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Abstract:The aim of this project is to find the “proper length” of the thread in both the tough
and the mild variants of Bell’s spaceship paradox. To do so, a method for measuring the proper
length of an accelerated object needs to be proposed. It is developed and applied to both variants,
and then, the results are compared.

I. INTRODUCTION

Although today it is known as “Bell’s spaceship para-
dox”, Dewan and Beran [1] were the first to propose this
“Gedankenexperiment”: Let R and F (rear and front) be
two spaceships at rest in an inertial frame S with origin
in R. The distance between the ships is h. The ships
are tied by a thread from the tie of F to the head of R.
At equal times in S both ships start accelerating with an
identical acceleration profile a(t) in the direction of the
line that joins them. This constitutes a paradox due to
the fact that

1. At any time both ships will have the same veloc-
ity measured from S, so their relative distance is
always h in this frame. There is no reason for the
thread to break.

2. According to S the resting length of the thread
from R to F is h but, when the thread is travel-
ling at a certain speed, it is Lorentz contracted and
its length measured from S is shorter than h, and
can’t cover the distance between ships. The thread
is thus stretched and it should break.

Bell uses this paradox in [2] to show how this kind of
problems help the students to consolidate key concepts.
He asserts that the thread would break, and exposes how
this paradox caused a great deal of trouble in the CERN
canteen.

Usually, a paradox takes place when there is a concept
which is not properly understood or it is ambiguously
defined. This is the case of the proper length. It corre-
sponds to the length of an object measured in the object’s
comoving frame. In case the object is moving at a con-
stant speed, we can get the proper length through Lorenz
transformations, but in case the object has some accel-
eration profile then there is no such thing as a comoving
inertial frame against what Franklin states in [3]. To
measure the proper length of the accelerated thread, we
will apply a similar idea to that of the clock hypothesis
[4]. In each piece of the thread there exists an instanta-
neous comoving inertial frame, and in this frame we can
measure a differential of length of the thread the same
as in the non accelerated case. Then, the proper length
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of the whole thread will be the sum of every one of these
differentials of length. For the addition to make sense,
all elementary lengths added must be simultaneous.

We will solve the paradox when the acceleration pro-
grammes are constant proper acceleration a. For us,
whenever the thread is stretched (increases its proper
length) it breaks. As transverse dimensions are not rele-
vant, we will restrict the problem to a 1 + 1 Minkowski
spacetime, this is, one spatial component and one time
component. Whenever we refer to a (x, t) diagram, those
will be coordinates of S.

FIG. 1: A view from S of the ships at every instant of time.

For the sake of simplicity, we will assume that each
point in the thread moves with constant proper acceler-
ation a. This is not the most realistic consideration in
the sense that the thread does not have a team of engines
along it, and a more sensible assumption would have been
to consider that the motion of the ships is transmitted to
the thread elastically (this would be an interesting way
to continue the study of the paradox). Yet, our assump-
tion allows us to focus on the key concepts of the problem
while keeping it reasonnably affordable.

We distinguish between the tough paradox, where the
ships never stop accelerating, and the mild paradox,
which considers that at a given time t∗ (in S) both ships
stop their engines and continue travelling through space-
time at a constant speed v∗.

II. PRELIMINARY CONCEPTS AND
DEFINITIONS

A. Adapted coordinates

Let us consider a set of material points P , each one
with worldline Xµ(P ; τ), τ being the proper time. Sup-
pose these lines cover completely a region M in the 3 + 1
Minkowski spacetime. Then, we can refer to each point
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of M as

Xµ = Xµ(ξ1, ξ2, ξ3, τ).

Assuming these worldlines are continuous and differen-
tiable, and due to the fact that two different points P
and Q cannot invade mutually, we get that the relation
betweenXµ y (ξ1, ξ2, ξ3, τ) is a bijection between an open
set from spacetime M and an open set in R4. Thus, we
can take (ξ1, ξ2, ξ3, τ) as a system of coordinates in M
that is adapted to the motion of the material points.

It might be also useful to replace τ with another
time coordinate T = T (ξ1, ξ2, ξ3, τ), so that changes lo-
cal clocks’ rate (∂τT 6= 1) but always future-pointing
(∂τT > 0). In these coordinates the invariant interval

ds2 = ηµνdx
µdxν

with ηµν = diag(+1 + 1 + 1− 1), becomes

ds2 = ηµν
∂xµ(ξ)

∂ξα
∂xν(ξ)

∂ξβ
dξαdξβ := gαβ(ξ)dξαdξβ . (1)

As usual, we use latin indices for spatial terms (i =
1, 2, 3), and greek ones for both spatial and temporal
terms (µ = 1, 2, 3, 4). Proper velocity in each point
P = (ξ1, ξ2, ξ3, T = ξ4) is now

∂xµ(τ, ξi)

∂τ
=
∂xµ(T, ξi)

∂T

∂T

∂τ
=
∂xµ

∂ξ4
∂ξ4

∂τ
. (2)

B. Simultaneity at a distance

Let us consider (as in [5]) two nearby space spots ξi y
ξi + dξi and three different events A, B and C. In A, a
beam of light is emitted from ξi + dξi. In B the beam
reaches ξi and reflects. In C the beam reaches again
ξi+dξi. The following table lists the coordinates of each
event and displacements between them.

