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In this work we will propose a theoretical approach for a microfluidic device which can be used as
a micro and portable rheometer. We will propose a theoretical model based on the dynamics of the
fluid interface in the microchannel in a regime of constant pressure. In this experimental device we
use a pump module of polydimethylsiloxane (PDMS) that absorbs the air in the microfluidic system.
Furthermore, we will be able to predict velocities and viscosities of the different Newtonian fluids
by means of the properties of the fluid and the geometrical parameters of the experimental set-up.
We will also study the diffusion process of the modular pump in order to understand the pressure
generated for driving fluid. Finally, we demonstrated the utility of this model by comparing our
predictions with the experimental data.

I. INTRODUCTION

Nowadays having a lab-on-a-chip has become one
of the best ways to take advantage of the modern
technology[1]. Specifically, microfluidics has shown great
advantages in various areas such as biotechnological and
chemical analysis and, in addition, a good understanding
of the dynamics of a liquid front in a micro-device can
be used to understand and classify different fluids ( vis-
cosity measuring, contaminated and non-contaminated
fluids, healthy and infected blood, etc.)[2]. This kind of
devices have some common features as low fluid volume
consumption, faster response times to short diffusion
distances, compactness and portability. These assets can
be really interesting when we aim to solve a biological
problem where using an small quantity of substances
can simplify and agilise the procedure of any activity[3].
However, in spite of these benefits, microfluidic devices
with real applications are not being introduced with
relatively speed into the society.

Looking closer to this emergent technology we realize
that when working with microfluidic devices we typically
need a bulky system. At the present time, traditional
pumps including syringe and peristaltic pumps, or even
pressure source regulators have portability limitations
due to their bulky hardware. However, when the goal
is to improve the portability of the device, several
researchers have developed and proposed plenty of
new options for pumping mechanisms and integrated
micropumps on-chip such as gravity-driven flow, evap-
oration process, valves, diaphragms and more. Short
while ago, a proposed pumping method for portable
microfluidic systems was a pump module made of
PDMS (polydimethylsiloxane) [4] . This is a pumping
mechanism that takes advantage of its inherent porosity
and air solubility in order to absorb the air in the
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microfluidic system and then create a negative pressure
for driving fluid. The key advantage of this pump is
that its power-free and easy-to-use as we just need to
place the degassed PDMS slab on the outlet port of
microfluidic devices.

Using a modular pump to start and control the fluid
flow through a micro-channel increases the flexibility
and reduces the complexity and cost. This independent
pumping mechanism is a degassed PDMS micro-device
that when it is brought back to the atmosphere a
re-dissolution process of air into the PDMS takes place.
This pumping activity is as short as the air distribution
inside and outside the PDMS reaches the equilibrium,
which is related to the geometry of the pump and the
surface through which the diffusion process is happening.

FIG. 1: Photograph showing the actual experimental setup.
On the left we can see our reservoir that is full of fluid mean-
while on the opposite site, connected with it through the mi-
crochannel, we have our PDMS pump.Courtesy of J. Etxebar-
ria

Here we study a microfluidic device designed to
study fluid flow driven by pressure inside a capillary
micro-channel. In this device a fluid container is placed
at the beginning of the experimental setup and the
fluid goes from the container through a tube to the
micro-channel where on the other side a PDMS pump
sets the pressure difference. The tube acts as a flux
controller and by measuring the velocity of the fluid-air
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interface inside the micro-channel we will be able to
deduce rheological properties as the viscosity of the fluid.

Our aim in this study is to propose a theoretical ap-
proach to the dynamics inside of the microfluidic device
where a fluid is pushed through a micro-channel against
a second fluid, gas, that is getting into the PDMS pump
due to the gradient of concentration. When a PDMS
pump is connected to the micro channel a negative pres-
sure is generated by the particles leaving the channel to
get into the pump. This diffusion process leads to an hy-
drodynamic process in which the fluid front starts moving
forward in order to compensate the variation of pressure
looking for being in equilibrium.

