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 22 

Abstract 23 

The vegetation of the southern Gran Sabana (SE Venezuela) consists primarily 24 

of a treeless savanna with morichales (Mauritia flexuosa palm stands), despite 25 

the prevailing climate being more favorable for the development of extensive 26 

rainforests. Here we discus the results of our 8700-year palaeoecological 27 

reconstruction from Lake Encantada based on analysis of pollen, algal remains, 28 

charcoal and geochemical proxies. We use the findings to assess a number of 29 

hypotheses that seek to explain the dominance of savanna vegetation and 30 

consider the relative importance of factors such as climate, fire and erosion on 31 

the landscape. The reconstruction of vegetation changes suggests the following 32 

trends: open savanna with scattered forest patches (8700-6700 yr BP), forest-33 

savanna mosaic (6700-5400 yr BP), open savanna with forest patches (5400-34 

1700 yr BP) and treeless savanna with morichales (1700 yr BP-present). We 35 

conclude that the interplay between climate and fire and the positive feedback 36 

between the presence of grasses and increased fire frequency played a major 37 

role in the vegetation dynamics from the early to middle Holocene (8700-6700 38 

yr BP). The synergistic action between reduced fires and wetter conditions 39 

appears to be a determinant in the development of rainforest around 6700 yr 40 
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BP. Despite higher available moisture at ~5400 yr BP, the savanna expanded 41 

with the increased frequency of fire, potentially driven by human land-use 42 

practices. We also propose that the interplay between fire and erosion created 43 

forest instability during the middle and late Holocene. The current southern 44 

Gran Sabana landscape is the result of the complex interplay between climate, 45 

fire, erosion and vegetation. 46 

 47 

Keywords 48 

Environmental drivers, Feedbacks, Vegetation dynamics, Savanna expansion, 49 

Land-use practices, Neotropics. 50 

 51 

1. Introduction 52 

Savanna is one of the most extensive tropical ecosystems, covering 53 

approximately 20% of the Earth’s land surface, and occurring over a broad 54 

range of climatic, edaphic and topographic conditions. Fire frequency is high in 55 

Savanna ecosystems from both natural and anthropogenic causes. This biome 56 

occurs in areas showing annual precipitation values between 300 to 1800 mm; 57 

values above 600 to 820 mm/yr correspond to humid ecosystems (Accatino and 58 

De Michele, 2013). The presence of savanna in this high-rainfall areas suggests 59 

that climate alone is not responsible for the distribution of this biome (Murphy 60 
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and Bowman, 2012). Instead, the interplay of environmental drivers such as 61 

climate, soil development, geomorphology, land use and fire frequency are 62 

important factors that influence the presence of savanna in areas that could be 63 

covered by tropical rainforest. Despite an increased understanding of how these 64 

drivers influence the evolution of savanna (Jeltsch et al., 2000; Murphy and 65 

Bowman, 2012), the underlying ecological processes and interactions that 66 

maintain this ecosystem are not well understood. Probably multiple factors 67 

operate at different spatial and temporal scales (Jeltsch et al., 2000), and their 68 

feedbacks with vegetation and soils contribute to the establishment and 69 

maintenance of the savanna physiognomy (Beckage et al., 2009; Hoffmann et 70 

al., 2012a,b). Savanna areas have experienced remarkable expansions in the 71 

last millennia (Behling and Hooghiemstra, 1999; Breman et al., 2011; Montoya 72 

and Rull, 2011) largely caused by the increased occurrence of human caused 73 

fires.  In order to prevent further expansion, an improved understanding of the 74 

interplay between human and environmental drivers is needed.  75 

 76 

The Venezuelan Gran Sabana (GS) region is an upland savanna located in 77 

southeastern Venezuela (Figure 1a) and is situated within the extensive 78 

Guayanan and Amazon rainforests (Barbosa and Campos, 2011). Even though 79 

the regional climate is suitable for the development of rainforest vegetation, the 80 
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vegetation of the GS is savanna and has persisted since the beginning of the 81 

Holocene (Montoya et al., 2011a; Rull, 2007). Three hypotheses have been 82 

proposed to explain the long-term presence of savanna vegetation in the GS. 83 

First, the climatic hypothesis suggests that the GS savannas are the relicts of 84 

larger savanna extensions that originated in drier and/or colder epochs (e.g, 85 

Last Glacial Maximum) (Eden, 1974). Second, the fire hypothesis presumes 86 

that frequent burning, potentially from anthropogenic sources, formed and 87 

maintained the savanna ecosystem. The more recent savanna expansion (~ 88 

2000 yr BP to present) appears to have been caused by human-induced forest 89 

clearing through burning (Montoya et al., 2011b, c). The absence of 90 

archaeological studies to date in the GS currently limits our knowledge of the 91 

timing of human occupancy, as well as the associated land-use practices. Third, 92 

the edaphic hypothesis suggests that unfavorable soil conditions in the GS, 93 

such as low nutrient concentrations, low water retention and a shallow soil 94 

profiles suppress forest growth resulting in Savanna development (Dezzeo et 95 

al., 2004; Fölster et al., 2001). Modern short-term studies limited to the last 96 

several decades highlight the negative impacts of soil stress on vegetation and 97 

the landscape (Dezzeo et al., 2004; Fölster et al., 2001), although there are no 98 

studies to date that have focused on the influence of soil development on 99 

vegetation over longer timescales (centuries to millennia). A study of the long-100 
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term vegetation dynamics is required in order to assess these hypotheses and 101 

determine the interplay between climate, vegetation, fire ecology, soil related 102 

factors and the associated feedback processes. 103 

 104 

In this work, we present a multiproxy investigation of a lacustrine sediment 105 

record recovered from a region in the southern GS covering the last 8700 yr. 106 

We integrated pollen, spores, algal remains, charcoal and geochemical 107 

analyses to generate a detailed reconstruction of the environmental changes in 108 

the region, with a specific focus on the interplay and synergies between the 109 

environmental drivers (climate and fire), soil erosion and vegetation.  110 

 111 

[insert Figure 1] 112 

                                                                                                                              113 

2. Present-day environmental setting   114 

 115 

2.1. Regional features 116 

The GS is an extended region (~10,800 km2) located in the Venezuelan 117 

Guyana, in southeastern Venezuela (Bolívar state). This region lies in northeast 118 

of the Precambrian Guiana Shield, and between the Orinoco and Amazon 119 

basins (4º36’ to 6º37’N and 61º4’ to 74º2’W) (Figure 1a). The climate of the GS 120 
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has been described as submesothermic tropophilous, with annual average 121 

