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Abstract: Collective motion is fundamental in flocking or schooling dynamics and represent one
of the most fascinating sights in nature. In this paper, to describe collective motion, we use one
of the most representative models called the Vicsek Model. The main features of this model is
a noise-driven phase transition between ordered and disordered phase and its mathematical and
computational simplicity. We reproduce its basic results and continue our work adding a leader
to study how leadership affects its dynamics, showing that this new ingredient breaks the phase
transition.

I. INTRODUCTION

In nature, collective motion plays an important role
in life being behavior. Examples of that fact are seen
worldwide and are well-known since it can be seen in our
everyday life. Representative examples, which highlight
that fact, are schools of fish providing protection or out-
maneuvering, in a matter of seconds, a predator, a flock
of birds moving around or migrating in formation or a
sheep herd.

Although those are the most intuitive examples, there
is a wide range of other systems where collective motion
takes place. From an overcrowded street to cells or bac-
teria, even non-living systems show that kind of collec-
tive phenomena [1], like micrometer-sized silver chloride
(AgCl) particles acting as an autonomous micromotor in
an special environmental conditions [2].

This wide range of scales and systems got the attention
of researchers from several fields. Biologists were the first
who started studying that phenomena [3], followed by
computer graphics researchers, like C.W. Reynolds, who
created realistic animation of birds flocking by setting
basic rules like collision avoidance and velocity match-
ing, for instance [4]. However, it was not until T.Vicsek
proposed his model that the physics community took in-
terest in that field [5].

T.Vicsek presented a model where each individual is
constantly updating its velocity direction by averaging
with its closest neighbors, being the system fully deter-
mined by the position and velocity direction of each par-
ticle [5]. From a mathematical and computational point
of view, Vicsek model is quite simple and doesn’t require
big computational efforts and from a physical view, this
model shows a phase transition between ordered and dis-
ordered phase, which makes this model really interesting
for a physicist. For those reasons, we decided to use Vic-
sek Model to study collective motion.

The structure of our work is the following: in Section
II, we explain how Vicsek Model works, the way we im-
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plemented it and finally we present its basic results. After
that, in Sec. III we introduce a new role (leader) in our
system and explore how our system evolves and if the
phase transition still takes place in function of the frac-
tion of followers. Finally, in Sec. IV we end our study
adding a second leader and tanking into consideration
the effects of uninformed individuals.

II. STANDAR VICSEK MODEL

The Vicsek Model is based in N self-propelled particles
which are able to move in a d-dimensional box of sides L
with constant speed v0. Each particle interacts with the
other ones through averaging its velocity direction with
other particles inside a range of interaction defined in
terms of an euclidean distance of radius R0. Since perfect
interaction is not realistic, a noise term η is introduced
in order to simulate difficulty in gathering or processing
information, etc.

In a 2-dimensional box, every particle is characterized
by two variables, its position ri(t) and its velocity direc-
tion, which can be represented with only one angle θ(t)
arbitrarily chosen between [ -π,π] . By knowing how both
parameters evolve over time, we can fully determine our
system’s evolution. Then, given that each particle dy-
namics depend just on its velocity, its future position
can be determined following the Eq.(1):

ri(t+ ∆t) = ri(t) + vi(t)∆t, (1)

where ∆t represents our integration time step and vi(t)
the velocity at time t, which can be decomposed in terms
of θ(t):

vi(t) = v0(cos(θi(t)), sin(θi(t))) (2)

It must be remarked that the only time dependence is
found in θi(t) so it is the parameter which rules the mo-
tion. The conditions that defines θi(t)’s time dependence
are two, the way interaction between particles is summa-
rized and the impossibility of perfect alignment. As said
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before, each particle averages its direction with all indi-
viduals inside its radius of interaction with a noise term
added to fulfill the second condition. Those conditions
lead to:

θi(t+ ∆t) = arg(
∑
j∈R0

vj(t)) + ηξi (3)

where η is a parameter which allows us to control the
noise intensity and ranges from 0 to 1, ξ is an uniformly
distributed random number set between [-π,π] and the
argument arg(...)=arctan(

vy
vx

) is the velocity direction.
At this point, we need to define a suitable order pa-

rameter so as to capture the statistical information of
the collective motion and to analyze the transition be-
tween an ordered and a disordered phase. A possibility
to define it is as shown in Eq.(4):

|φ(t)| = 1

Nv0
|

N∑
i=1

vi(t)| (4)

This order parameter gives us information about the
disorder of our system in function of η.