II. EXPERIMENTAL RESULTS

We have studied fluid flow inside a rectangular
microchannel using a pressure-driven flow where the
pressure difference is set and the velocity of the fluid
front interface, l̇(t), inside the microchannel is measured
by tracking the mean position as a function of time,
what we will call l(t), between several contiguous images
and averaging its values through the channel length
[5]. The microsystem consists of different microchannels
of length, lc = 4cm and heights from b = 175µm to
b = 612µm and width of w = 1mm, molded using
PDMS. We also have a fluid container which we will
consider large enough to consider a constant height
of the fluid in the deposit which will go to the mi-
crochannel through a tube of length lt = 1cm and radius
rt = 256µm.

Once the experiment has started, the mean front ve-
locity remains approximately constant since the position
of the interface in the channel passes the 20mm [5]. In
table [I] we show the mean front velocity for each height
of the micro-channel for water and olive oil for.

Olive Oil Water(I) Height(I) Water(II) Height(II)

l̇(mm/s) l̇(mm/s) b(µm) l̇(mm/s) b(µm)

0,33 0,40 188 0,5 175

0,20 0,22 336 0,39 250

0,14 0,17 424 0,24 380

0,10 0,10 612 0,19 500

TABLE I: Table showing experimental measurements of the
mean values of the front velocities averaged over the length
of the channel as a function of its height. Experiments were
carried out with a liquid column of height H = 8, 3mm. Olive
oil and Water I are the experimental values of the heights I
meanwhile Water II are the experimental results for heights
II; they are two different experiences at the laboratory.

III. THEORETICAL MODEL

In order to give a mathematical model for our device
we will split our problem in two parts. The first one is
about the dynamics of the gas getting into the pump and
the second one is the hydrodynamics of the fluid front.
We will use the subindex 2 for the closed gas system and
the subindex 1 for the pump system. Notice that, as
time progresses and the position of the fluid front, l(t),
increases, the volume of 2 will be reduced, V2 = V2(t),
meanwhile the volume of the system 1 will maintain
constant all the time, V1 6= V1(t).We can say then that
we have N particles and we can write: N = N1(t)+N2(t)

FIG. 2: Schematic representation of the experimental set up.
The box on the left represents our reservoir that will be full
of fluid meanwhile on the opposite site, connected with it
through the microchannel, we have a representation of our
PDMS pump of volume V1.

Since we are able to know the quantity of particles that
we have in the micro-channel at the initial time because
we know that is at atmospheric pressure, N2(t = 0) =

N = patmV2(t=0)
kBT

, we will be able to determine how it
varies through time due to the diffusion process along
the surface, A, connecting the closed gas system (2) and
the pump system (1)

Ṅ2
A

(t) = −AD ∂u1(x, t)

∂x

∣∣∣∣
x=0

(1)

where u1(x, t) is defined as the linear concentration of
the system 1 and D is the diffusion coefficient. More-
over, from mass conservation we know that the amount
of particles that get into the pump are the same that es-
cape from the micro-channel through the contact surface,
Ṅ1(t) = −Ṅ2(t). So the number of particles in the pump
at a given time t is the integral from t = 0 to t of (1). In
addition, the position of the interface water-air is related
to the volume of enclosed air V2(t)

V2(t) = V2(t = 0)− wbl(t) (2)

where l(t) represents the position of the front in the
micro-channel. Pressure of each system, 1 and 2, can
be deduced from ideal gas law by using the respective
variables
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IV. VELOCITY OF THE FLUID FRONT INSIDE
THE MICROCHANNEL

In order to explain the motion of the interface between
liquid and gas we will assume Darcy’s law inside of a rect-
angular micro-channel of height b. Being l(t) the position
of the front at time t, η is the viscosity and ∆P (t) is the
total pressure drop we have:

l̇(t) =
b2

12η

∆P (t)

l(t)
(3)

The total pressure drop along through the liquid until
just after the interfase is:

∆P = ρgH + patm + pc − p2(t)− 8vtηlt
r2

where p2(t) represents the pressure difference gener-
ated by the pump. The last term, which is the one related
to the microtube connecting the fluid container to the
microchannel (deduced from Poiseulle’s law), has vari-
ables as vt that is the mean value of the velocity in the
microtube and lt which is the length of the microtube
feeding the capillary channel. In addition, due to mass
conservation we can also write the last term in terms
of the geometry of the device instead of vt as we have
l̇bw = vtπr