temperatures of approximately 18–22 ºC and precipitation of 1600–2000 mm/yr. 122 

The GS is a high, undulating erosion surface that forms an Altiplano inclined 123 

from north (1450 m asl) to south (750 m asl). The GS is situated on quartzite 124 

and sandstone bedrock, known as the Roraima group. These rocks have been 125 

subject to long weathering processes and produce iron- and aluminum-oxide-126 

rich soils (Huber, 1995a), which have poor nutrient content, with low 127 

concentrations of phosphorous, calcium and nitrogen (Huber, 1995a). The soil-128 

chemical stress caused by the calcium deficiency and aluminum toxicity 129 

combined with the thin profile render the soils incapable of supporting certain 130 

types of vegetation, especially forests (Fölster et al., 2001). This reduces the 131 

capacity of the soil to withstand external and internal impacts such as burning 132 

and drought (Fölster et al., 2001;Schubert and Huber, 1989).  133 

 134 

In the Venezuelan Guayana region, the principal vegetation types are 135 

evergreen montane and gallery forest, but the majority of the GS is covered by 136 

savanna. Three primary types of savanna occur in this area (Huber, 1995b): (1) 137 

open treeless savannas, (2) shrubs savannas and (3) open savannas with 138 

morichales, which are mostly monospecific dense stands of the Arecaceae 139 

Mauritia flexuosa (locally known as moriche). The stands of morichales grow 140 
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along river courses and around lakes on poorly drained soils with high clay 141 

content (Rull, 1999). This type of gallery forest is an important vegetation 142 

component occurring in the central and southern regions of the GS at elevations 143 

lower than 1000 m asl (Huber, 1995b). Other vegetation types in the GS 144 

landscape that form patchy mosaics in the savanna (Huber, 1986) are 145 

montane rain forests (800-1500 m asl; Huber, 1995b; Hernández, 1999), 146 

shrublands, secondary woody communities and helechales (dense fern 147 

communities). Generally helechales establish after repeated burning, as part of 148 

successional trend (Huber, 1986). A more detailed description of the vegetation 149 

composition is provided in previous studies (Huber 1995b). For the main taxa, 150 

refer to Supplementary material. 151 

 152 

Fire currently plays a significant role in the landscape dynamics of the GS, with 153 

a fire frequency between 5000 and 10,000 fires per year (Gómez et al., 2000). 154 

Nearly 70% of detected fires start in savanna areas, but some fires cross the 155 

savanna-forest boundary (Bilbao et al., 2010), causing forest degradation    156 

(Dezzeo et al., 2004; Fölster, 1986; Fölster et al., 2001). The vast majority of 157 

these fires are of anthropogenic origin (Bilbao et al., 2010). Fire is a key 158 

element of the Pemón culture. This indigenous group currently inhabits the GS, 159 

and belongs to the Carib-speaking ethnic group. They use fire daily to burn wide 160 
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extensions of treeless open savanna (Kingsbury, 2001). Fires in savanna-forest 161 

borders are scarcely controlled and cause concern about further savanna 162 

expansion. The anthropogenic fires have caused an impoverishment of tree 163 

species, a drastic reduction of biomass in terms of basal area, a strong change 164 

in the floristic composition and the loss of the organic-rich soil surface layer, 165 

which negatively impacts on soil fertility (Dezzeo et al., 2004). Therefore, the 166 

forest recovery may be strongly impaired by fire. To prevent further land 167 

degradation, studies and strategies for fire management in the GS are currently 168 

under investigation (Bilbao et al., 2009, 2010).  169 

                                                                                                                                 170 

2.2. Study site                                                                                                          171 

Lake Encantada (4º42’37. 44” N to 61º05’03. 29” W; 857 m asl; Figure 1a) is 172 

located near the town of Santa Elena de Uairén on a private farm named “Hato 173 

Santa Teresa”. Lake Encantada is shallow with a maximum water depth of 2.6 174 

m (measured in January 2007). The lake surface is <1km2 and its watershed is 175 

also small, both of which suggest that the sediment record contains a local 176 

vegetation history (Mayle and Iriarte, 2012). Treeless savanna and scattered 177 

morichales patches currently surround the Lake Encantada (Figure 1b). 178 

Therefore, pollen signal of M. flexuosa may indicate the local occurrence of 179 

morichales around the shores of the lake. However, wind-transported pollen 180 
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taxa (e.g., Urticales pollen grains) might have been sourced extra-locally from 181 

neighboring forests (Jones et al., 2011).  182 

                                                                                                                                            183 

3. Methodology                                                                                                                        184 

3.1. Core recovery and radiocarbon dating                                                                    185 

The core discussed here, (PATAM4 C-07; 2.13 m-long), was obtained in January 2007 186 

and was taken from the deepest part of the lake using a modified Livingstone squared-187 

rod piston (Wright et al., 1984). Four samples were taken along the core for AMS 188 

radiocarbon dating, which was carried out at the Radiocarbon Laboratory of the 189 

University of California, Irvine (UCI) and Beta Analytic (Beta). Three samples were 190 

produced from a pollen residue (Table 1), due to the absence/insufficiency of suitable 191 

macrofossil material. These samples were processed using a simplification of standard 192 

palynological techniques (KOH, HCl and HF digestions). The radiocarbon dates were 193 

calibrated with the CALIB 6.0.1 and the IntCal09.14c database 194 

(http://calib.qub.ac.uk./calib/, last accessed on October 2012). The age-depth model 195 

was produced with the Clam R statistical package (Blaauw, 2010).                                                196 

3.2. Magnetic, physical and chemical analyses                                                                            197 

Magnetic susceptibility (MS) was measured on half-core sections at 5 mm intervals with 198 
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a Bartington Susceptibility Meter. Bulk density (BD) was measured on 1 cm3 samples 199 

that were taken every 5 cm down the core and dried at 60 ºC for 24 h. The organic 200 

matter and inorganic carbon content of the sediments were determined for each sample 201 

by loss on ignition (LOI) at 550 ºC and 1000 ºC, respectively (Bengtsson and Enell, 202 

1986; Heiri et al., 2001). Elemental determinations were performed with an ITRAX X-203 

Ray Fluorescence (XRF) core scanner at the Large Lakes Observatory of the University 204 

of Minnesota, Duluth. Measurements were made at 1 cm intervals during 60 seconds of 205 

exposure time. The elements are expressed as counts per second (cps), and those over 206 