On the one hand, when η is equal to 0, we reach the
maximum order possible because all particles are aligned
exactly to the same direction. Therefore, there is no
cancellation in the summation, so our order parameter
reaches its maximum value φ=1. However, if we increase
slightly the noise intensity η, that perfect alignment is
broken, although all particles move approximately at the
same direction, as seen in Fig.(1). Because of that, there
are some cancellations in the sum and our order param-
eter decreases its value.

On the other hand, when we have a high noise inten-
sity η the term ηξi(t) introduces a huge distortion to the
alignment and produces a random distribution of each
particle’s direction. That produce the cancellation of the
sum, which makes our order parameter vanish, reaching
φ=0 when η=1.

FIG. 1: Final ordered configuration when η=0.05.

Finally, one can estimate the error of the order param-
eter by computing its variance as follows:

V ar =< φ2 > − < φ >2 (5)

Once we have already talked about Vicsek Model from
a dynamical and statistical point of view we must concern
about the computational strategy to follow:

First of all we must initialize our system by setting
N particles moving with velocity v0=0.3 inside a 2-
dimentional box of side L, with density ρ= N

L2 . Given
that there is no privileged position nor direction, we must
set them uniformly distributed ranging all the possible
values [0,L] for the positions and [-π,π] for the velocity
direction.

Secondly, because of the fact that we are working with
a finite sized system, we need to reduce finite size effects.
To do so, we work with periodic boundary conditions
(PBC) where a particle that exits from one side, enter
from the opposite one, fulfilling the conservation of the
number of particles.

Finally, when considering the distance between parti-
cles, in order to know if a particle is inside the range of
interaction, one must take into account PBC since parti-
cles that are at a distance greater than L

2 are, in fact, at
a shorter distance when considering PBC. For instance,
consider two particles in the opposite frontier of the box,
its distance is greater than L

2 but they could interact
because of the PBC.

At this point, we begin our simulations by studying
the order parameter in function of the noise intensity η
for different sizes but with constant density ρ=1.

FIG. 2: Order parameter in function of the noise
intensity for different sizes, with ρ=1.

From Fig.(2) it can be seen how the order parameter
evolves in function of η for different sizes. When the
noise intensity is low, for all sizes the order parameter
is close to 1. While we increase the intensity, the or-
der parameter gets lower in a different way depending
on the size. Although for all sizes the order parameter
decreases, for bigger systems it decreases faster. It is due
to finite size effects. Furthermore, it must be remarked
that φ(η) should tend to zero when η tends to 1, however
this value is never reached, and not only that, for small
sizes, φ is not even close to 0. The reason is because
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when the noise intensity tends to 1, our system’s con-
figuration is basically a set of N random vectors which,
from a mathematical point of view, its order parameter
goes as φ ∼ 1√

N
[6].

To determine the existence of a true phase transition
and when it takes place we must take a close look to the
parameter of order and its evolution over time. An evi-
dence of a phase transition can be found in the behavior
of the order parameter. Fluctuations on it become more
and more important while it approaches to the phase
transition, being infinite when the transition takes place.

FIG. 3: Order parameter over time with log scale in the
x-axis once the system reached an stationary state.