2. Then, by reorganizing and combining each
relation, we arrive at a general differential equation de-
scribing the temporal evolution of the fluid front inside
the channel

l̇(t) =
b2

12η

ρgH + patm + pc − p2(t)

l(t) + 8bwlt
πr4

b2

12

(4)

Notice that, as p2(t) is the pressure drop generated by
the pump, as initially it was a gas at p = patm and what
happens through time is that gas particles get inside the
pump due to the diffusion process, we can write:

p2(t) = patm − p1(t) (5)

where p1(t) is the pressure corresponding to the particles
that got inside the pump structure. Using this last re-
lation, we can give a more clearfull relation between l̇(t)
and the pressure drop generated by the pump p1(t)

l̇(t) =
b2

12η

ρgH + pc + p1(t)

l(t) + 8bwlt
πr4t

b2

12

(6)

In addition, for initial times and basically during all

the experiment we have that l(t) << 8bwlt
πr4

b2

12 ' 20cm[6]

resulting as a consequence a regime of time where l̇(t)
and p1(t) are no longer time dependent as a consecuence
of the time scale solution for the diffusion process which
is presented in section V.

l̇ =
ρgH + pc + p1

8ηbwlt
πr4

(7)

Moreover, by taking natural logarithms to each side of
Eq (7)

ln(l̇(b)) = ln

[
(ρgH + pc + p1)

ηbwlt
πr4
]
− ln(b) (8)

V. DIFFUSION PROCESS

The working mechanism of the PDMS pump is based
on air absorption through a difussion process. The
pressure generated by the modular pump depends on
the amount of air that is getting into it. When the air
in the closed system is diffused in the pump, we expect
that the pressure will fall in response to the change in
the amount of air. However, from our experiences in the
laboratory [5] and other experiences from literature [4]
we can see how at a limited time, the pumping pressure
generated by the modular PDMS pump arrives to a
plateau which means that it remains approximately
constant.

According to the pumping performace we expect to
arrive in the diffusion process to a solution that remains
approximately constant for a certain regime of time. This
means that the diffusion proces arrives to a situation
where N1 doesn’t change significatively.

A. The diffusion equation

The diffusion equation is a partial differential equation
which describes density fluctuations in a material under-
going diffusion. The equation for our system 1 can be
written as:

∂u1(r, t)

∂t
= D∇2u1(r, t) (9)

where u1(r, t) is the density of the diffusing fluid at
location r = (x, y, t) and time t. D is the diffusion
coefficient and we supposed that does not depend on the
position or time, i.e., D is constant.

Considering the diffusion equation in one dimension on
the interval x ∈ [0, xL] we have:

∂u1(x, t)

∂t
= D

∂2u1(x, t)

∂x2
(10)

Using separation of variables we find a solution for the
concentration of our system one which is not identically
zero satisfying the following boundary conditions:

u1(x, t = 0) = 0 ∀x 6= 0 (11a)

u1(0, t) = u0 ∀t (11b)

∂u1
∂x

∣∣∣∣
x=xL

= 0 ∀t (11c)
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The resulting solution for the non-homogeneous
boundary conditions can be written as:

u1(x, t) = (1− x

xL
)u0 +

x

xL
uL

+

∞∑
m=1

An sin

(
(m− 1

2 )πx

xL

)
e
−D π2

x2
L

(m− 1
2 )

2t
(12)

Am =
2

xL

∫ xL

0

f(ζ) sin

(
(m− 1/2)πζ

xL

)
dζ (13)

Where in our case u0 is related to the density of the gas
in the micro-channel. It is possible to find the pressure
generated by the gas inside the pump, p1(t), by integrat-

ing Ṅ1(t) and dividing by the volume V1.