1500 cps were selected (Si, K, Ti, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr and Zr), 207 

because they are usually considered to be statistically significant. Excluding Fe, Co and 208 

Br, the remaining elements are considered a terrigenous-sourced group. Total Organic 209 

Carbon (TOC) and Nitrogen (TN) and δ13C and δ15N were measured after acid pre-210 

treatment using an elemental analyzer coupled with a Finnigan Delta-plus mass 211 

spectrometer. The isotope sample reproducibility was ±/0.2‰. Carbon and nitrogen 212 

isotope ratios are reported in δ-notation, with δ= ([Rsample/Rstandard] -1) x 1000 and R 213 

=13C /12C or 15N/14N. The isotopes are expressed per mil (‰) relative to the following 214 

international standards: Vienna Peedee Belmnite (VPDB) for carbon and air (VAIR) for 215 

nitrogen.                                                                                                             216 
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3.3. Pollen analysis                                                                                                              217 

Forty-three volumetric samples (2 cm3) were taken at 5 cm intervals. The samples were 218 

processed using standard palynological techniques (KOH, HCl, acetolysis, HF digestion 219 

and dehydration). Lycopodium tablets were added as exotic markers (batch 177745, 220 

average of 18584 ± 1853 spores/tablet). The slides were mounted in silicone oil without 221 

sealing and stored in the same mounting medium. Counts were conducted until a 222 

minimum of 300 terrestrial pollen grains was attained. Pollen count was performed until 223 

diversity saturation was reached (Rull, 1987). Identified pollen and pteridophyte spores 224 

were classified according to the vegetation types previously described for the region 225 

(Huber, 1995b). The pollen sum included pollen from trees, shrubs and herbs and 226 

excluded pollen from aquatic (e.g., Utricularia, Ludwigia) and semi-aquatic plants (e.g., 227 

Cyperaceae, Sagittaria). The identification of pollen and spores was based on Burn and 228 

Mayle (2008), Colinvaux et al (1999), Herrera & Urrego (1996), Leal et al (2011), Roubik 229 

& Moreno (1991) and  Rull (2003). Pollen diagrams were plotted with PSIMPOLL 4.26. 230 

The zonation for the pollen diagrams was performed using the optimal splitting by 231 

information content (OSIC) method, and the number of significant zones was 232 

determined by the broken-stick model test (Bennett, 1996). Only pollen types exceeding 233 

1% abundance were used for zonation. Sample PATAM4C 07_D3/50 at 213 cm was 234 

excluded because of methodological problems, so pollen diagrams up to 208 cm were 235 

created. Algal remains (e.g., Botryococcus, Spirogyra, Mougeotia) were counted on 236 
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pollen slides and, together with aquatic plants, were plotted in terms of percentages 237 

based on pollen sum. The identification of the assemblages was based on comparison 238 

with modern pollen samples from previous studies ( Leal et al., 2013; Rull, 1999) and 239 

the known autoecology of the taxa (Burn and Mayle, 2008; Burn et al., 2010; Marchant 240 

et al., 2002).  Charcoal counts were carried out using the same pollen slides and were 241 

classified according to the two size classes defined by Rull (1999) for this study area: 242 

Type I (smaller microcharcoal particles of 5–100 μm) consists of windborne charcoal 243 

dispersed over long distances and represents regional fire events (Clark, 1998; 244 

Blackford, 2000), and Type II (larger microcharcoal particles >100 μm) is indicative of 245 

local fire events because it is not transported far from the fire source (Clark, 1998).                      246 

Influx values (unit-cm-2 *yr-1) were obtained using concentration values (unit-cm-3) and 247 

accumulation rates (cm*y-1) for charcoal particles and main taxa. Additionally, we 248 

measured the woody: non-woody ratio after classifying the taxa into woody (trees and 249 

shrubs) and non-woody (herbs and sedges) types. This ratio is indicative of the 250 

vegetation cover (Bhagwat et al., 2012) and can be used to differentiate between 251 

forested and savanna vegetation.  252 
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3.4. Silicobiolith analysis                                                                                                       253 

Diatoms and sponge spicules were considered as silicobioliths, which are sediment 254 

from the remains of living organisms formed by amorphous silica. Forty-three samples 255 

taken at 5 cm intervals (1 cm3) were digested according to their organic matter content 256 

with either a mixture of sulphuric acid and potassium dichromate or hydrogen peroxide. 257 

Most samples were barren of silicobioliths. In the remaining samples, because of the 258 

extremely low number of valves and spicules in different stages of preservation (e.g., 259 

0.2 valves/field on average), counting was stopped after approximately 500 fields and 260 

the results were expressed as “traces”. Diatoms were identified using specialized 261 

literature (Krammer & Lange-Bertalot, 1986). The identified spicules correspond to adult 262 

oxas type, so their taxonomic identification was not possible (Frost et al., 2001).  263 

3.5. Statistical analysis                                                                                                          264 

Canonical Correspondence Analysis (CCA) was performed with the Multivariate 265 

Statistical Package (MVSP) v.3.13 software using all physico-chemical data and the 266 

influx of charcoal and algae as environmental variables. All data were root-square 267 

transformed and rare pollen taxa were down weighted. Six samples (3, 123, 128, 138, 268 

143 and 173 cm) were excluded because of a lack of physico-chemical data. The 269 

interval 213-173 cm was also excluded because it is barren of biological proxies. 270 
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Additionally, correlation analysis was carried out between the environmental variables 271 

and the main pollen taxa by using influx values calculated according to the Pearson 272 

product-moment correlation coefficient (r) and its corresponding significance (p-value).                273 

4. Results                                                                                                                          274 

4.1. Stratigraphy and chronology                                                                                       275 

The Encantada lacustrine sequence was characterized by three lithological units from 276 

bottom to top (Figure 2). The first unit is from 213 to 173 cm and is characterized by 277 

homogeneous, well-sorted and fine white sands. The second unit is from 173 to 113 cm 278 

and is made up of homogeneous, yellowish-white clays, but between 150 and 131 cm, a 279 

yellowish-brown clay layer is present. The third lithological unit is present from 113 cm 280 

to the top and consists of massive, brown clay sediments.                                                         281 

[insert Figure 2]                                                                                                                    282 

The results of AMS radiocarbon dating (Table 1) were used to build the age-depth 283 

model for the sequence. The best fit was obtained with a smooth-spline model (Blaauw, 284 

