treatment with oral steroids. Controls were frequency

matched on age and BMI to cases. Metabolic profile, cytokine

profile and DNA methylation of GIPR promoter profile in

peripheral blood DNA were studied for all subjects (93 cases

and 93 controls).

Metabolic Assessments
All subjects were examined by anthropometric measurements

and had fasting metabolic assessments at recruitment. These

assessments included fasting glucose, fasting insulin, fasting leptin,

fasting adiponectin, cytokines, glycohemoglobin A1 (HbA1) (only

for the type 2 diabetic patients), HOMA-IR and HOMA-B.

HOMA-IR was calculated as follows: HOMA-IR= (FPI6FPG)/

22.5 [13]; homeostasis b-cell function (HOMA-B) = (20 6 FPI)/

(FPG 2 3.5), where FPI is the fasting plasma insulin concentration

(mU/l) and FPG is fasting plasma glucose (mmol/l) [14].

Hormone and Cytokine Measurements
Adiponectin, leptin and insulin were quantified from serum

samples by ELISA (Mercodia), according to the manufacturer’s

instructions. Cytokines were measured from serum samples using

CBA Human Inflammatory Cytokines kit (BD Bioscience),

following the manufacturers instructions. Two-color flow cyto-

metric analysis was performed using LSRFortessa (BD bioscience).

Data were acquired and analyzed using FACS Diva and FCAP

Array 1.01 Software. Hormone and cytokine measurements were

performed at the Diabetes and Obesity Laboratory-IDIBAPS;

Barcelona, Spain.

DNA Methylation Analysis
Whole blood samples were stored in the Biobank Hospital

Clı́nic-IDIBAPS; Barcelona, Spain. Genomic DNA was extracted

from whole blood for all the subjects studied using standards

procedures from the Biobank. Sequenom’s MassARRAY platform

was used to perform quantitative methylation analysis [15]. This

system utilizes MALDI-TOF mass spectrometry in combination

with RNA base-specific cleavage (MassCLEAVE). A detectable

pattern is then analyzed for methylation status. PCR primers for

the amplification of the GIPR promoter gene were designed using

Epidesigner (See Appendix S1).

Statistical Analysis
Descriptive data are presented as the mean and standard

deviation (SD) for continuous outcomes, or number and

percentage (%) for categorical outcomes. The methylation

values (in %), cytokines, HOMA-IR, HOMA-B, insulin, leptin

and adiponectin were compared using non-parametric Mann-

Whitney U test, because normality and equality of variance

could not be assumed. Student’s t test was used for the

comparison of the rest of continuous outcomes and Chi-square

test for categorical outcomes. Correlation between methylation

at all thirteen CpG sites was high (P=0.002), therefore a mean

of GIPR promoter methylation was generated. Spearman’s rank

correlation coefficient was used to assess correlation between

mean GIPR promoter methylation and the different covariates

(waist circumference, fasting glucose, fasting insulin, fasting

adiponectin, fasting leptin, HOMA-IR, HOMA-B, cytokines).

Linear regression was used to study the association between the

mean GIPR promoter methylation (independent variable) and

the covariates (dependent variables) that presented a significant

correlation in the Spearman analysis, after adjustment for

diabetis status (i.e, being case or control), sex, age and BMI.

Mean GIPR promoter methylation was log-transformed for the

regression analysis. Subgroup analyses (i.e, by disease status)

were done for the variables that remained significant after the

adjustment. Overall R2 values for the models give the combined

contribution of log-transformed mean GIPR promoter methyl-

ation, sex, age, BMI and diabetes status to the variability in

dependent variables. Bonferroni correction was used for multiple

comparisons. All significance tests were 2-tailed and values of

p,0.05 were considered significant. All analyses were conducted

using the statistical software package Stata version 11.

Results

Metabolic and Cytokine Profile of Type 2 Diabetic
Patients and Controls
Baseline characteristics of the patients included in the study

are summarized in Table 1. T2D patients had a higher waist

circumference as compared to controls (mean waist values of

102.769.5 cm vs. 97.968.0 cm, P,0.01). Fasting adiponectin

was lower in cases as compared to controls (mean values of

7.063.8 mgr/mL vs. 10.064.2 mgr/mL, P,0.0001). HOMA-IR

was higher in cases (2.661.5 vs. 1.860.7 in controls,

P,0.0001). HOMA-B was higher in controls as compared to

T2D patients (113.66510.6 vs. 75.7651.1 in type 2 diabetic

patients, P,0.0001). From the cytokines analyzed, significant

differences were found for IL 10 (4.163.0 pg/mL in cases vs.