A (ξi + dξi, ξ4 + (dξ4)1)

B (ξµ)

C (ξi + dξi, ξ4 + (dξ4)2)

A→ B B −A = −(dξµ)1 = −(dξi, (dξ4)1)

B → C C −B = (dξµ)2 = (dξi, (dξ4)2)

TABLE I: Events’ coordinates

For A is in B’s past light cone we have ds2AB = 0 and
(dξ4)1 < 0. Developing the first one and taking into
account (1), we get the following quadratic equation:

gij(ξ)dξ
idξj + 2gi4(ξ)dξi(dξ4)1 + g44(dξ4)21 = 0. (3)

For C is in B’s future light cone, we get the same equa-
tion before but replacing (dξ4)1 with (dξ4)2. This shows

FIG. 2: Diagram with events and coordinates from table I

(dξ4)1 < 0 and (dξ4)2 > 0 are the two solutions to equa-
tion 3, the positive and the negative.

(dξ4)1,2 =
−gi4dξi ±

√
(gi4dξi)

2 − g44gijdξidξj

g44
. (4)

Let us introduce a new event D, which corresponds with
the event that takes place in ξi+dξi simultaneously with
B. We can parametrize it with (ξi + dξi,ξ4 + dξ4). Tele-
graphist protocol states that

dξ4 =
(dξ4)1 + (dξ4)2

2
= −gi4dξ

i

g44
⇒

g4µ(ξ)dξµ = 0 (5)

must hold for D and B to be simultaneous. Thus, two
neighbouring events ξµ and ξµ + dξµ are simultaneous
if (5) holds. This can be seen as a definition of local
simultaneity in a non-inertial system of coordinates.

C. Proper time and coordinate time

A standard clock stationary at a point with coordinates
ξi indicates the proper time of its worldline. If we write
this line in terms of coordinates (ξ1, ξ2, ξ3, ξ4 = T ) we
will get the expressions ξi = ct and ξ4 = T . Thus, veloc-

ity vector with these parameters is vµ = dξµ

dT = δµ4 . Now,
proper time is given by the invariant interval (clock’s hy-
pothesis):

−dτ2 = ds2 = gµν(vµdT )(vνdT )⇒ dτ2 = −g44dT 2

dτ =
√
−g44dT. (6)

A coordinate system is said to be synchronous if two si-
multaneous events have the same time coordinate. Let’s
consider the nearby events ξi and ξi + dξi. Due to equa-
tion 5, the coordinate system (ξ1, ξ2, ξ3, ξ4 = T ) is syn-
chronous if

g4µ(ξ)dξµ = 0⇔ dξ4 = 0.
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That is g4i = 0 for i = 1, 2, 3.

D. Distance between neighbouring points

When the beam of light in section II B goes A→ B →
C travels two times the distance dl between ξi and ξi +
dξi. The time gap between A an C is, including equation
(4)

∆ξ4 = (dξ4)2 − (dξ4)1 =
2
√

(gi4gj4 − g44gij) dξidξj
|g44|

.

(7)
This depends on the time coordinate we choose, which is
not, in general, a standard clock and so it is not a scalar
(invariant under coordinate changes). It is convenient
to consider the proper invariant gap using equation (6),
which is a scalar.

∆τ =
√
−g44∆ξ4. (8)

The time gap for the radar signal round trip from A to
C through B measured by a stationary clock at ξj + dξj

is then

∆τ = 2

√(
gij −

g4ig4j
g44

)
dξidξj . (9)

Recalling c = 1, radar infinitesimal distance between ξi

and ξi + dξi is

dl2 =

(
gij −

g4ig4j
g44

)
dξidξj . (10)

This dl is called Born’s length [6] and stands for the length
between ξj and ξj +dξj measured in the instantaneously
inertial comoving frame with ξj . By integrating Born’s
length through a set of points which are simultaneous,
we will get the proper length of an accelerated body.

III. TOUGH VARIANT

Our aim is now to find an expression for the proper
length of the thread in the tough variant, and to see how
it changes with time. We assume that the ships start
moving with constant proper acceleration in the direction
that joins them. The worldlines of the ships are given by

xR =
√
t2 + a−2 − a−1, (11)

xF =
√
t2 + a−2 − a−1 + h.