2010) (Figure 2). Sedimentation rates fluctuated between 0.04 and 0.02 cm yr-1 and 285 

progressively decreased from the bottom to the top. The sequence encompassed most 286 
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of the Holocene (ca. 9700 cal yr BP to the present), and the time interval between 287 

consecutive samples ranged from approximately 100 to 300 yr (centennial to multi-288 

centennial resolution). We focused on the last 8700 yr for the palaeoecological analysis 289 

because of the absence of biological proxies prior this time (see section 4.3.1).  290 

Table 1. 291 
AMS radiocarbon dates used of the age-depth model. 292 
 293 
Laboratory 

number 
Sample Depth 

(cm) 
Material Age (yr 

14C BP) 
Age 
(cal 
yr 

BP) 
2σ 

Age (cal yr 
BP) 

estimation*

UCI-
43538 

 

PATAM4C07_D1/40 40 Wood 2260±60 2154-
2272 

2309 

Beta-
287338 

 

PATAM4C07_D2/19 100 Pollen 
residue 

5030±40 5705-
5896 

5763 

Beta-
287340 

 

PATAM4C07_D2/72 152 Pollen 
residue 

7300±40 8019-
8180 

8043 

Beta-
287339 

PATAM4C07_D3/47 207 Pollen 
residue 

8530±50 9453-
9556 

9543 

* Weighted average of the probability distribution function. This method is 294 
recommended as the best central-point estimate 295 
 296 
 297 
4.2. Geochemical proxies                                                                                                    298 

Figure 3 shows the results of the geochemical analyses. According to variations along 299 

the entire sequence, three intervals (listed below) were identified that coincide with 300 
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those based on the sediment description.                                                                                        301 

4.2.1. Interval A (213 to 173 cm) 302 

This interval corresponds to the oldest described lithological unit. All 303 

geochemical elements had values that were low to very low and roughly 304 

constant, except Si (up to 8,330 cps) and BD (ranging between 1.3 to 1.5 305 

g/cm3), which exhibited the highest values of the entire record. 306 

                                                                                                                             307 

4.2.2. Interval B (173 to 113 cm) 308 

Most physico-chemical proxies displayed high variability related to the 309 

lithological changes present in this interval, which allowed three sub-intervals to 310 

be defined: B-1, B-2 and B-3. B-1 and B-3 coincided with the yellowish-white 311 

clay layers, whereas B-2 corresponded to the intermediate yellowish-brown 312 

clays of lithological unit 2 (Figure 3). B-1 and B-3 were characterized by a high 313 

cps of K, Ti, Mn, Se, Sr and Zr; these chemical elements abruptly dropped in B-314 

2, whereas Fe (22.9*105 cps) and Co (13.6*103 cps) were found at their 315 

maximum values. MS (up to 240*10-6 S.I), δ13C (1.3 ‰), C/N (191) and TOC 316 

(ca. 10 %) peaked in B-2. δ15N reached minimum values in B-2 (up to 1‰). 317 

 318 
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4.2.3. Interval C (113 to 0 cm) 319 

Most of the elements showed medium to low values in interval C in comparison 320 

with values from two previous intervals, but Br displayed the highest ones (up to 321 

1,737 cps) of the entire record. TOC (from 8 to 31%), TN (ranging between 0.5 322 

and 2.1 %) progressively increased upwards, and δ15N decreased (varying from 323 

0.8 to -1.3 ‰).  324 

 [Insert Figure 3] 325 

                                                                                                                            326 

4.3. Biological proxies 327 

The stratigraphic variations of pollen assemblages allowed us to subdivide the 328 

pollen diagram into four zones. Because silicobioliths were only found in trace 329 

amounts, they could not be plotted in a taxa percentage diagram; however, 330 

these results were included in the diagram of aquatics and expressed 331 

qualitatively.  332 

 333 

4.3.1. ENC-BZ (208 to 173 cm, 8 samples). 334 

Palynomorphs were absent (Figs. 4 and 5) and therefore this zone was 335 

considered barren (BZ). Charcoal particles remained at low abundances but 336 

exhibited a pronounced increase at the boundary with the upper zone (ENC-I).  337 

                                                                                                                                338 
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4.3.2. ENC-I (173 to 120.5 cm, 11 samples) 339 

ENC-I coincides both with the physico-chemical interval B and with the second 340 

lithological unit  (Figure 2). The pollen assemblage was dominated by 341 

herbaceous elements, with Poaceae as the most important taxa. The 342 

percentage of herb pollen (ca. 50-80%) decreased towards the top of the zone 343 

and was synchronous with an increase in tree pollen, which can also be 344 

observed in the vegetation cover ratio (Figure 4). Woody elements were 345 

represented primarily by Brosimum (the most abundant), Ochnaceae, Miconia, 346 

Solanum. section Pachyphylla, Cecropia and Urticales (others). Pteridophyte 347 

spores were primarily dominated by psilate monoletes and psilate triletes 348 

(Figure 5), which showed two peaks at approximately 158-153 cm and 128-123 349 

cm, that co-occurred with the peaks of Miconia (Figure. 4) and maximum 350 

abundances of Cyperaceae (at 158-153 cm; Figure 5). Mougeotia appeared in 351 

the lower half of the zone, whereas Sagittaria, Botryococcus and Spirogyra 352 

appeared for the first time at the top of the zone (Figure 5). Charcoal particles 353 

showed the highest values of the entire record at the base of the zone (Figure 354 

4). Regarding the influx values, Poaceae displayed an abrupt maximum at 143 355 

cm, which coincided with a charcoal peak (Figure 6). These values occurred in 356 

the lithological/stratigraphical sub-interval B-2.  357 

[insert Figure 4] 358 
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[insert Figure 5] 359 

 360 

 4.3.3. ENC-II (120.5 to 30.5 cm, 18 samples) 361 

The ENC-II zone is represented by marked increase in forest elements, 362 

primarily Urticales 3-4p, in its lower half. Vegetation cover ratios (in average 363 

1.33) showed the same trend. Cecropia was more abundant (2-3%) towards the 364 

bottom and the top of the zone. In the lower half of the zone Urticales reached 365 

its highest proportion (>40%) and influx (> 5*102 grains*cm-2yr-1) (Figs. 4 and 6). 366 