5.263.7 pg/mL in controls, P,0.05) and IL 12 (52.8658.3 pg/

mL in cases vs. 29.7637.4 pg/mL in controls, P,0.0001). No

differences were found between cases and controls in the routine

laboratory measures (blood cell count, hepatic profile, lipid

profile, renal function, data not shown).

GIPR Promoter Methylation in Type 2 Diabetes
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Quantitative DNA Methylation Analysis in Peripheral
Blood of GIPR Promoter in Type 2 Diabetic Patients and
Controls
Methylation levels in DNA from whole blood of 186 subjects

were obtained for 13 CpG sites covering 1,000 bp upstream of the

first exon of the human GIPR gene. The heatmap showing the

values of methylation (%) for each CpG site analyzed did not

reveal a clearly distinct pattern of methylation between T2D

patients and controls (figure not shown); however some significant

differences were found. Indeed, 9 out of 13 CpG sites studied

(69%) showed significant differences between T2D patients and

controls. There was a trend towards an hypomethylation in T2D

patients as compared to controls (See Table S1). In fact, mean

GIPR promoter methylation was lower in T2D patients as

compared to controls (24.361.6 in cases vs. 26.261.5 in controls,

P,0.0001). Mean methylation of GIPR promoter was correlated

with waist circumference (r =20.26, P,0.01), fasting glucose

(r =20.50, P,0.0001), HOMA-IR (r =20.29, P,0.001),

HOMA-B (r = 0.28, P,0.001), fasting adiponectin (r = 0.23,

P,0.01) and IL-12 (r =20.22, P,0.01) (see Table 2). After

adjustment, increased GIPR promoter methylation was associated

with decreasing fasting glucose [22.4 (24.5 to 20.2), P,0.05]

and decreasing HOMA-IR [24.6 (27.5 to 21.8) P,0.01] (see

Figure 1). Hence, following a 10% increase in log-transformed

GIPR promoter methylation, fasting glucose and HOMA-IR

decrease by 0.24 mmol/L and 0.46 units, respectively (see

Table 2). The combined contribution of GIPR promoter methyl-

ation and diabetes status, age, sex and BMI to the variability in

HOMA-IR was up to 23% and up to 53% regarding fasting

glucose (see Table 2). Separate analyses of T2D patients and

controls showed that the significant inverse correlation between

mean GIPR methylation and HOMA-IR was mostly present in

T2D patients (P,0.05) and not in controls (P=0.06) (see Figure 2).

Regarding fasting glucose, the relationship remained significant

also uniquely for T2D patients (P,0.05), and not in controls

(P=0.80).

Discussion

The leading cause of T2D is thought to be an impaired b cell

function [16] which depends on a complex interplay of genetic

predisposition and environmental factors, such as obesity, inactiv-

ity and aging. In this sense, we aimed to compare, given a similar

environment (defined as similar age and similar degree of obesity),

which were the factors associated with the apparition of T2D.

Therefore, we compared the metabolic and cytokine profile

between 93 newly diagnosed T2D patients and 93 age- and BMI-

matched controls. In addition, we also performed the first DNA

methylation profiling of human peripheral blood covering the

promoter of glucose-associated gene GIPR in T2D patients and

controls.

T2D patients and controls were similar in age and BMI to

control for any confounder effect of age and obesity on the results.

Moreover, none of the T2D patients were on any pharmacological

therapy for diabetes. Thus, no confounding effect of antidiabetic

drugs or insulin therapy was possible, either. T2D patients had

their clinical diagnosis of T2D recently and were in optimal

glycemic control. Hence, no potential influence of hyperglycemia

on the methylation pattern was possibe, or, if any, was low. Results

showed that T2D patients were more insulin-resistant than

controls, since they presented higher values of HOMA-IR. In

concordance to this, T2D patients had a higher waist circumfer-

ence as compared to controls. Large waist circumference is one

component used for the diagnosis of the metabolic syndrome.

Insulin resistance is associated with metabolic syndrome too [17].

Basically, in spite of the fact that T2D patients and controls had a

similar grade of obesity, T2D patients presented a differential body

fat distribution (particularly centralized obesity). This correlates

with a differential adipokines secretion which might lead to a

higher degree of insulin resistance in T2D patients. In contrast,

and as expected, b cell function was already impaired in T2D

patients as compared to controls (HOMA-B was significantly

lower in T2D patients as compared to controls). These data

illustrates the fact that impairment of b cell function is worse in

Table 1. Demographic and metabolic characteristics of type 2 diabetic patients and age- and BMI-matched controls.