These equations correspond to an hyperbolic movement,
only different at the starting point. We are not going to
work with Lorentz coordinates. Instead we will solve the
problem in another set of coordinates (ξ, τ) given by

x = a−1(cosh(aτ)− 1) + ξ, (12)

t = a−1 sinh(aτ).

These new coordinates will not only allow us to describe
the movement of the ships in a much easier way but can
also describe whatever point of space-time in the region
where our problem takes place. In these coordinates the
worldlines of the thread points are ξ = constant, and for
the ships

ξR = 0 ξF = h. (13)

The metric considering the new coordinates is the follow-
ing

gαβ =

(
1 sinh(aτ)

sinh(aτ) −1

)
. (14)

The condition (5) for two events to be simultaneous in
the new coordinates is

dξ =
dτ

sinh(aτ)
. (15)

By integrating (15), we will obtain a curve joining space-
time points which are locally simultaneous with respect
to the thread. We will call this a simultaneity curve. The
integral is easy to solve and results

ξ = a−1 log

(
eaτ − 1

eaτ + 1

)
+ ξ0, (16)

where ξ0 is an integration constant that will be deter-
mined later.

Now, substituting the elements of the metric in (10)
we get Born’s length:

dl = cosh(aτ)dξ. (17)

The distance we are looking for will be obtained by
adding this differential pieces of the thread (dl) between
two boundary points (τ1 and τ2) that will be determined
later. Using (15) and (17) we get∫ τ2

τ1

dl =

∫ τ2

τ1

cosh(aτ)dξ =∫ τ2

τ1

coth(aτ)dτ =
(
a−1 log |sinh(aτ)|

)τ2
τ1
. (18)

To find our limits τ1 and τ2 for the integral (18) we will
find the intersections between the worldlines of our space-
ships and the simultaneity curve. Equation (16) has ξ0
as an integration constant. We determine it by imposing
that when τ = τ1 the simultaneity curve intersects ξ = 0,
and we obtain

ξ0(τ1) = a−1 log

(
eaτ1 + 1

eaτ1 − 1

)
. (19)

So the final expression for the simultaneity curve starting
the measure in τ1 (we will call this curve Στ1) is

ξ = Στ1(τ) = a−1 log

(
eaτ − 1

eaτ + 1
· e

aτ1 + 1

eaτ1 − 1

)
. (20)
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This means that when we measure the proper length, the
rear ship is in (ξ, τ) = (0, τ1). Taking different values for
τ1, we are moving the time when the measure is done.
Now we find the expression for τ2 = τ2(τ1) such that
when τ = τ2, equation (20) intersects ξ = h, this is,
solving

h = a−1 log

(
eaτ2 − 1

eaτ2 + 1
· e

aτ1 + 1

eaτ1 − 1

)
. (21)

After some algebraic manipulation we get the expression

τ2 = a−1 log

(
α+ eah

α− eah

)
α =

eaτ1 + 1

eaτ1 − 1
. (22)

Now it is time to evaluate the integral (18) and obtain
the proper length Ltough in terms of τ1.

Ltough(τ1) = h+ log

(
4eaτ1

(eaτ1 + 1)2 − e2ah(eaτ1 − 1)2

)
.

(23)
Now that the calculus has been done, we take a look

0

t(τ~1)

0 1/3 2/3 1 4/3 5/3 2 7/3

t(
τ)

x [h]

ξ=
0

ξ=
h/3

ξ=
2h/3

ξ=
h

Σ τ~ 1
(τ)

Σ τ 1
(τ); 

τ 1<
τ~ 1

Asy
mptote of Σ τ~ 1

(τ) 
and ξ=

h

FIG. 3: Tough version’s (x, t) diagram. Purple lines are
worldlines of different pieces of the thread. Blue and yellow
are simultaneity curves, and the black one is an asymptote.

on the range of values τ1 can take. The simultaneity
curve in (20) is given as a ξ = Στ1(τ) function, and it is
convenient to observe that

lim
τ→∞

Στ1(τ) = ξ0(τ1). (24)

Equation (24) means that the simultaneity curve never
intersects the worldline ξ0(τ1). Let us analyse how ξ0
depends on τ1 by equation (19). It is a continuous and
decreasing function with

lim
τ1→0

ξ0(τ1) = ∞,

lim
τ1→∞

ξ0(τ1) = 0. (25)

This means that we will always find a value τ̃1 that
makes ξ0(τ̃1) = h. For τ1 < τ̃1 we have ξ0(τ1) > h
so the simultaneity curve intersects ξ = h in τ2 and L
is a finite distance. If τ1 ≥ τ̃1 then ξ0(τ1) ≤ h so the
simultaneity curve will never intersect ξ = h and the
distance L becomes infinite.