Among the aquatic elements, Sagittaria was nearly constant along the zone and 367 

increased slightly near the top (∽1.5%). Spirogyra was abundant in the lower 368 

half (3-4%), while Botryococcus was the dominant aquatic element in the upper 369 

region of the zone (5-6.5%, Figure 5). Total algal remains had the highest 370 

values in the upper half (up to 110 elements*cm-2yr-1; Figure 6). From 103 cm 371 

upwards, the presence of sponge spicules was almost constant (Figure 5). 372 

Charcoal particles presented the lowest values of all the sequences at the base 373 

of the zone but exhibited a subsequent increase. Excluding the upper region, 374 

this zone broadly coincided with interval C.      375 

                                                                                                                        376 

4.3.4. ENC-III (30.5 to 3 cm, 6 samples) 377 

The pollen assemblage of the ENC-III zone showed an abrupt change in 378 
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composition. M. flexuosa increased dramatically from 1.5% to 27.7%, while 379 

pollen of woody taxa underwent a drastic reduction from >40% to 3% (Figure 4). 380 

From 23 to 18 cm, M. flexuosa declined whereas a tree pollen recovery (32%) 381 

was observed, synchronous with a subtle decrease in charcoal particles (Types 382 

I and II). A return to former Mauritia values was recorded shortly thereafter and 383 

was coeval with a severe reduction of pollen of woody taxa to ca. 3%. Urticales 384 

and M. flexuosa influx values followed similar trends with their respective 385 

relative abundances, confirming the trends inferred from the percentage values 386 

(Figure 6). In the upper region, Poaceae dominated the pollen assemblage, 387 

reaching almost 70% of the pollen sum. Pteridophyte spores were common but 388 

occurred in low percentages (Figure 5). Aquatic elements remained at low 389 

abundances (< 2%, Figure 5). Charcoal particles showed values that were 390 

roughly similar to those of the previous zone (∽ 16*103 particles*cm-2yr-1).  391 

 [insert Figure 6] 392 

  393 

4.4. Statistical analysis 394 

 Figure 7 shows the results of the CCA along the biplot of the first two axes, 395 

which explain 47.88% of the total variance (Axis 1=28.42%, Axis 2= 19.46%). 396 

Positive values on axis 1 are represented by TN and, to a lesser extent, by 397 

TOC, the inc/coh ratio (indicator of the organic matter content of the sample; 398 
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see Croudace et al., 2006, Sáez et al., 2009, Ziegler et al., 2008), Co and Fe, 399 

whereas negative values are represented by Ti, Zn and Zr and, to a lesser 400 

extent, by As, Ni, Rb, K, Mn, Si, Sr and BD. Charcoal and MS represent the 401 

positive values on axis 2, whereas algae and Br have more influence on the 402 

negative values.  403 

 404 

Within the space defined by these two axes, samples are clustered according to 405 

the previously defined pollen zones. Pollen zone ENC-I falls on the negative 406 

side of axis 1 and the positive side of axis 2, which is linked to a suite of 407 

elements (As, Ni, Rb, K, Mn, Si, Sr and BD). Pollen zone ENC-II is situated in 408 

the middle of axis 1 and the negative side of axis 2, showing a widespread 409 

arrangement of samples that are linked to a variety of elements (such as TOC, 410 

TN, δ13C, δ15N and algae). Zone ENC-III is located on the positive sides of both 411 

axes, showing no relationship with physico-chemical proxies.  412 

 413 

Charcoal and M. flexuosa showed no significant relationship when considering 414 

the whole diagram; however, when only zone ENC-III is taken into account 415 

(Mauritia is absent from the other pollen zones), the linear correlation between 416 

charcoal and M. flexuosa is positive and significant (r= 0.68; p= 0.015). 417 

Charcoal also shows a strong positive relationship with psilate spores (r= 0.66; 418 
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p-value < 0.001) and these are highly associated with Miconia (r= 0.70; p-value 419 

< 0.001). 420 

[insert Figure 7] 421 

 422 

5. Reconstruction of environmental changes 423 

The environmental variations in the sediments of Lake Encantada allowed us to 424 

differentiate four periods.  425 

 426 

5.1. Period 1: 9700 to 8700 cal yr BP (from 213 to 173 cm) 427 

The presence of well-rounded and sorted siliclastic sediments together with the 428 

highest sedimentation rates (0.04 cm yr-1) suggests that these sediments were 429 

likely deposited in a fluvial environment. We believe that flowing waters would 430 

have prevented the deposition and/or preservation of most biological proxies.  431 

                                                                                                                          432 

5.2. Period 2:  8700 to 6700 cal yr BP (from 173 to 120 cm) 433 

Pollen analysis suggests that during this period the landscape was covered by 434 

open savanna with scattered small forest patches. Regional fires peaked and 435 

decreased several times, and when fires decreased the forest patches 436 

expanded. This expansion is indicated by the wind-pollinated taxa of the 437 

Moraceae family (Figure 4; Burn et al., 2010) (ca. from 8500 to 8000 cal yr BP, 438 
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and ca. from 7500 to 7000 cal yr BP). After more intense burning events, 439 

Miconia increased in parallel to a significant increase in psilate-fern spores. 440 

Both Miconia and pteridophytes with psilate spores are colonizers of burnt 441 

areas during early stages of succession (Berry et al., 1995; Hernández and 442 

Fölster, 1994; Marchant et al., 2002). In the GS, a similar assemblage formed 443 

by helechales (fern communities), intermingled with patches of shrubs 444 

(matorrales), is considered to be a degrading successional stage after 445 

secondary forest burning (Fölster et al., 2001; Rull, 1999). Conversely, when 446 

regional fires increased, the forest and helechales-matorrales retreated and the 447 

savanna expanded (ca. from 8000 to 7500 cal yr BP). Around ca. 7700 cal yr 448 

BP, higher δ13C values (indicative of C4-land plants; Meyers and Lallier-Vergés, 449 

1999), higher C/N ratios (Figure 3) and greater Poaceae-influx values coincided 450 

with the enhancement of fires (Figure 6). According to modern plant surveys 451 

(see Supplementary material), most herbs in GS have C4-photosynthetic 452 

pathway.  This evidence confirms the dominance of expanding open vegetation 453 

when fires were more intense. Other paleorecords from the area indicate that 454 

this period was dry across the greater region (Llanos Orientales: Behling and 455 

Hooghiemstra, 1998; Amazonia: Mayle and Power, 2008) which is also 456 

consistent with a previous work in the GS (Montoya et al., 2011a) and the 457 

evidence presented here.  458 
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 459 

At the beginning of the period, the abrupt change from clastic sediments to 460 

yellowish-white clays (interval B-1) might indicate the change from fluvial to 461 

lacustrine conditions. Most geochemical (TOC and TN) and biological (algal 462 

influx) proxies suggest that the aquatic productivity was negligible or not 463 

preserved in the sediments (Figs. 3 and 6). During the periods from 8700 to 464 

8000 cal yr BP and from 7200 to 6700 cal yr BP yellowish-white clays (intervals 465 