N1(t) =

∫ t

0

dt′ṄA
1 (t′) = −

∫ t

0

dt′ṄA
2 (t′) (14)

where the expansion of m in Eq.(12) must be truncate for
a ”m” where the exponential is small enough to not being
considered. The pressure for driving fluid generated by
the pump can be calculated for a given time, t, as:

p1(t) =
N1(t)

V1
KBT (15)

From previous studies [5] [7] we know that there is a
plateau on the fluid flow that is proportional with our
l̇(t). We know that this stationary time is the order of
magnitude of minuts, so we will take tst ' 1min

VI. RESULTS AND DISCUSSION

As we can see in Fig.3 that all our experimental results
follows a linear relation where represented in natural log-
arithms as predicted in Eq.(8) within the time, pressure
and height ranges that our experiments and model take
place. The theoretical model that we present allows us
to relate the parameters of this linear relation to physi-
cal properties of the fluid and geometrical parameters of
our experimental setup as can be seen in Fig.4 where we
plot the average velocity of the front as a function of the
channel height.

The predicted value of the viscosity by means of
the shear rate in Fig.5 in the case of the water gives
0.87mPas which perfectly concur with the results
available in previous studies [6]

About the diffusion process, we did an analysis of the
time regimes that we need to work with in order to be
able to choose the last term of our expansion in m taking
into account that our experiment takes approximately 4
minuts to finish. By introducing the parameters of the

experiment, V1 = 350mm3, A = 1cm2, D = 3, 4 ·10−9m
2

s
and xL = 5mm, into the time dependant part of the

FIG. 3: Plot showing the natural logarithm of the mean front
velocity as a function of the natural logarithm of the chan-
nel height where the shown values are dimensionless variables
from the original values divided by the unity. X marks and
green crosses are the representation for water (I) and (II)
meanwhile red triangle shape marks correspond to the olive
oil experimental values. This plot shows a solid dark line of
gradient minus one, a value predicted in our theoretical model
Eq (7)

.

FIG. 4: Plot showing the mean front velocity as a function
of the channel height. Experimental data is plotted by using
its respective marks meanwhile the predicted values from our
theoretical model Eq.(7) are showed in solid lines of the same
color of its marks.

FIG. 5: This plot shows the estimte viscosity, using our model
(7), of the fluids (water and olive oil) . We observe, as it
should be expected for a Newtonian fluid, that for the values
of shear rate the viscosity remains constant.
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Eq. (12) we can see the regimes of each order of the
expansion.

The corresponding values of the p1 as a function of the
order of the expansion m and time t are:

t(s) p1(m=4) p1(m=3) p1(m=2) p1(m=1)

0,5 78,59 58,99 39,35 19,68

1,5 234,93 176,61 117,94 59,03

2 312,70 235,25 157,19 78,70

10 1521,23 1158,27 780,70 392,96

15 2244,26 1721,01 1166,21 588,95

30 4280,03 3347,89 2303,90 1174,94

60 7855,25 6353,93 4498,24 2338,12

TABLE II: Table showing our predicted values of the pressure
generated by the pump. Pressure values are expressed in Pa
and time in seconds.

Where from the experiments we know that for times of
1mins the pressure arrives to a plateau that our diffusion
equation does not contain but it is included in the fluid
front model. The value of this constant pressure can be
deduced from our model for t = 2s and for larger times
it must be constant.

VII. CONCLUSIONS AND FUTURE WORK

We have proven our theoretical model of velocity for
fluid interfaces in micro-channels with a newtonian fluids.

We obtained a good prediction model which for a given
micro-channel height, pressure drop from the pump and
fluid, gives the mean value of the fluid front velocity for a
regime where it remains approximately constant. We can
see from our equations that when increasing the channel
height the velocity of the fluid drops inversely propor-
tional to this variable. Going further, when doing num-
bers in our equations, we can see how important is the
value of the channel-height due to the slightly difference
between the pressure balance. The negative pressure gen-
erated by the pump is subtly above of the capillary and
hydrostatic pressure, fact that takes importance when di-
viding by the order of magnitude of the micro-channel,
1µm, gives a notorious speed of the interface. Fact that
also explains why the pressure of the pump leads the
dynamics of this device. Our model also predicts a vis-
cosity that is not shear-rate dependent as should be for
a newtonian fluid. In the future, is possible to develop a
theoretical model useful for a non-newtonian fluids as it
could be used for substances such as blood. It is believed
that this microdevice might be useful for point-of-care di-
agnostic tests. When using our two models together we
predict the appropiate experimental behaviour for our
micro-rheometer.
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