IV. MILD VARIANT

For t < t∗, the worldlines of both ships are given by
(12) but in t = t∗ the ships stop the engines, so for t > t∗

their worldlines become straight lines:

xR/F = mt+ nR/F

m =
at∗√

1 + (at∗)2

nR/F = xR/F (t∗)− a(t∗)2√
1 + (at∗)2

. (26)

which are the tangent lines to (12) in t∗. This means after
t∗, both ships continue travelling with constant velocity

v∗ := v(t∗) =
at∗√

1 + (at∗)2
. (27)

Thus, for t > t∗ we can define a new framework S′ that
moves with the ships and has its origin in R. S and S′

are inertial frames connected by a Lorentz transforma-
tion. We know from Minkowski diagram that simultane-
ity curves of S′ in (x, t) diagram are straight lines with
slope v∗. Given an event (t0, x0) with t0 > t∗, the event
(x, t), t > t∗ simultaneous with it holds

t− t0 = v∗(x− x0). (28)

We will continue our explanation considering coordi-
nates (ξ, τ) given by (12). Let τ∗ be the proper time
coordinate when the ships stop their engines, that corre-
sponds to t∗ through (12). Depending on whether τ < τ∗

0

t(τlim)

t(τ*)

0 1/3 2/3 1 4/3 5/3 2 7/3

t(
τ)

x [h]

FIG. 4: Mild version’s (x, t) diagram. Purple lines are world-
lines. Simultaneity curves Στlim and Στ∗ are plotted in yellow

or τ > τ∗, we have different kinds of simultaneity curves.
Let τ lim be such that (ξ, τ) = (0, τ lim) is simultaneous
with (h, τ∗). Its expression in terms of τ∗ is

τ lim = a−1 log

(
eah + α

eah − α

)
α =

eaτ
∗ − 1

eaτ∗ + 1
. (29)
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As in the tough version, τ1 indicates the proper time
in the rear ship when we make the measure. Then, if
τ1 ≤ τ lim the points (ξ, τ) = (0, τ1) and (h, τ2) that are
simultaneous are joined by (20) and so, the distance be-
tween them is given by (23), the same as in the tough
variant. This is the red simultaneity curve in figure 4.

If τ1 ≥ τ∗, the points (0, τ1) and (h, τ2) that are si-
multaneous are joined by (28). The proper length in this
case is easy to obtain, since the frames S′ and S are in-
ertial. Due to Lorentz contraction, the gap between the
ships will be γh in S′, and it is constant no matter what
time τ1 ≥ τ∗ the measure is performed.

For τ1 values between τ lim and τ∗ simultaneity curves
will be defined piecewise. They will be given by (20) until
they reach τ = τ∗ and from that point, they will continue
as (28). The length Lmild will be the sum of two different
contributions: LI , the integral of (20) from τ1 to τ∗, and
LII , the integral of (28) from τ∗ to τ2. This is the case
of the blue simultaneity curve in figure 4.

The first part is easy to obtain, by merely making τ2 =
τ∗ in (18) so that

LI = a−1 log
sinh(aτ∗)

sinh(aτ1)
. (30)

For the second part, we use the following reasoning:
If the simultaneity curve Στ1(τ) given by (20) intersects
τ = τ∗ in (h, τ∗) then LII = 0, and if it intersects τ = τ∗

in (0, τ∗) it should be LII = γh. Besides, this relation be-
tween LII ∈ [0, γh] and Στ1(τ∗) ∈ [0, h] has to be lineal,
since we are working with triangles in a flat spacetime.
Hence

LII = γ(h− Στ1(τ∗)). (31)

Recalling (20), the expression for the proper length of the
thread will be

Lmild = LI + LII = a−1 log
sinh(aτ∗)

sinh(aτ1)
+

γ

(
h− a−1 log

[
eaτ

∗ − 1

eaτ∗ + 1
· e

aτ1 + 1

eaτ1 − 1

])
.(32)

The complete expression for L in the mild variant is given
piecewise by

L(τ1) =


Ltough(τ1) if τ1 ≤ τ lim

Lmild(τ1) if τ lim < τ1 ≤ τ∗

γh if τ∗ < τ1

V. CONCLUSIONS

Finally, we arrive at the expression of the proper length
of the thread in both variants. Results in terms of τ1 are
plotted in figure 5. We observe that proper length is not
constant when acceleration takes place.

Surprisingly, in the tough variant there is a measuring
time limit beyond which proper length of the thread be-
comes infinite, whereas in the mild version it keeps always
under a finite value γh. This would not have happened
if we had taken τ2 as a parameter instead τ1. Tough or
mild, it becomes clear that the thread is stretched in both
variants, and thus it will break.

0
h

γ h

0 τlim τ~1 τ*

L

τ1

FIG. 5: Length in terms of τ1 in the tough variant (yellow)
and the mild one. They both coincide between 0 and τ lim.
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