Analyzing Fig.(3) we clearly see how φ(t) fluctuates
when we increase η. When the noise intensity is far
from its critical value, it doesn’t fluctuates as much as
it does while we approach its critical value. When we get
closer, its fluctuations start being considerable until it
reaches its maximum value at η = ηc. In order to deter-
mine ηc with precision we must quantize the magnitude
of the fluctuations. To do so, with analogy with ferro-
magnetism, we define the susceptibility as in Eq.(6):

χ = NV ar (6)

Recalling Eq.(5) we get:

χ = N(< φ2 > − < φ >2) (7)

Plotting χ versus η allows us to get some information
about the phase transition. Once again, taking the anal-
ogy with ferro-magnetism, the presence of a peak is a
clear evidence of a second-order phase transition between
ordered and disordered phase which takes place where the
peak is found.

A peak is found in the susceptibility versus the noise
intensity (Fig.4), being a clear evidence of the existence
of a phase transition in the Vicsek Model.

Once we have already reproduced Vicsek Model’s re-
sults we can move an step forward by introducing new
features in the model. Our first move is to introduce a
new role in the system, a leader.

FIG. 4: Susceptibility in function of η for different sizes.

III. LEADERSHIP

When considering social interaction, leadership is an
important feature to take into consideration when study-
ing collective motion. Several species of animals follow
a hierarchical structure where some individuals are fol-
lowed by the rest of the community, playing the role of a
leader. This structure, in some cases, can be quite com-
plex, leading to a situation where two or more individu-
als compete to be the dominant leader. This competition
brings us to a situation where some individuals follow one
leader and others follow a second one.

In this part, we are interested in the effect produced
by a single leader in the collective motion and, particu-
larly, how the introduction of that new feature affects the
behavior of the Standard Vicsek Model from a statistical
point of view.

We introduce a non-local leader, in such a way that its
followers (informed individuals) interact with it no mat-
ter at what distance is found and considering it to have
an immutable velocity vleader. In spite of having this
privilege, if an individual is a follower, it interacts with
the leader by taking into consideration its direction with
the same weight as a normal individual when averaging
with its surrounding neighbors, as shown in Eq.(8).

θi(t+ ∆t) = arg(
∑
j∈R0

vj(t) + εivleader) + ηξi (8)

where εi is a coefficient equal to 1 if the i-th particle is
a follower and 0 otherwise.

The first question that arises is what happens with
the order parameter when we introduce a fraction of in-
formed individuals. We observe from Fig.(5) that when a
portion of informed individuals is introduced, φ is greater
compared with the situation where there are no informed
individuals. Besides, the greater the fraction, the greater
the order of our system.

Its interesting to observe in Fig.(6) that, when a frac-
tion ω of informed individuals is introduced, even for a
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FIG. 5: Order parameter as a function of η for different
fractions of informed individuals, with N=512 and ρ=1.

FIG. 6: Detailed evolution of the order parameter over
time with ω=0.0 (top), and ω=0.2 (bottom).

small ω, the time required to achieve an ordered station-
ary state drops drastically and the fluctuations are re-
duced. That arises the question whether the phase tran-
sition still takes place or not when there are informed
individuals.

To answer the previous question, once again we must
look at the susceptibility, starting with the extreme case
where ω=1. Analogously with ferro-magnetism, one
would expect to break the phase transition when all in-
dividuals follow the leader, since it acts like a magnetic
field in the ferro-magnetic case. Remember that in the

ferro-magnetism we have a phase transition at Tc between
polarized and unpolarized phase. When we introduce a
magnetic field, all spins align to its direction and the
phase transition is broken, so we expect the leader to
have the same qualitative effect at ηc.

Comparing Fig.(6) with Fig.(3) we clearly see huge dif-
ferences in the order’s parameter fluctuations. When
there is no leader, there is a phase transition between
ordered and disordered phase that we clearly see in its
fluctuation’s behavior. However, when all the N individ-
uals are informed, the fluctuations drop drastically and
our system align itself to the leader’s direction, breaking
the phase transition.

An other remarkable fact is that when ω=1, apart from
reducing the fluctuations, the order parameter takes a
greater value than when there is no leader. That means
that the presence of a leader makes the order prevail even
when high noise intensities are applied, only when η=1 a
disordered phase is observed.