B-1 and B-3) were deposited (Figure 3). The change in sediments combined 466 

with higher terrigenous inputs (Figure 3) indicates the disconnection with the 467 

fluvial system (Figure 3). Based on the analysis of biological proxies, we believe 468 

these intervals represented wetter conditions. Conversely, during the period 469 

from 8000 to 7200 cal yr BP the lithological change to brown clays (interval B-2) 470 

suggests the deepening of the water body. However, based on palynological 471 

results we suggest that during this interval the conditions were drier. According 472 

to the MS results (Figure 3) and axis 2 of the CCA (Figure 7), the intense 473 

erosional events may be interpreted as soil instability caused by fires (see a 474 

detailed explanation in section 5.5) instead of being driven by enhanced rainfall, 475 

which commonly occurs in tropical regions (Warrier and Shankar, 2009). 476 

Evidence may be indicating a temporal connection with the fluvial system. Thus, 477 

the interplay of fires, open landscape and long-distance transport of terrigenous 478 
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elements (Figure 7) might have promoted high erosion events.  Poaceae pollen 479 

grains are airborne and waterborne transported (Brown et al., 2007), and hence 480 

can be transported a long distance. So the high amount of Poaceae pollen 481 

grains during interval B-2 (Figure 6) would have been locally and extra-locally 482 

sourced. On other hand, the decrease in the δ15N values (<0‰) suggests the 483 

lake primary productivity might be ruled by nitrogen-fixing bacteria  (Figure 3). In 484 

summary, this period might be considered as highly variable, with an alternation 485 

of drier and wetter intervals. We tentatively suggest that disconnection-486 

connection dynamics with the fluvial system could have been driven by 487 

variations in the river’s drainage pattern.    488 

 489 

 490 

5.3. Period 3:  6700 to 1700 cal yr BP (from 120 to 30 cm)  491 

The pollen assemblage showed a remarkable compositional and structural 492 

change in plant communities during this period. The vegetation shifted to 493 

patches of dense rainforest within savanna from 6700 to 5400 cal yr BP. As 494 

noted by modern ecological studies (Leal et al., 2013; Rull, 1999), the 495 

percentages of herbs and tree pollen would indicate the occurrence of a forest-496 

savanna mosaic during this period. Forest was highly dominated by Urticales 497 

with 3-4p pollen grains, Brosimum, Sapotaceae, Cecropia, Pourouma and 498 
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Hyeronima. Urticales values suggest that an evergreen tropical forest with a 499 

closed-canopy was established nearby or patchily distributed in the location 500 

(Gosling et al., 2009). An additional local environmental reconstruction for the 501 

area was provided by a peat core extracted from the shore of Lake Encantada 502 

(Montoya et al., 2009). This sequence also showed a notable development of 503 

forest roughly at the same time interval. Hence, it seems to indicate that dense 504 

forest patches expanded locally. However, the palynological signal of some 505 

regional forest expansion expressed by the arrival of some wind-borne pollen 506 

grains to the sampling location cannot be disregarded. The rainforest 507 

development occurred when fires (regional and local) declined dramatically, 508 

which enabled Cecropia, as a pioneer tree, to colonize the land cleared by the 509 

fire disturbances (Burn et al., 2010; Marchant et al., 2002) and subsequently 510 

rainforest expanded. Because of the humidity requirements of rainforests and 511 

the higher abundances of Spirogyra, we consider this to be a period of higher 512 

available moisture during forest development.  513 

 514 

In the upper half of this period, a clear shift to more open vegetation occurred. 515 

The region near Lake Encantada was dominated by either open savanna with 516 

forest patches or reduced forest-savanna mosaic, under higher fire intensity and 517 

moisture availability and than before 5400 cal BP.  This is supported by 518 
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maximum values of aquatic elements (e.g., Botryococcus, deeper water 519 

inhabitant; Figure 5). Similar forest development and wetter climates during the 520 

middle to late Holocene are supported by similar studies from other locations in 521 

the GS (Montoya et al., 2011b; Rull, 1992), and in the neighbouring savannas of 522 

Colombia Llanos Orientales and northern Amazonia (Behling and 523 

Hooghiemstra, 2000; Pessenda et al., 2010; Figure 1a). This increase in humid 524 

conditions was the opposite of the trend toward drier conditions that occurred in 525 

the northernmost South American Andes (Vélez et al., 2003). Thus, the wet 526 

climate inferred in our study fits with regional climatic trends recorded in 527 

localities north of the Amazon basin, which would have been strongly influenced 528 

by moisture coming from the basin. 529 

 530 

The sedimentological change to brown clays and the pronounced increase in 531 

Br, TOC and TN (Figure 3) occurred at the base of the interval C. Probably the 532 

lake became more productive.  533 

 534 

  535 

5.4. Period 4: 1700 cal yr BP to present (30 to 3 cm) 536 

In the period from 1700 cal yr BP to present, the vegetation experienced an 537 

abrupt change towards the establishment of treeless savanna with morichales 538 
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stands (Mauritia palm), that is, the modern-day landscape. The continuous 539 

presence of small helechales indicates a network dynamic of fern patches. Rull 540 

(1999) interpreted these communities as a transitional stage from open 541 

secondary forest cleared by fires to open savanna with morichales (Rull, 1999). 542 

The high percentage of M. flexuosa pollen in sediments indicates the local 543 

occurrence of morichales (Rull, 1999). According to its ecology, this palm 544 

seems to be opportunistic and able to colonize new habitats created by fire and 545 

poorly drained soils resulting from wet conditions (Rull, 1999). Although fire 546 

evidence is not conclusive with regard to the initial establishment of the 547 

morichales (Figs. 4 and 7), the correlation analysis (r=0.68; p=0.015) indicates 548 

some level of fire influence on this plant community, which is also suggested by 549 

several former studies (Montoya et al., 2009, 2011c; Rull, 1999). On the other 550 

hand, the marked rise in TOC and slight rise in TN indicate an increase in 551 

primary lake productivity, which occurred in synchrony with decreased δ 15N 552 

values and algae scarcity. These results suggest that aquatic productivity was 553 

almost entirely dominated by nitrogen-fixing bacteria. The scarcity of algal 554 

remains and predominance of bacteria might indicate drier conditions and/or 555 

nutrient-limited conditions. 556 

 557 

5.5. Interpretation of the environmental gradients: Canonical 558 
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Correspondence Analysis (CCA) 559 