Variable*
Type 2 diabetic patients
(n =93) Controls (n =93) P Value{

Demographic characteristics

Age, yr 69.169.2 66.6611.7 Matching variable

BMI, kg/m2 29.263.7 28.862.5 Matching variable

Waist circumference, cm 102.769.5 97.968.0 ,0.01

Male sex, (%) 66.7 53.8 0.07

Laboratory values

Fasting glucose, (mmol/L) 6.461.2 4.660.4 ,0.0001

Glycated hemoglobin, (%) 5?860.6 –

Fasting insulin, (pmol/L) 55.6628.6 52.4621.1 0.39

HOMA-IR ` 2.661.5 1.860.7 ,0.0001

HOMA-B 1 75.7651.1 113.66510.6 ,0.0001

Fasting leptin, (ng/mL) 18.0616.7 25.4626.8 0.07

Fasting adiponectin, (mg/mL) 7.063.8 10.064.2 ,0.0001

*Values shown are means 6SD, unless otherwise indicated.
{P values were calculated with the t test for quantitative variables or Chi-square test for categorical ones, except for HOMA-IR, HOMA-B, fasting insulin, fasting leptin and
fasting adiponectin, where non-parametric Mann-Whitney U test was applied.
`HOMA-IR was calculated as [Insulin mUI/l x Glycemia: (mmol/l)/22.5].
1HOMA-B was calculated as (20 6 FPI)/(FPG 2 3.5), where FPI is the fasting plasma insulin concentration (mU/l) and FPG is fasting plasma glucose (mmol/l).
doi:10.1371/journal.pone.0075474.t001
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T2D patients compared to age- and BMI- matched controls.

These results are in concordance with the existing literature [18].

In addition, we found that T2D patients had lower adiponectin

levels in serum than controls. Epidemiological studies have shown

that higher adiponectin levels in serum are associated with a lower

risk of T2D_ENREF_19. Moreover, adiponectin has been

proposed as a strong biochemical predictor of T2D [19].

Adiponectin is exclusively and abundantly expressed in white

adipose tissue and has been shown to have insulin-sensitizing and

anti-inflammatory properties [20]. In fact, in our study, we found

that fasting adiponectin had a negative correlation with HOMA-

IR (Spearman correlation coefficient r =20.28, P,0.0001) and a

positive correlation with HOMA-B (r = 0.19, P,0.01), which

supports the insulin-sensitizing properties of adiponectin.

Figure 1. Correlation between average GIPR promoter methylation from peripheral blood DNA and insulin resistance. Log-
transformed average GIPR promoter methylation is shown as the independent variable. HOMA-IR was used as a marker of insulin resistance.
Spearman ‘s correlation r =20.29, P= 0.0001. Adjusted P,0.01 (diabetes status, age, BMI and gender).
doi:10.1371/journal.pone.0075474.g001

Figure 2. Correlation between average GIPR promoter methylation from peripheral blood DNA and insulin resistance, by
subgroups (Type 2 diabetic patients and controls). Log-transformed average GIPR promoter methylation is shown as the independent
variable. HOMA-IR was used as a marker of insulin resistance. P= 0.06, adjusted for age, BMI and gender in controls (n = 93). P,0.05, adjusted for age,
BMI and gender in patients with Type 2 diabetes (n = 93).
doi:10.1371/journal.pone.0075474.g002
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On the other hand, lower levels of the anti-inflammatory IL-10

were found in T2D patients, which is consistent with previous

research that showed that low levels of IL 10 are associated with

T2D [21]. IL-12 serum levels were almost double in T2D patients

than in controls. A recent study showed that elevated serum IL-12

was present at the onset of T2D, and that further increases in IL-

12 correlated with endothelial dysfunction and cardiovascular

disease progression [22]. In addition, it has also been showed that

IL-12 might have a role in b cell dysfunction [23]. Overall, the first

part of our research demonstrate that T2D patients have an

impaired b cell function and are more insulin resistant than age-

and BMI-matched controls. These differences in b cell function

and insulin resistance are related to differences in adipokines and

inflammatory metabolites, which might be the underlying

mechanisms that lead to overt T2D [24].

Next, we performed a DNA methylation profiling of GIPR

promoter in DNA from peripheral blood and we sought for

associations of methylation with blood-and T2D-based biomark-

ers. We found that GIPR promoter was hypomethylated in T2D

patients as compared to controls. These results are consistent with

a recent study which showed that hypomethylation in specific

genomic regions in peripheral blood DNA was associated with

T2D [11]. However, their analysis did not cover the genomic

region we studied. To our knowledge, GIPR promoter methylation

analysis in peripheral blood DNA between T2D patients and age-

and BMI-matched controls has not been done before. There is

great interest to perform methylation profiling in peripheral blood

to find methylation disease-related associations since specific

methylated regions could be used as potent biomarkers [25].