Once we studied the opposite cases (ω=0 and ω=1)
one is interested in the intermediate case. Being proved
that there is no phase transition when ω=1 we will look
how the fluctuations behave and scale with N for different
fractions.

FIG. 7: Susceptibility versus η for different ω with
N=512 (top) and susceptibility peak height in function
of L with log scale for different ω (bottom).

From Fig.(7) we can see how the fluctuations behave
in the Standar Vicsek Model (ω=0) and how they evolve
when informed individuals are introduced and its propor-
tion raises. There is a drastic drop in the susceptibility
compatible with the fact that a leader strengthen the or-
der when it has some followers. Apart from that, looking
at how susceptibility’s peak scales in function on the size
L, one sees how practically between ω=0.4 and ω=0.5
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those fractions of informed individuals behave approx-
imately like ω=1, so we expect no phase transition be-
tween those fractions and absolute leadership when ω=1.

Finally, for lower fractions we would expect a Vicsek-
like behavior where the peak scales in function of the size
with a power law which could have different but close
exponents for different fractions. However, comparing
our results when ω=0 (Standard Vicsek Model) with the
ones obtained in Ref.[7], makes us suspect that we had
no enough statistics since we worked with small-sized sys-
tems and with not enough steps and seeds. So we can
not ensure its behavior.

IV. MULTIPLE ROLES

To end our work, we are going to study if with our
model is possible to reproduce some kind of rich behavior
as in I.D.Couzin experiment[8]. Couzin managed to build
a multiple-leader system with different number of follow-
ers and strength. He found that the introduction of un-
informed individuals played a central role in his system’s
behavior, being able to modify the dominant collective
motion in a non-trivial way. For instance, in some cases,
depending on the number of uninformed individuals, the
stronger minority were the dominant and determined the
collective motion and in other cases the uninformed indi-
viduals promoted a democratic consensus and made the
weaker majority to be the dominant one.

To begin with, we consider a situation where all the
individuals are informed and there is a leader with the
majority of followers. We have seen that in this situation
all the system align itself to a preferred direction closer
to the leader with the majority. Furthermore, comparing
this case with the ideal situation where there is no inter-
action and each individual just follow its leader, we see
that interaction actually favor the order.

Finally, we introduce uninformed individuals. In spite
of not having the strength parameter in our model, we
wonder if in our case such a rich behavior arises when un-
informed individuals are in presence of two different lead-
ers with its respective followers. Since each leader has the
same strength in our model, the relevant parameter is the

number of followers each leader has. Exploring different
situations such as low fraction of uninformed, majority
respect of the total informed, approximately the same
fraction between informed and uninformed etc. no rele-
vant role has been seen for the uninformed individuals,
so in our future studies we must implement the strength
parameter to reproduce this characteristic features.

V. CONCLUSIONS

During this work we studied collective motion using a
basic model of N self-propelled particles with a really ba-
sic interaction rules called Vicsek Model. We reproduced
its basics results, showing a noise-driven phase transition
between ordered and disordered phase. Then, a new role
(leader) was introduced, we studied how this new feature
affected Vicsek Model’s behavior. We saw how its behav-
ior changed quite drastically when a relatively low frac-
tion of follower individuals were introduced. We saw how
followers represent a big contribution to order and how
those reduce the required time to achieve the alignment
to a collective direction. Although we have seen that the
phase transition disappeared for a high fraction of a non-
local leader followers (ω ∼ 0.5), we have not been able
to determine with precision at which fraction of followers
occurs. Finally, we tried to reproduce, with that modi-
fied model, Couzin’s experimental results. Even though
he took into consideration a new parameter (strength of
leadership) we studied if with our model the same effects
could be achieved, were a leader with a minority of fol-
lowers resulted to be the dominant. With our model, we
have not been able to see such a behavior although we
continued by introducing this new feature. For a matter
of time, those results could not be reflected in that work.
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