 560 

Chemical elements such as Ti, Zr and Zn are usually associated with 561 

terrigenous inputs of sediments to the lake, whereas total nitrogen (TN) and 562 

total organic carbon (TOC) commonly reflects variations in the organic 563 

productivity of the lake (Cohen, 2003). A careful analysis of the sample 564 

distribution in the plane defined by the two first CCA axes reveals that they are 565 

stratigraphically ordered, with the deepest elements located on the left side of 566 

the graph (sandy lithological unit 1) and the uppermost elements located on the 567 

right side (clayish lithological unit 3). Therefore, the first axis could be related to 568 

the suggested progressive change from a fluvial sedimentary environment to a 569 

lacustrine one.  570 

 571 

Despite absence of archaeological evidence, previous palaeoecological studies 572 

in the southern GS suggest that the consistent presence and abundance of 573 

charcoal (fire proxy) could be related to land highly managed and altered by 574 

humans for at least the last two millennia (Montoya & Rull, 2011; Montoya et al., 575 

2011c). Thus, axis 2 might reflect changes in the anthropogenic management of 576 

the catchment. The presence of charcoal particles associated with MS at the 577 

positive end of axis 2 suggests that the burning of vegetal cover could initiate or 578 
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enhance the erosion of the soils. When fires were reduced and Cecropia 579 

established (Figure 4), the development of middle to late successional rainforest 580 

might have been favored, as indicated by the presence of Urticales (Burn and 581 

Mayle, 2008; Gosling et al., 2009) on the negative side of axis 2. The algae 582 

were located parallel to Urticales 3-4p, suggesting a positive relationship with 583 

forest expansion and a negative relationship with fire frequency. 584 

 585 

6. Discussion and conclusions:  586 

 587 

6.1.The role of environmental drivers in the SE Gran Sabana 588 

                                                                                                                             589 

6.1.1. Interplay between climate and fire 590 

Climate alone was not the determining factor affecting the vegetation dynamics 591 

during both dry (~8700 to 6700 cal yr BP) and wet (~6700 cal ky BP to present) 592 

periods. The moisture content of a fuel source, which is determined by the 593 

preceding rainfall, affects how readily it will burn, thus acting as a regulator of 594 

fire in tropical systems (Cochrane and Ryan, 2009). Thus, higher available 595 

moisture restricted the incidence of fire (Figure 7). Hence, the predominance of 596 

savanna during early to middle Holocene would be the result of the positive 597 

feedback between dry conditions, fires and grassy vegetation. A similar 598 
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reinforcing feedback of open savanna occurred near Mapaurí record during 599 

early Holocene (Rull, 2007; Figure 1a). When climate conditions turned wetter 600 

~6700 cal yr BP, fire ignition was reduced. After longer fire-free intervals, trees 601 

would have reached a fire-suppression threshold through the development of a 602 

sufficient canopy cover, which prevented the growth of grasses (Hoffmann et 603 

al., 2012a). The synergistic action between reduced fires and a wetter climate 604 

appears to be a determinant in the development of rainforest. Thus, we suggest 605 

that during early to middle Holocene the fire regime may have been unaffected 606 

by humans. 607 

 608 

Despite the wetter conditions that occurred since ~5400 cal yr BP, the savanna 609 

expansion would have been the result of forest burning, which could be caused 610 

by fires set by humans (Montoya et al., 2011b). The coexistence of wetter 611 

conditions, forest vegetation and fires might be explained by land-use practices 612 

similar to those currently found in many neotropical forested landscapes (e.g., 613 

slash-and-burn), in which small forest spots are cleared and burned for shifting 614 

agriculture (known locally as conucos). Shifting cultivation practices apparently 615 

occurred in the El Paují region, south of Lake Encantada, from 7700-to 2700 cal 616 

yr BP (Montoya et al., 2011b; Figure 1a). Considering a lag of about 2300 years 617 

between the start of conucos in El Paují and Lake Encantada, palaeoecological 618 
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results might suggest that semi-nomadic and forest-like indigenous culture 619 

migrated northward from the southernmost part of the GS. Fires increased after 620 

6200 cal yr BP and since 5400 cal yr BP forest retreated gradually. The forest 621 

communities in the GS have been considered low resilient to burning (Fölster et 622 

al., 2001). However, this evidence might indicate that forest communities may 623 

have been resilient and recurrent burns could have reduced their resilience. 624 

This ecological feature of GS forest communities needs further assessment. An 625 

apparent shift in land-use practices towards more extensive use of fire in open 626 

landscapes was recorded ~2000 years ago and continued to the present in 627 

several of the GS localities (El Paují, Lake Chonita, Urué, Divina Pastora, Santa 628 

Teresa; Montoya et al., 2009, 2011b,c; Rull 1992,1999; Figure 1a). In El Paují, 629 

humans appear to have abandoned the study area around 2700 cal yr BP, 630 

although the area could have been populated again from 1400 cal yr BP 631 

onwards by a different culture (Montoya et al., 2011b). A change to a new-632 

savanna like culture could have also occurred near Lake Encantada around 633 

1700 cal yr BP. Drier conditions may have been influential in the maintenance 634 

of savanna vegetation and continuity of fires. Recurrent burns were required to 635 

maintain the openness of the landscape and allowed the development of highly 636 

flammable vegetation, which drove the ecosystem to a treeless savanna state 637 

during the last two millennia (Montoya & Rull, 2011).  638 
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 639 

6.1. 2. Interplay between erosion and fire 640 

In the GS, soil erosion is greatly enhanced when the organic-rich surface layer 641 

is lost along with the forest vegetation (Fölster, 1986). Thus, the prolonged loss 642 

of forests could be associated with the progressive loss of soil water and 643 

nutrients, which could have subsequently hindered re-establishment of tree 644 

species. Moreover, because of the shallow root system (Dezzeo et al., 2004), 645 

calcium deficiency and limited water retention capacity of the soils, tree 646 

mortality (Fölster et al., 2001) and drying of the soils might have been 647 

significantly affected by fire. Therefore, the synergism between fire and erosion 648 

could have resulted in forest instability, promoting an increase in soil erosion 649 

and nutrient loss. This synergism would have favored the establishment of the 650 

grass stratum. This process was likely triggered by fires, but maintained by 651 

enduring soil-stress conditions. Rull (1992) suggested that the burning of the 652 