However, to understand how these methylated regions have a

mechanistic role in the development of the disease of interest, the

methylation analysis should focus in the target-tissues of the genes

studied. GIPR, or gastric inhibitory polypeptide receptor, gene is

expressed in various tissues, including b cells, adipose tissue, and

brain [26]. It has been shown that GIPR expression is down-

regulated in pancreatic tissue of T2D patients [27]. Here, we

found that methylation of GIPR promoter in blood was negatively

correlated with a surrogate marker of insulin resistance (HOMA-

IR) and fasting glucose. In other words, decreased methylation in

this promoter is associated with higher insulin resistance and

higher fasting glucose. The subgroup analysis showed that this

association was mostly relevant for T2D patients. The mechanisms

underlying this association remain unknown and were not the

purpose of the current research. On the other hand, methylation

of GIPR promoter was not associated with HOMA-B. It has been

shown that GIPR is involved in obesity and insulin resistance [28].

Recently, GIP was proposed as having a role in inflammation and

insulin resistance by modulating the expression of osteopontin in

adipose tissue [29]. Moreover, carriers of GIPR rs10423928 A-

allele showed better insulin sensitivity [29]. The possible DNA

methylation contribution to these effects has not been studied yet

and warrants further study. Methylation patterns are thought to be

tissue-specific [4,5], thus we might not extrapolate the methylation

pattern found in blood to the methylation pattern present in

adipose tissue. Further research is needed to define the role of

methylation changes in GIPR promoter in adipose tissue and their

potential impact on insulin resistance.

The strength of our research is that we have demonstrated that

newly diagnosed and drug-naı̈ve T2D patients have differences in

specific hormones (adiponectin) and proinflammatory metabolites

(especially IL 12) as compared to age- and BMI-matched controls.

We also found that GIPR promoter was hypomethylated in T2D

patients as compared to controls, as well as, new correlations

between insulin resistance, fasting glucose and GIPR promoter

methylation in DNA from peripheral blood. However, despite

accounting for the major confounding factors (age, BMI, diabetes

pharmacologic therapy), residual confounding and reverse causa-

tion remain possible. We cannot exclude a potential effect of the

diet on methylation results in cases. However, there is not

published data supporting that a low-carbohydrate diet would

affect the methylation pattern of GIPR promoter in peripheral

blood. We have already controlled for the potential effects of

hyperglycemia and antidiabetic medication on the methylation

values. A method for overcoming this issue, as proposed by Relton

et al [30], is by applying a ‘‘genetical epigenomics’’ approach. In our

case, this would mean to study the genetic variants that would be

related to the methylation pattern, and then to verify whether the

Table 2. Results of correlation analysis between GIPR promoter methylation and the listed dependent variables.

Outcome variable Spearman’s correlation Unadjusted p-value Adjusted p-value* R2 (%){

Waist circumference 20.26 ,0.01 0.59. b=25.2 (224.4 to 13.9) 44.8

Fasting glucose 20.50 ,0.0001 ,0.05. b=22.4 (24.5 to 20.2) 52.9

Fasting insulin 20.12 0.10

HOMA-IR 20.29 ,0.001 ,0.01. b=24.6 (27.5 to 21.8) 22.7

HOMA-B 0.28 ,0.001 0.53. b=20.5 (21.9 to 1.0) 39.4

Fasting leptin 20?05 0?49

Fasting adiponectin 0.23 ,0.01 0.28. b= 5.1 (24.1 to 14.2) 23.8

IL-1B 20.02 0.75

IL-8 20.03 0.72

IL-6 0.08 0.32

IL-10 0.06 0.43

IL-12 20.22 ,0.01 0.55. b=237.7 (2161.6 to 86.1) 6.1

TNFa 0.03 0.65

*Adjustment for age, BMI, sex and diabetes status by creating linear regression analyses between log-transformed GIPR promoter methylation and the dependent
variables that presented a significant correlation in Spearman’s analysis. Regression coefficients and corresponding 95% CIs are shown.
{R2 reflects the variance (%) in outcome measures accounted for age, BMI, sex, diabetes status and GIPR promoter methylation.
doi:10.1371/journal.pone.0075474.t002
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correlation with methylation values and insulin resistance remains.

However, this was out of scope of the present study.

In conclusion, our research showed that newly diagnosed and

drug-naı̈ve T2D patients have impaired b cell function and are

more insulin resistant as compared to age- and BMI-matched

controls. In addition, adiponectin was lower in T2D patients and

correlated with b cell function. IL-12 levels in serum were almost

double in T2D patients as compared to controls. The targeted

epigenetic analysis in DNA from peripheral blood identified that

GIPR promoter was hypomethylated in T2D patients as compared

to controls. Hypomethylation of GIPR promoter correlated with

higher fasting glucose and insulin resistance in T2D patients.

Further research should unveil the potential role of these findings

in the physiopathology of T2D.
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