GS forests has initiated a degenerative and irreversible process that when 653 

coupled with soil degradation (Rull et al., 2013), results in the savanna 654 

expansion (Rull, 1992,1999). The interplay between fire, erosion and the grass 655 

vegetation was probably intensified around 5400 cal yr BP, enabling the 656 

landscape change to open savanna with forest patches. That state remained 657 

until ~2000 years ago, when the shift of land use practices allowed surpassing 658 
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the tipping point towards an irreversible expansion of savanna, reinforced by 659 

drier climates. Thus, due to the opening of the landscape, the synergistic action 660 

between fire and erosion appears to have increased during the last 2000 years. 661 

 662 

The Lake Encantada record, combined with former paleoecological studies 663 

(e.g., El Paují, Chonita, Urué), allows for the reconstruction of the regional 664 

picture of environmental change and land-use patterns in the southern GS, and 665 

for the assessment of competing hypotheses (climate, fire, soils) for explaining 666 

the maintenance of the savanna.     667 

 668 

6.2. Relationship between GS savannas and other moist savanna areas 669 

 670 

Although the GS has different vegetation types, human history and lower 671 

climatic variability than the Brazilian savannas (Cerrado biome), it shares a 672 

long-history of fire regime, poor soil conditions (e.g., low pH, high aluminum 673 

concentrations, poor nutrient availability) and climatic fluctuations during the 674 

Holocene. Humid climate conditions would also favor the establishment of forest 675 

instead of savanna (Oliveira-Filho and Ratter, 2002). It is widely accepted that 676 

climate, soils and fire have been highly interactive in their effect on Cerrado 677 

vegetation (Oliveira-Filho and Ratter, 2002). The complex interaction of these 678 
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factors in the GS was first assessed and recognized in this study. Climate alone 679 

does not explain the current predominance of savannas in these two humid 680 

regions. We consider that, as in Cerrado biome (Pinheiro and Monteiro, 2010), 681 

climate has been the trigger of this assumed interaction in vegetation history of 682 

the GS during the early Holocene. Seasonal and/or dry climate may have 683 

produced conditions prone to fires (Oliveira-Filho and Ratter, 2002) in Cerrados, 684 

and our evidence shows that that this also occurred in the GS. Recurrent fires 685 

apparently tended to prevent forest recovery and caused soil impoverishment in 686 

these two regions (Cerrados: Oliveira-Filho and Ratter, 2002).  In some areas of 687 

Cerrado, the transition from forest to savanna seems to have been related to 688 

edaphic factors rather than to fire action (Pinheiro and Monteiro, 2010). 689 

However, limited data in the GS (this study) suggests that fires would have 690 

primarily driven this vegetation shift. Fires and soils have shown to be selective 691 

agents of savanna vegetation (e.g., fire-adapted and fire-dependent species) in 692 

the Brazilian savanas (Pinheiro and Monteiro, 2010), in which environmental 693 

factors are better understood (Oliveira-Filho and Ratter, 2002). Therefore, 694 

further assessment of the role played by fires and soils and the interplay 695 

between these two drivers is required in the GS. Since the middle Holocene, the 696 

failure of Cerrado (Ledru et al., 1998) and GS forests (Montoya et al., 2011b) to 697 

expand into savanna may be largely caused by human-induced fires through 698 
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shifting cultivation (Pivello 2011), overriding the effect of wetter conditions 699 

(Ledru, 1993; Montoya et al., 2011b). We believe that the interplay between 700 

fires and soil conditions has played a role in the vegetation history in humid 701 

Neotropical savanna areas and that humans may have largely influenced it. 702 
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 956 

Figure captions 957 

Figure 1. A) Location of the study area and its position within northern South 958 

America. The Gran Sabana is delimited by the white square. The coring site is 959 

indicated by a star. Numbers indicate the sites with paleoecological information 960 

mentioned in the text: 1 — Roraima savannas; 2 —Llanos (Llanos Orientales of 961 

Colombia and Venezuelan Orinoco llanos); 3 — Northern Amazonia; 4 — 962 

Northern Andes; 5 — Encantada peat-bog; 6 — Mapaurí; 7 — El Paují; 8 — 963 

Lake Chonita; 9 — Urué; 10 — Divina Pastora); 11 — Santa Teresa. B) Lake 964 

Encantada. Morichales bordering the lake shore. Regional open savanna 965 

landscape. (Photo: V. Rull, 2007).                                                                                                    966 

 967 

Figure 2. Core stratigraphy with radiocarbon ages, sediment description, age-968 

depth model of the sequence, pollen and lithological zones. 969 

                                                                                                                           970 

Figure 3. Elemental counts (Si, K, Ti, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr), 971 

Inc/coh fraction, magnetic susceptibility (MS), bulk density (BD), Total inorganic 972 

carbon (TIC), total organic carbon (TOC), total nitrogen (TN), nitrogen isotope 973 

(δ15N), carbon isotope (δ13C) and C/N ratio in terms of depth. Calibrated ages 974 

shown on the right side are based on the age depth model outputs 975 
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 976 

Figure 4. Diagram showing percentage of pollen taxa and influx of charcoal. 977 

Solid lines represent ×10 exaggeration. Representation of the lithology:  978 

Brown clays,  Yellowish-white clays,  Yellowish-brown clays and  White 979 

sands.  980 

 981 

Figure 5. Diagram showing the elements outside the pollen sum, such as the 982 

aquatic and semi-aquatic plants, pteridophyte spores, algal remains, and 983 

silicobioliths traces. The abundances are expressed in percentages with respect 984 

to the pollen sum. Silicobioliths traces are expressed as barren (empty space) 985 

and present (filled space). Diatoms taxa. C.c= C. cylopuncta, A.m= 986 

Achnanthidium minutissimum, N.p= Nitzschia palea, N.c= Nitzschia capitellata, 987 

S.p= Sellaphora pupula, A.p= Amphora pediculus, N.v1= Navicula veneta, 988 

N.V2= Navicula viridula var.rostellata, A.V=Amphora veneta, C.p= Cocconeis 989 

placentula var. euglypta, C= Craticula sp.  990 

 991 

Figure 6. Diagram showing the influx values of the main taxa, total algae and 992 

microcharcoal particles. Calibrated ages shown on the right side are based on 993 

the age depth model outputs 994 

 995 
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Figure 7. Biplot of the canonical correspondence analysis (CCA). Numbers 996 

correspond to the sample’s core depth (cm). ENC-I, ENC-II and ENC-III 997 

correspond to pollen zones. Barren zone ENC-BZ is not included. 998 
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